r,(._. (‘.,
r .

INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS
1.CT.P., P.O. BOX 586, 34100 TRIESTE, ITALY, CaBLE. CENTRATOM TRIESTE
0 000 000 005894 Q

' INTERKNATIONAL ATOMIC ENERGY AGENCY |
A ‘%; UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION \v

H4.SMR/854-16

College on Computational Physics

15 May - 9 June 1995

PVM User's Guide and Reference Manual

F. Massaioli

Universita "la Sapienza”
Rome, Italy

Man BuiLsine

Sreans Cormses, b1 T 2240111 Tamas 224163 Tasa 460392 Aoaianco Gueer Houst Via Gaionavo, 9 Tw. 224241 Tugax 224531 Tom 460449
Microrsocumon Lan Vi Bmavr, 31 Ta 224471 Tagan 224600 Tam 460392 Gaunmo Guest Houie

Via Banmr, 7 T 22401 Twseax 2240310 Tex 460392

ORNL/TM-12187
Engineering Physics and Mathematics Division

Mathematical Sciences Section

PVM 3 USER’S GUIDE
AND REFERENCE MANUAL

Al Geist *
Adam Beguelin *
Jack Dongarra >~
Weicheng Jiang ™
Robert Manchek =

Vaidy Sunderam *+
pyvin@mnsr.epm.ornl gov

* (Jak Ridge National Laboratoey
Oak Ridge, TN 3T835-6367

* Universily ol Tennessee
Knoxville, "IN 37996-1301
Carnegie Mellon Universily and
Pittshurgh Supercomputing Cenler
Pitshurgh, PA 15213-3890

++ Ponory University
Allanta, (14 30322

+

Date Published: September. 1994

Research was supported by the Applied Mathematical Sei-
ences Research Program of the Office of Energy Research,
U.S. Depactinent of Energy, the National Science Tounda-
tion. and the State of Tennessee.

Prepared by the Oak Ridge National Laboratory
Oak Ridge, Tennessee 37831
aperated by Martin Marietta Energy Systems, Inc.
for the U.S. DEPARTMENT O ENERGY
under Coatract No. DE-AC03-810R21100

Contents
1 Iatroductiono 1
2 Featuresin PVM 3 . . o0 0000 2
2.1 Updated Userinterface Lo L L, 2
22 Integer Task Identifier, ..., 2
2.3 Process Control L oL 2
24 Tault Telerance - L 3
2.3 Dynamic Process Groups oL 0 L L L 3
2.6 Sigoaling . 3
2.7 Communication, 0L 3
2.8 Multipracessor lategration 4
3 Getting and Installing PVM 3
3.1 Obtaining PVM . .. 000 L 3
3.2 Unpacking . . - . ..o 3
33 Bullding 3
JA Tnstalling .. oo 7
4 PYM Console0 0 7
1.1 HostTile Options0 9
1.2 Troubleshooting Startupo oL 11
1.3 Compiling PVM Applications 12
1.4 Runwing PVM Applcations 13
o Userlnterface 0 . .. oo 11
3.1 Process Coatrok 13
3.2 Information L 16
3.3 Dyvamic Configuration, 17
34 Sigaaling 17
3.3 Setting and Getting Options i8
3.6 Message Passing L 19
5.6.1 Message Baffers 0L 19
362 PackingData Lo 4
3.6.3 Sending and Recelving Data. ¥
364 Unpacking Data L. H
6 Dynamic Process Groups L L 25
7 Examplesin Caod Tortran 27
8 Writing Applications 35
8.1 General performance considerations. 35
8.2 Network particular considerations 16
8.3 Load Balancing, a7
Debugging Methods Rt
10 Implementation Details, 10
101 Task Identifiers L 11

102 The PVM Daemon 0.0 00 13
102 Pymd Stactup 44
1022 Host Table . 0 0000 0 13
1023 Task Table . . 0 L A6
1024 Wait Contexts 00 L 46
10.2.5 Tault Detection and Recovery A7

103 The Programming Libeaty oL L. 47

100 Comumunieation 19
1011 Pvmd-Pvmd Communication 19
1012 Pvmd-Task Communication al
1613 Pvmd-Task Protocol . 00 00 0 000000000 3l
1644 Databufs .00 00000 3
10.1.3 Message Fragment Descripturs, .. 32
1046 Packet Buffers o 52
10.1.7 Message Buffers L L 33
10.4.8 Messagesin the Pvind 0.0 0L |
10.1.9 Message Eccoderso 000000 L 35
10.1.1¢ Packet Handling Functions 36
101 11 Control Messages 36
16.1.12Message Direct Routing 36
104 13 Mudticasting oo a7

