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We discuss the implementation of the Lattice—Boltzmann method, a relatively new technique for
computational fluid dynamics, on the TBM SP! Scalable Parallel processor. Sustained rates of
almost 4 Gflops on high-resofution simulations with up to nearly 800 million of degrees of freedom

are demonstrated.

In the recent years, distributcd multiprocessor architectures
obtained by pooling together powerful RISC processors
tinked via optical swilching networks have gained an in-
creasing popularity within the arena of parallel computing.

The success of this architecture is due to the fortunate
conspiration of two technological factors: the impressive
risec of raw computer power afforded by RISC (echnology,
and the wide acceptance of open-system soltware Unix-
based environments. A typical forerunner of this kind of
architectures is the cluster of workstations, linked via stan-
dard local area nctworks, such as Elhernet, Token-Ring,
FDDI, and other interconnecting media.'

More rccently, the cluster concept has evolved into a
truly integrated, scalable parallel (SP) architecture, the IBM
90176-SP1 machine (9076-SP1 is a trademark of Interna-
tional Business Machines Corporation}, consisting of a rack
of RISC processors connected via an optical swilching
network.”

The key point in the SP approach is the fact that cach
processor is “‘per-se” a seif-standing computer (worksta-
tion) with independent 1/O and processing capabilities, This
means that the programmer can develop and test his/her
paralie]l applications on a single workstation completely
“off-line.” i.e., by cmulating parallel execution via the
standard Unix multiprecessing functions with no need to
access the physical nodes of the parallel machine, The ap-
plication can subsequently be taken to the fully configured
parallel machinc in a fairly smooth fashion once ready for
production runs. This offers a significant advantage in
terms of man-cffort savings for both scientific and indus-
trial end-users.

[n this article we present a serics of performance data
which prove that by use of the Lattice--Boltzmann method,
a recent technique for computational fluid dynamics (CFD)
especially suited to paralle! computers, very high-resolution
CFD problems involving over a half a billion {((15G) de-
grees of freedom can be exccuted on the 1BM Y076 Scal-
able Parallel system at sustained rates of almost 4 Gilop.

The purpose of this article is not to break any world
record or surpass previous high-resolution simulations with
Boolcan automata,® finite  differences,*  or  speciral
methods,™ but simply to show that the SP strategy is quite
cost-clfective and very convenient to adopl over a wide
range of resolutions.

I. DESCRIPTION OF THE LBE METHOD

The Lattice-Boltzmann cquation (LBE) is a direct mcthod
to solve the Navier—Stokes equations on a digital computer.
LBE is rooted in Boolcan lattice gas techniques, a kind of
“minimal"” molecular dynamics based on the observation
that the large-scale dynamics of fluid flow is largely inde-
pendent of the details of the underlying microdynamics.
This suggests that, to numerically intcgrate the differential
equations describing the motion of a fluid, it may be con-
venient Lo use a population of microvariables (“*particles™)
whose microdynamics can be freely adjusted to match the
Navicr—Stokes equations on 2 macroscopic scale.’

The LBE method takes this approach once step-forward
towards the macroscopic world, from the molecular 1o the
kinetic level, by replacing the Boolean microdynamical
variables with their corresponding floating point expecta-
tion values. This move, while maintaining the locality in
space and time of the evolution rules, which are key Lo the
amenability to parallel computing, offers three main advan-
tages: a greater suitability to present-day computing archi-
tectures (increasingly faster on the floating point side); a
wider degree of latitude in choosing the details of the evo-
lution rule; a reduction of the separation in scale between
the microworld and the macrowarld (i.c., the averaging op-
eration on a suitable region of the microdynamical lattice
needed in Boolean simulations lo remove statistical noise is
no langer necessary).

Some brief highlights of the mcthod will be given
here, for the sake of compleleness. A more detailed descrip-
tion can be found in Refs. 8-12.

The method is based on the definition of a discrete
fattice of points. On cach site of the kattice. fr populations
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N are defined, corresponding to b vectors {ei. joining
neighboring points on the lattice. Populations evolve in
{discrete} time according o a prapagation and collision
rule:

NAXH €+ =NIX D AN (= N,
!
(n

where A, s the collision matrix, and ¥ are the values of
ihe popuiations at tocal equilibrivm.

By a suitable choice of the Taftice. ie the e, A, and
N i can be shown that the folfowing lnear combinations,

plx) =2 Nix.o)

r
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hehave according to the Navier-Stokes equations for an
incompressible Nuid.

The most common houndary conditions (e.g., free-
slip. no-stip. periodic) can be casily implemented by suit-
ably muodifying the propagation phase. This is ubtained by
wrapping the physical lattice with a one site thick border or
layer, taking part to the propagation step and ignored in the
collision step. The population values of those additional
sites are aptly set to obtain second-order accurate boundary
conditions on virtual points lying midway between the bor-
der sites and the external laltice sites.

In a similar way, grossly irregular geometries (i.c.. po-
rous media} can he studicd, by replicating the trick on
“solid™ sites in the lattice bulk, These situations are more
readily accounted for by LBE than by traditional computa-
tional techniques, because only nearest-neighbor communi-
cation is required even (or describing diffusion processes
usually described by sceond-order difference operators.

The primary advantage of the EBT approach relates to
its amenability to parallel computing. This is readily appre-
ciitted by noting that the collision phase. the one accounting
far most of the CPU time of the application. is completely
local in configuration spacc.

. SHORT SURVEY OF THE SP1 SYSTEM

The SPi is a parallel computer designed (0 make the hest
use of [BM’s RISC technology combined with a high-speed
switch for interprocessor communication,” Special features
of this machine are

(1) Jarge memory per node (64-256MT3),

(2} high-performance nodes ([ 25Mflops peak).

{3} high-performance switch HLS ps hardware latency, 40
MB/s peak bidirectional bandwidth),

(4) high [/Q bandwidth off-nodes (TMB/S), and

{5) full Unix functionality on cacly node.
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The base made! starts with cight processors nodes, with
a modular growth path up to 64 podes, corresponding
taa peak system performance from 1 to 8Gflops and an
apgregated capacily of (0.512-16GB. Twa transport
layers are available for use with the high-performance
swilch. The first is [P (Tnternet Protocol), providing en-
hanced performance to code written using Unix sock-
ets. The second is an 1BM’'s proprictary transport layer
that is used by MPL (message passing library), the
LHBM's propriclary library, and IBM AIX PVMe, the
IBM version of the public domain PVM library, devel-
oped at the IBM European Center for Scientific and
Engincering Computing, Rome, Ttaly."

(6) The SPT operates under the TBM AEX Parallel Operat-
ing Environment (POLE), which provides support for
paraltel application development and execution.'™!"

(7} Parallel programming on SP1 is based on the message-
passing paradigm which can be implemented cither via
MPL, PVMe, or via other popular communication li-
braries such as PVM, Express. or Linda.

™. 3P1 MPLEMENTATION OF THE LBE METHOD

The actual LBE-MPL implementation is bascd upon a two-
dimensional  domain-decomposition method, This choice
could upsct the scalability of the application for massively
parallel configurations {thousands of processors or more),
but represents a good compromise between latency and
bandwidth considerations within the range of processors
examined in this study (1-128).

The global domain is a parallelepiped containing
N, XN XN_sites along the three coordinate direclions.

The P processors, labeled from O o P—1, are logi-
cally mapped onto the global lattice as a rectangular mesh
ol each processor owning a parallelepipedal slice
o o, with =N o =N P and n, =N /P, .

As an example. a 3X4 processor configuration is
mapped as follows:

9 10|11
7167 |8
2{3| 4|5

0111} 2

y -

Diagram 1. Processor mambering in the y—z plane for a
XA processor configuration

Within this domain-decomposition strategy, the colli-
sion phase is embarrassingly parallel in that no communi-
cation is required between neighboring processors, The
propagation  phasc. however, requites  nearest-neighbor
commumicition along the 18 directions defined on (he dis-
crete Taftice {6 acarest-neighbors plus 12 next-to-nearest
ncighbors). As a residt, despite its conceptual transparence,



this application sets a real challenge on the interconnecting
network for a high-rate data traffic between different pro-
cessors has to be sustained.