10.5 Environment Vaciables L L I8

10.6 Standard Lnput and Qutput AL

0.7 Tracing .. .o %

108 Console loternals L 60

109 Resource Limitations 0 .. .00 60
1091 fnthe PVM Daemon L L oL 61
1092 IntheTask . . 0. . 0. L 61

L0 10Multiprocessor Dorts . 00 00000 L oL 62
10.10.1 Message Passing Avchitectures 62
10.10.2Shared-Memory Architectures 0L L 63
10103 Twnctions tee Port oL oL 61

10.11Debugging the PVM Source 0 65

LU Support ..o 66
12 References . . 0L . L L 66
13 Appendix A. Reference pages for PVM 3 routioes 68

-l -

FVM 3 USER’S GUIDE
AND REFERENCE MANUAL

Al Geist
Adam Beguelin
Jack Dongarra
Weicheng Jiang
Robert Magchek
Vaidy Sunderam
pyvm@msr.epm.ornl gov

Ahstract

This repart is the PYM version 3.3 users’ guide and reterrnce manual. It
confains an overview of PYM, and how version 3 can he nbtained, installed and
used.

PVM stands for Parallel Virtual Machine. 1t is a software package that allows
a heterogenecus network of parallel and serial computers to appear as a single
concurrent computational resource. PVM consists of two parts: a daetnnn process
that any user can install an a machine, and a user library that contains routines
for initiating processes on other machines, for communicating between procesees,
and changing the configuration of machines.

New features in this release are pointed out and described in detail. In addition
this report describes the internal workings of version 3 and gives the user intertace
specifications. It describes several popular programming paradigms, which PYM
supports, and gives several example programs in C and Fortran77. The tepart
discusses issues and options regarding load balancing, pertormance, and fault tol-
erance. Basic steps for debugging PYM programs are presented, and references tn
additional PYM monitoring and visualization tools are given.

What 18 new from last release ¢f this User Guide. Fixed many typos,
added more information about using PVK gith the Intel Paragon, improved
the troubleshooting starcup sectien

1. Intreduction

This users” guide to P¥M {Parallel Virtual Machine) version 3 contains examples aad
information weeded for the straightforward use of PVM's basic features. Appendices
coatain full decumentation of all PYM 3.3 aptions and error conditions as well as a
quick reference.

PVM 3 is a software system that permits a network of heterageneaus UNIX comput-
ers to be used as a single large parallel computer. Thus large computational problems
can be solved by using the aggregate power of many computers.

The development of PVM started in the suunmer of 1989 at Oak Ridge National Lab-
uratory (ORNL) and is aow an ongoing research project lavoiving Vaidy Sunderam at
Fmnry University, Al Geist at QRINL, Rohert Manchek at the University of Tennessee
(CT). Adam Beguelin at Carnegle Mellow University and Pittsburgh Supercomputer
Center. Weicheng Jiang at UT, Jim Kohl, Phil Papadepoulos, June Donate. and Hoobo
Zhou at ORKNL, and Jack Dongarra at ORNL and UT. It is a hasic research effort aimed
at advancing science, and is wholly funded by research appropriations from the U.S.
Department of Energy, the Kational Science Toundatinn, and the State of Tennessee.
Owing tu its experimental nature. the PYM project produces. as incidental products,
software that is of utility to researchers ia the scientific community and to others. This
software is, and has been distributed freely in the interest of advancement of science
and is being used la compuwiatioral applications around the world.

Under PVM. a user defined cullection of serial. parallel, and vector computers ap-
pears as one large distributed-memory computer. Throughout this report the term
mirtual machine will be used to designate this logical distributed-memery computer.
and host will be uzed to designate one of the member computers. PVM supplies the
functions to antomatically start up tasks on the virtual machine and allows the tasks
to commuunicate and synchronize with each other. A task is defined as a unit of coun-
putation in P¥YM apalogous to a UKIX process. It is often a UNIX process, but not
necessarily su. Applications, which can he written in Tortraa77 or C. can be parallelized
hy using message-passing constructs common to most distributed-memory computers.
By seading and receiving messages, multipie tasks of an application can cooperate to
solve a problem in parcallel,

PVM supports heterogeneity at the application. machine, and network level. [n
other words, PVM allows application tasks to exploit the architecture best suited to
their solution. PYM handles all data conversion that may be required if two computers
use different integes or foating puint representations. And PYM allows the virtual
macline to be laterconnected by a variety of different networks.

The PVM system is composed of two parts. The ficst part is a daemon, called
pemd? and sometimes abbreviated prmd, that resides on all the computers making up
the virtual machine. (Ar example of a darmon program is scndmai! which handles all
the incoming and cutgning electronic mall on a UNIX system.) Pvindd is designed so
any user with a valid login can install this dasmon on a machine. When a user wants
to run a PVM applicatinn. he first creates a virtual machine by starting up PVM.
The PVM application can then be started from a UNIX prompt oo any of the hosts.
Multiple users can configure overlapping virtual machines, and each user can execute

S92

several PVM applicatinns simultaneously.

The second past of the system is a Lbrary of PVM interface routines (1ibpvm3.a
This library contains user callable routines for message passing. spawning processe
coordinating tasks. and modifying the virtual machize. Application programs must be
linked with this library to use PVM.

).

2. Features in PVM 3

PVM version 3 has many improvements over version 2 [1]. The following sections
describe the features that are available in PVM 3.

2.1. Updated User iuterface

There ace namne conflicts hetween PVM 2.x routines and some multiprocessor libraries
supplied by computer vendors., Tor exawmple, the PYM 2.1 moutine barrier() is alsn
used {with slightly different functionality) on several multiprocessors. To avoid name
conflicts all the PVM 3 user routines hegin with pvm_in C and with pvmf in Fortran.
We also incorporated new arguments and features into the interface to inake it more
flexible to application developers.

Although the user inierface has heen completely updated, conversion of PYM 2.4
applications to PVM 3 is straightforward. Appendix B contains a table of the mapping
of routine names from PYVM 2.4 to PVM 3. [or users not wauting to couvert their
applications, PVM 2.1.2 will remain available from netlib®ernl.gov.

2.2, Integer Task Identifier

All processes that enroll in PVM 3 are represented by an integer task identifier. This
s a change from version 2 of PVM which uwsed a component nane and instance
nwmber pair. Throughout this report the task identifier is represented by tid, The
tid is the primary and most efficient method of identifying processes in PVM. Since
tids must be unigue across the entire virtual machine, they are supplied by the lo-
cal pvind and are vot user chosen. PVM 3 contains several routines that return tid
values so that the user application can identify other processes in the system. These
routines are pvimanytid(), pvinspawn(). pvin_parent(}. pvin_bufinfo(). pym_tasks(},
pvin_tidtohost(), and pvim_gettid(}.

Although less efficient, processes can still be ideatified by a name and instance
number by jolning a group. A user defines a group nawe and PVM retures a unique
instance numaber for this process in this group.

2.3. Process Control

P¥M supplies rowtines that enable a user process to become a PVM task and to hecome
a normal process again. There are routines to add and delete hosts from the virtual
machine, routines to start up and termirate PVM tasks, routines to sead signals to
other PVM tasks, and routines to find out information about the virtual machine
configuration and active PVM tasks.

- 3-

New capabilities in PVM 3.3 include the ability to register special PVM tasks to
haudle the jobs of adding new hosts, mapping tasks to hosts, and starting new tasks.
This creates an interface for advanced hatch schedulers (examples include Condor [3].
DQS [2]. and L3T [3]) to plug inty PVM and ruz PVM jobs in batch mode. These
register routines also allow debugger writers to plug into PVM and create sophisticated
debuggers for PVM.

2.4, Fault Tolerance

If a host fajls, PVM will autmmatically detect this and delete the host from the virtual
wachine. The status of hosts can be reguested by the application, and if required a
replacement host can be added by the application. It is still the responsibility of the
application developer to make his application telerant of host fallure. PVM makes
no attempt to awtomatically recover tasks that ase killed because of a host failure.
Another use of this feature would be to add more hosts as they hecome available, for
example oo a weekend, or if the application dynamically determines it could use more
computational power.

2.5. Dynamic Process Groups

Dynamic process groups are implemented oo top of PYM J. Ia this implementatioa, a
process can belong to multiple groups, and groups can change dynamically at any time
during a computation.

Tunctions that logically deal with groups of tasks such as broadcast and bagrier
use the user’s explicitly defined group names as arguments, Routines are provided for
tasks to join and leave a pamed group. Tasks can also guery for information about
uther geoup members.

2.6. Signaling

PVM provides two methods of signaling other PYM tasks. One method seads a UNIX
signal to auother task, The second method notifies a task about an event by sending
it a message with a user-specified tag that the application can check for. Several
aotification events are available in PVM 3 including the exiting of a task. the deletion
{or failure) of a host. and the addition of a host.