In the streaming phase each processor must communi-
cate with its neighbors, whose number (3—8) depends on
the processor location within the mesh. Communications
occur across the four faces parallel to the x axis of the
subdomains; whenever one or two of these faces lie on a
boundary of the global domain, they are treated accord-
ingly. Our starting point was a thoroughly modular and
carefully optimized FORTRAN-VS code, running on scalar,
vector or shared-memory parallel machines with very little
modifications. Keeping the SP1 version coherently aligned
with this policy was a must for this project.

We achieved this goal by simply extending the trick of
the additional wrapping layer, described above for the
boundary conditions. In line with the SP strategy, every
processor runs a straightforward LBE serial code, with the
exception that the routine responsible of setting the popu-
lations of the additional layer so as to satisfy the boundary
conditions, now, wJ;erever the l;ordcr is interna] to the glo-
bal domain, takes the nght values from the peighboring
Processors. qu net result is that the informatiops from the
neighboring nodes are simply used as bouudary conditions
for the local subdomain.

Besides the changes in the boundary conditions rou-
tine, some minor modifications had to be made in the /O
procedures and in the routines in charge of tracing the time
behavior of selected global quantities. All accounted for,
the extra work amounted to less than 10% of the original
code, and was accomplished {debugging included) in ap-
proximately a 2 week time using a software emulator run-
ning on a single workstation, The final code ran smogthly
without problems ¢on the real SP1 machine.

While organizing the interprocessor communications,
we had three objectives in mind. First, “parallelize” the
communication phase to the highest possibie extent, i.e., let
as many processors as possible to communicate concur-
rently.

Second, mask the communication latency, i.e., the
time needed to establish a communication between two
processors, which may severely degrade the efficiency of
short and/or frequently interrupted transmissions.

Third, get rid of the detrimental impact of the system
buffering activity needed to deal with hanging messages
(send operations awaiting for the corresponding receives)
behind the scene.

Owing to the fact that the SP1 switch allows any dis-
joint pair of processors to communicate concurrently, the
solution is to organize the communication pattern in terms
of a set of mutually disjoint sender/receiver pairs (“com-
munication dimers”’).

To avoid contentions for communications with a given
processor, all pairs should rematn tied-up for the same time
lapse, i.c., they should transmit the same amount of data
and eventually synchronize only at completion of the trans-
mission activity.

To achieve this goal, we organized the communica-
tions steps so that the data movement occurs first in the y,
then in the z direction. This ensures that each “bound” pair
exchanges the same amount of data. Mutual disjointness
can be achieved by arranging the communication according
to a “two-color” checkerboard pattern whereby odd nodes
first talk to even nodes and vice versa.

For example, in the 3X4 partition above, the pairs in

the communications along the z axis can be selected ac-
cording to their parity: first, each even-numbered node
“talks” with the upper neighbor node, then each odd-
numbered node tatks to the upper neighbor, and so on. This

““parlor game”’ technique can be quite effective in lcvclmg
off load unbalances.

Care was also taken to avoid short messages which
would hit the machine latency. For example, diagonal com-
munications (say 0<4) are obtained implicitly as a com-
bined effect of horizontal (3~—4 and 0-+1} and vertical
(03 and 1—4) communications.

At this stage, it is worth mentioning that lhe imple-
mentation of the above strategy was greatly facilitated by
use of the visualization tool (VT), i.e., the component of
POE which permits to monitor and visualize application as
well as system actlvxty With VT the programmer can visu-
alize message passing events between processors, type, du-
ration and connectivity of communication events, CPU uti-
lization of processor nodes, load balance, and many other
indicators of the parallel job acuwty A qualitative example
of the group of displays, or vit;ws" provided by VT is
shown in Fig. 1. o BT

TR

In order to gain a quick grasp on the parameters controlling
the parallel efficiency, we have dcveloped a simple analyti-
cal performance model. This model is deliberately discard-
ing real-life effects, such as load-unbalance and size-
dependent efficiency of memory access. While the former
assumption proved basically correct upop expcmnental
verification, the latter does oply pa;tlally, 3s it will be dis-
cussed in the sequel.

The amount of data to be exchanged by a glvcn pro-
cessor is given by

M=2X4X6(2n,n,+2n,1,)(B), @)

where 2 stems from bidirectional flow (send/receive), 4 is
the number of B/variable, 6 is the number of cxchangcd
variables per grid point, and the factor within brackets is
the number of surface grid points.

The corresponding amount of calculations {**grain™) is
given by:

G =957 n.n,n,(Flops), (3)

where we have neglected the processing time required by
the routine move (18 n,n 1, memory references).

The communication time associated with the message-
passing is given by

Tmm:M/Vcom+ 24T¢)+ ZN_‘-TU In P, (4)

where V., 15 an effective peer-to-peer communication rate
and Ty is the machine latency (time to set-up the commu-
nication) and ¥, is the number of synchronization points
per time step (two in our case). The factor 24 comes from
the fact that each discrete speed in the lattice gives rise to a
separate message.

Since the computing time is given by G/V,, the par-
allel efficiency, defined as

!

7 I+ Tcnm/TcaI
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Figure 1. A typical group of displays (“views") of the visualization tool.

reads as follows:
P, P,)
1
T 1+ (Ve Vemllal(n, "+, N hon (bt ¢ In P)]’
(5}

where n=nn.n,, =V Ty is the minimal message
length below which latency is felt, and a =96/957, b=24/
957, ¢=4/957.

Latency and synchronization overheads are no concern
for the efficiency as long as the number of processors is
Tow enough to fulfill the following incquality

1 + InP N 6
Z 2—4 <nx(ny HZ). ( )

Typical wvalues for this application are V_/V..m
~6(Flop/B) as deduced from experimental measurements,

0
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Ty~100 us, rg~0.5 KB. With these values, it is readily
checked that latency and synchronization issues are largely
immaterial for the results discussed in this article.

As a result, the analytical model indicates that the ap-
plication should scale up to a number of processors of the
order of the square size of the global computational do-
main, ot, equivalently like the total number of grid points to
the power 2/3. This is precisely what one expects from a
two-dimensional partitioning of a three-dimensional do-
main.

V. PERFORMANCE DATA

Several grid sizes were run, ranging from a 32X48X64 to
256x%512X256 grid sizes. The raw performance in Gflops
for the following representative grids (““S,” “M,” “B,”
“GL» “G2,” “G3” stand for small, medium, big, gigal-
2-3, respectively)

(S) 32X48X64 (9MB),
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Figure 2. Raw performance {Gflops) of the cases (S) to (G3) as a function
of the number of processors.

{M) 64x96x128 (72MB),

(B) 128x192X256 (576MB),

(G1) 256x192x256 (1.152GB),

(G2) 256X256x256 (1.536GB),

(G3) 256X512x256 (3.072GB)
are presented in Fig. 2.

Run (M) can be accommodated in-core within the cen-
tral memory of a single node (128MB} thus allowing our
study to encompass the full range of available processors,
from 1 to 128, without being obscured by paging issues.

For the same reason, runs {B), G1-2, G3 have not been
performed for Iess than 8, 16, and 32 processors, respec-
tively.

From Fig. 2, we see that there is no single best per-
former across the whole range of processors, but who does
best depends on the number of processors. In principle, we
identify three regions

(L) up to 32 processors,

(M) from 32 to 64 processors,

{H) from 64 to 128 processors.

In region (L) (low parallelism) the smaller cases per-
form better; this is likely to result from better memory ac-
cess due to the smaller size of the problem. As the number
of processors is raised [region (M), for moderate paraliel-
ism] the intermediate cases (B) and (G1} take over while
the largest jobs are still outperformed by the smaller ones.
As the number of processors is further increased, the largest
run tends to win the race. In any event, the pleasing remark
is that if the number of processors is sufficiently high [re-
gion (H}}, the largest jobs prove capable of extracling ba-
sically the same percentage of peak performance of the
single processor (about 25%). This leads to more than 3
Gflops performance for all but the smallest jobs and, more
importantly, shows that performance gain is not about to
cease even moving to the very high region (thousands of
processors) of parallelism. This bodes well for future larger
installations with a few hundred of nodes.