2.7. Communication

PVM provides routlnes for packing and sending messages hetween tasks. The model
assumes that any task can sepd a message to any other PVM task, and that there
is no limit to the size or nwmber of such messages, While all hosts have plysical
memury Imitations which limits poteatial huffer space. the commuuication model does
unt restrict itself to a particular mackine's Limitations and assunes sufficient memory
is available. The PVM communication model provides asyochronous blocking sead.
asyachronous blocking receive. and non-blocking receive functions. In our terminology,
a blocking send returns as soon as the sead buffer is free for reuse, and an asynchronous

o1

send dees not depend on the receiver calling a matching receive before the send cau
retiirn. There are options in PYM 3 that request that data be transferred directly
froun task to task. In this case, if the message is lacge, the sender may block uatil the
receiver has called a matching receive.

A non-blocking receive inmediately returns with either the data or a flag that the
data has vot arrived, while a blocking receive returns only when the data is in the
receive buffer. In addition to these point-to-point communicating functions the mode!
supports multicast to a set of tasks and broadcast to a user defined growp of tasks.
Wildeards caa be specified in the receive for the source and label allowing either or
both of these contexts to be ignored. A routine can be called to return infermation
about received messages.

The PVM mndel guarantees that message order is preserved. U task | sends message
A to task 2, then task 1 sends message B to task 2, message A will arnive at task 2
hefore message B. Moreover, if both inessages arrive before task 2 does a receive, then
a wildcard receive will always return message A.

Message huffers are allocated dynamically. So the maximum message size that can
be sent or received is limited only by the amount of available memory on a given host.

2.8. Multiprocessor Integration

PVM was originally developed to jnin machines connected by a network into a sin-
gle logical machine. Svme of these husts mnay themselves be parallel computers with
multiple processors connected by a proprietary network or shared-memory.

With PVM 3 the dependence on UNIX sockets and TCP/IP software s relaxed
Tor example, programs written in PYM 3 can run ou a cetwork of SUN s on a group
of nodes on ap Iatel Paragon, on multiple Paragons connected by a network, or a
heterogeneous combination of multiprocessor computers distributed arewnd the world
without Laving to write any veadur specific message-passing code. PVM J is designed to
use native communication calls within a distributed memory multiprocessor or glabal
memory within a shared memory multiprocessor, Messages between two nodes of a,
multiprocessor go directly hetween them while messages destined for a machine out
on the network go to the user’s single PYM daeinon on the multiprocessor for further
routing.

The Intel iPSC/860 and Pacagon have been integrated into PYM 3 so that Tutel’s
KX message-passing routines are used for inter-node conmunication. Thinking Ma-
chine Corporation’s CM-3 has alse been integrated asing their CMMD message- passing
routines. Cray and Convex supply their vwn optimized versions of PVM 3 for their
T3D and Meta wachines respectively. Other veadors iuclading DEC. KSR, and [BM
have also decided to supply PVM J with their respective multiprocessors.

PVM 3.3 includes shared memory ports to wultiprocessor SPARCSs. such as the
SPARC-10. and the SGI ClLallenge series. More multiprocessor machines will be added
to subsequent PVM 3 releases.

3. Getting and Installing PVM

PVM duves nut requize special privileges to be installed. Anyone with a valid login oo
the hosts can do so. Quly cre person at an organization needs to get and install PVM
for everyone at that organization to use it. PVAL_ARCH is used throughout this report
o represent the architecture name PVM uses for a given computer, Table 1 lists all
the PVM_ARCH names and their corresponding architectuse types that are supported
in PVM 3.3,

3.1. Obtaining PVM

There areseveral ways to obtain the software and docwnentation. This user's guide, the
PVM 3§ source code. man pages, XPVM. and poiaters to other VM related packages
are available on netlib. Netlib is a software distribution service set up on the Internet
There are several ways te get software from netlib. The first is with a tool called
rnetlib. Xuetlih is a X-Window interface that allows a user to hrowse or query netlib
for available software and to automatically trassfer the selected software to the user's
computer. To get xnetlib send emall to netlib@ornl.gov with the message send
xnetlib.shar from xnetlib or anvaymons ftp from cs.utk.edu pub/xnetlib.

Netlib files can also be obtalned by anonymous ftp to netlib2.cs.utk.edu. Lonk
in directory pvmnd. The file index describes the files in this directory.

The PVM suftware can be requested by email. To receive this software send email
to netlib@ornl.gov with the message: send index from pvm3. An automatic mail
handier will return a list of available files and further instructions by email. The
advantage of this method s thal anyone with emall access to Internet can obtain the
software.