In order to gain a deeper insight into the code perfor-
mance we analyze the loss of efficiency of case (M) in the
limit of a high number of processors. To this purpose, in
Fig. 3 we present the speedup $= 7P as a function of the
number of processors. The labels move refers to the move
routine, while move +col refers to the sum of the two. The
move time includes both free-streaming in the interior of
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Figure 3. Speedup as a function of the number of processors for the case
(M) (64 x96x128). The dotted line corresponds to the prediction of the
analytical model with Ty =100 ps and V ,, =iMB/s.

the domains and data exchange across the interdomain
boundaries. '

This figure clearly highlights that the collision phase
scales linearly while move saturates around a factor 13 for
more than approximately 30 processors. As a matter of fact,
while most results are relatively well predicted by the ana-
Iytical model with T=100 us and V,, =5MB/s, the result
86/128 is definitely not.

A careful analysis revealed that this is due some con-
stant overhead in the message-passing stage which satu-
rates at about 40 ms/step irrespective of the number of pro-
CESSOTS.

This is probably due to processor contentions gener-
ated by a nonoptimal message-passing scheduling strategy.
As of today, message passing is organized in two passes:
first even processors talk to the odd-numbered ones and
vice versa. With the processor numbering indicated in Dia-
gram 1, “dimerization” (simultaneous communication of
disjoint pairs of processors} is achieved only along the y
direction, while transmissions along the z direction may
generate contentions because neighbors along z have the
same parity if P is an gven number. Work is in progress to
implement a fully red-black message-passing pattern,
which should minimize processor contention under heavily
fragmented traffic conditions thus curing this flaw.

Besides the possibility to cut turnaround time for
CPU-bounded problems, parallel computing is expected to
offer significant advantages also in terms of job-upsizing,
i.e., the capability of tackling problems whose size would
be unaccessible to serial computers. Actually, this is really
what parallel computing should be used for. Roughly
speaking, cutting turnaround time points to higher produc-
tivity and is consequently a primary issue for the industrial
community whereas job-upsizing is mostly hunted for
within the academic community.

This points to the issue of scalability. Scalability refers
to the ability of a given platform to sustain continued re-
turns of performance in proportion to the number of pro-
cessors employed. Mathematically, this means that the ef-
ficiency stays almost constant over a wide range of
processors (scaling region). Obviously, scalability cannot
hold indefinitely (apart from completely noncommunicative
applications), in the sense that one is usually presented with
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an upper threshold for the number of processors beyond
which the efficiency drops rapidly down. The existence of
such a natural scale, say P, implies that the efficiency can
be recast in a self-similar form as

7(P,N)=V¥[P/P.(N)], (M

where ¥ is a universal function, while the details of the
platform and the application are lumped into the specific
expression of P_ as a function of N. In the case of our
analytical model makmg abstract:on of latency and sync
overheads, and assuming P, =P, =P'"? one derives

1
Y=y
P.~N,N,/(2x6/10)* =N ,N,/1.44. (8)

This formula is tested against experimental data, as
shown in Fig. 4.

From this figure we see that scalability is well fulfilled
by runs (8), (M), (G1), while (B) and (G2) display
“bumps™ in the region of low parallelism. This anomaly
can be traced again to the size-dependence of the cefficiency
of memory access, a typical feature of hierarchical-memory
machines.

In fact, the efficiency is defined as

Speed(P) Pn

7P, Po)= Speed(Py) P

C

where P is the minimum number of processors for which
the job has been run. Clearty, if P, is so small as to gener-
ate paging, which occurs at approximately more than 90
MB per processor, superlinear specdup (a finite-size
anomaly not encompassed by scaling models) results as
soon as P crosses the threshold beyond, which paging is no
longer needed. For the set of jobs examined here the page-
free conditions are fulfilled for any number of processors
only by runs (S) and (M). In fact, these runs exhibit a good
match with scaling predictions on a wide range of values of
PiP_.
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V1. PHYSICAL RESULTS

The work described in this article is part of an international
cooperation aimed at the understanding, both theoretical
and experimental, of the convective phenomena taking
place in a Rayleigh-Bénard cell, namely a fluid-filled tank
heated from below.

While speculation in this field dates back to the 60s,
renewed interest has bccn fueled by an experiment by now
famous in the field.!” The situation is very appealing for
computational physicists, because the computational effort
needed to study the problem numerically is (maybe just a
little} more than the computational power afforded by to-
day’s computers. This puts a high premium on carefully
optimized computational experiments on advanced archi-
tectures.

Our group has worked for more than 2 years on this
subject, and produced new results concerning the probabil-
ity distribution functions of the temperature fluctuations in
the cell, the scaling of correlations functions, the anomalies
arising from intermittence, as obtained from two-
dlmensmnal simulation and confirmed by experimental
results.’® An interesting by-product of this work was the
discovery of a generalized form of scaling exhibited by
fluid turbulence, which was named extended self-similarity
(ESS)."”

The main conteat of ESS is that structure functions of
velocity field fulfill an algebraic scaling law of the form

Sp,.,sa(p)la(q) (10)
q ' .
where the velocity structure functions are defined as
Sp(ry=(|du(r)|"). (11)

Here du(r) is a typical velocity fluctuation at the scale
r and brackets denote statistical ensemble averaging. The
cocfficients a(p) are known as scaling exponents and mea-
sure the degree of intermittency, i.e., short-scale spottings,
of the turbulent flow.

To appreciate the innovative content of ESS, it is use-
ful to remind that scaling, as implied by the celebrated
Kolmogorov theory (K41), is a property commonly attrib-
uted exclusively to fully developed turbulent flows, i.e.,
flows whose dynamics are dominated by inertial over dis-
sipative effects. This dominance is expressed via the Rey-
nolds number, defined as

Re= T, (12)
where U/ is a typical velocity scale of the flow, L is a
typical macroscopic scale, and v is the molecular viscosity
of the fluid. Fully developed turbulent (FDT) flow is char-
acterized by the condition

Rex ], {13)

According to Kolmogorov theory, FDT flows are self-
similar, i.e., they exhibit a scaling dependence of the veloc-
ity structure of functions S,(r) on the space separation r:

Sp(r)y={|6v(r}|y=r=. (14)

Clearly, Eq. (14) implies Eq. {10}, while the reverse is not
true, whence its definition of ESS.

The Eq. (14) represents a true challenge to the com-
putational physicist. To understand why, let us remind that
the dynamicai evolution of a ﬂu:d flow at a given Reynolds
number Re entails about Re™* actlve degrees of freedom.”®
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Assuming that each degree of freedom can be represented
by a single grid poinl, this means that the amount of
memory required to simulate a flow at Reynolds Re is
given by M =Re” and the computational work W=Re’.
Once mapped to present-day computer architectures, this
translates into an upper limit of about N=512% which
means Re~ 1000, The problem is that, at such low values, a
numerical detection of the scaling regime is hardly feasible
because the scaling region is too small to ensure an accu-
rate evaluation of the scaling exponent.

Now, the innovative content of ESS rests mainly with
the two following points:

{1} Equation (10) holds even at moderate Reynolds num-
bers Re~0(100).

(2) The scaling region, over which Eq. (10) holds, is much
wider than the scaling region associated with Eq. (14).

A typical signature of ESS is displayed in Fig. 5 (from
Ref. 18) in which S, is log-plotied as a function of §;.
From this figure, a strikingly wide linear scaling regime is
apparent which would have never shown up had we plotted
§; and 8, separately as a function of 7.

Whether ESS bears a profound physical meaning pos-
sibly associated with some hitherto overlooked “hidden™
symmetry of the fluid equations, is still an open question.

VI. CONCLUSION

We believe that the work presented in this article represents
a successful case study on how scalable parallel and dis-
tributed computing can contribute to the advancement of
physical science.

The most immediate result of this article is that use of
Lattice—Boltzmann schemes on the IBM Scalable Parallel
platform offers Gflops performance today.

Most important, scalability arguments indicate that
significant further increase of performance can be achieved

by moving 10 a few-hundred processors. These consider-
ations, combined with the recently announced availability
of cnhanced SP platforms based on IBM POWER-2 tech-
nology (faster CPU, more memory per node, higher band-
widths, and lower latencies), justify the expectation of tens
of Gflops for Lattice—Boltzmann flow simulations by 1994.
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A tecently developed linear algebraic method for the computation of perturbation expansion
coefficients to large order is applied to the problem of a hydrogenic atom in a magnetic field. We
take as the zeroth order approximation the D—oo limit, where D is the number of spatial
dimensions. In this pseudoclassical limit, the wave function is localized at the minimum of an
effective potential surface. A perturbation expansion, corresponding to harmonic oscillations about
this minimum and higher order anharmonic correction terms, is then developed in inverse powers
of (D — 1) about this limit, to 30th order. To demonstrate the implicit parallelism of this method,
which is crucial if it is to be successfully applied to problems with many degrees of freedom, we
describe and analyze a particular implementation on massively parallel Connection Machine
systems (CM-2 and CM-5). After presenting performance results, we conclude with a discussion of
the prospects for extending this method to larger systems.

The spatial dimension has long been treated as a variable
parameter in analyzing critical phenomena and in other ar-
eas of physics.! However, only in the past ten years has this
concept been extensively applied to atomic and moiecular
systems, particularly to develop dimensional scaling meth-
ods for electronic structure.” The motivation for this uncon-
ventional approach is that the Schrodinger equation reduces
to easily solvable forms in the limits D —1 and/or D —oo,
When both limiting solutions are available, interpolation in
1/D may be used to approximate the physically meaningful
D =3 result; this has yielded excellent results for correla-
tion energies of two-electron atoms® and for H, Hartrec—
Fock energies."‘ Alternatively, if the D —oo solutions are
available for both the problem of interest and a simpler
model problem (e.g., Hartree—Fock) for which D=3 re-
sults are easier to calculate, the latter may be used to
“renormalize” some parameter (¢.g., nuclear charge}. Then
the D —e solution with the renofmalized parameter may
give a good approximation to the D=3 solution with the
actual parameter value.’

Our work deals with another widely applicable dimen-
sional scaling method, a perturbation expansion in inverse
powers of D or a related function, about the solution for the
D—oc limit. That limit is pseudoclassical and readily
evaluated, as it reduces to the simple problem of minimiz-
ing an effective potential function.? For large but finite D,
the first-order correction accounts for harmonic oscillations
about this minimum, and higher-order terms provide anhar-
monic corrections. Dimensional perturbation theory has
been applied quite successfully to the ground® and some
excited states’ of two-clectron atoms and to the hydrogen
motecule—~ion® using a “moment method™ to soive the set
of perturbation equations. However, this method is not eas-
ily extended to ltarger systems. It also requires a different
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program for each eigenstate, and does not directly provide
an expansion for the wave function.

A recently developed linear algebraic method has
overcome these shortcomings.” This is conceptually quite
simple, so it can easily be applied to systems with any
number of degrees of freedom. It permits calculation of
ground and excited energy levels using a single program
and the wave function expansion coefficients are directly
obtained in the course of computing the perturbation expan-
sion for the energy. This method has thus far been applied
to central force problems, including quasibound states for
which the complex cigenenergy represeats both the loca-
tion and width of the resonance.

The linear algebraic version of dimensional perturba-
tion theory is also well suited to parallel computation. Here
we demonstrate this for a prototype problem with two de-
grees of freedom, the hydrogen atom in a magnetic field.
This system has received much attention; it exhibits chaotic
behavior and poses difficulties that have challenged many
theoretical techniques, Most theoretical approaches treat ei-
ther the magnetic field or the Coulomb potential as a per-
turbation and therefore work best near either the low- or
high-field limit, respectively. However, the leading terms of
a perturbation expansion in inverse powers of D include
major portions of the nonseparable interactions in all field
strengths. The efficacy of methods equivalent to the 1/D
expansion has been demonstrated for the hydrogen atom in
a magnetic field'' and for kindred problems with an electric
field or crossed electric and magnetic fields,'? although not
in formulations suited to parallel computation. The present
paper is devoted solely to implementing of the linear alge-
braic method on the Connection Machine, and to evaluating
the performance of the computational algerithm as well as
prospects for treating systems with more degrees of free-
dom. Numerical results for the ground and several excited
states over a wide range of field strengths will be presented
in a separate paper."”