3.2. Unpacking

The source files, which consume about 1 Mbyte when unpacked. are available in wuen-
cuded feompressed tar format. Place the file in the directory where you want to install
the sunrce. By defaclt PVM asswines it is installed in your $5§OME/pvmd . but it can
be installed in a mnre centralized area like fusr/local/pvm3. To unpack the source:

% uudecede pvm3_3.0.tar.z.uu
% uncompress pvm3.3.0.tar.Z
% tar xvf pvm3.3.0.tar

3.3. Building

PVM uses two environment variables when starting and running. Fach PVM user needs
tes set these two variables to use VM. The first variable is PVM_ROOT, which is set
e the location of the installed pvm3 ditectury. The second variable is PVM_ARCH,
which tells PVM the architecture of this host and $hus what executables to pick from
the PYM ROOT directory.

The easiest method is to set these two variables in your .cshre file. Here is an

exawple for PYM_ROOT:

PVM_ARCH | Machine Notes
ATX3 Alliant T'X/3

ALPHA DEC Alpha DEC 0OSIr-1
BAL Sequent Balance DYNIX
BILY BBN Butterfly TC2000

BSD3ss 80386/184 Unix hox BSDI
CM2 Thinking Machines CM2 | Sun front-end
CM3S Thinking Mackines CM3

CNVX Convex C-series

CNVXN Convex C-series native mnde
CRAY C-30, YMP UNICOS
CRAY2 Cray-2

CRAYSMP | Cray S-MT

DGAV Data General Aviion

E38K Encore 83000

HP 300 HEI-9000 model 300 HPUX
HIPTA HP-9000 PA-RISC

[360 Inte] iPSC/860 link -lrpe
P82 Intel iPSC/2 386 host SysV
KSI1 Kendall Square KSR-1 0OST-1
LINTX 80J386/186 LINUX box LINUX
MASPAR MASPAR host

MIPS MIPS 1680

NEXT KeXT

PGON Intel Paragon link -lrpe
PMAX DECstation 3100, 5100 Tltrix
RSER IBM/RSG000 AIX

RT IBM RT

SGI Silicon Graphics IRIX 1.x
SGIS Silicon Graphics IRIX 31
SUN3 Sun 3 Sun0f§ 1.2
SUN1 Sun 1. SPARCstation Sun08§ 1.2
SUN450L2 | Sun 4, SPARCstation Solaris 2.2
SYMM Sequent Symmetry

370 IBM 370 AIX
UVAX DEC MicroVAX

Table 1: PVM_ARCH names used in PVM 3.

-1

setenv PVM_ROOT /home/msr/u2/kohl/pvmd

The recommended method toset PYM_ARCH is to append the file PYM.ROOT/1ib/cshrc. stub

unto your .cshre file The stub should be placed after PATH and PYM_ROOT are
defined. Tlis stub autumatically determines the PYM_ARCH for this host and is par-
ticularly useful when the user shares a common file system {such as NT'S) across several
different architectures.

The PVM source counes with directories and makefiles fur most machines you age
likely to Lave. Building for each architecture type is done auteumnatically by going
into the PVM RRQOT directory and typing make. The makefile will antomatically
determine whick architecture it is belng executed on and build pvmd3, 1ibpvm3.a.
libfpym3.a, pvmgs and libgpvm3.a. It places all these files in pvm3/1ib/PYM_ARCH
with the exception of pyings which is placed in PYM_R0OT/bin/PYM_ARCH..

To build PVM for the Intel Paragon or iIPSC/860 the above instructions work if
you are on these machines. Note that a node specific version of 1ibpym3.a will also
he built as Libpvm3pe.a. The iPSC/860 will also create a node specific version of
libfpvm3.a called lib{pvindpe.a because the host and nodes use different CPUs. If
you are on a SUN or SGI with Intel cross compilers, then you will need to type make
PYM_ARCH=PCON or make PVM_ARCH=CUBE respectively for the Paragon and iPSC/860.
See the file pvmd/Readme mpp for the latest MPP building instructions on all sup-
ported machioes.

3.4. Installing

PVM looks for user executables in the default location $HOME/ pvm3/bin/PYM_ARCH. If
PVM is installed in a single location like fusr/local for all users, then each user should
still create $HOME/pym3/bin/PVM_ARCH to place his own executables. Tor example, if
a user's PY¥M application wants to spawa a task called foo oo a SPARCstating called
sunny. then vn sucny there shouwld be an executable file $HOME/pvm3/bin/SUN4/foo.
This default can be changed to a different search path ia the hostfile.

4. PVM Console

The PVM consele, called pvm. is a stand aloae PYM task which allows the user to
interactively start, query and modify the virtual machine. The console may he started
and stopped multiple times on any of the hosts in the virtual machine withieut affecting
PVM or any applications that may be running.

Wlen started. pvm determives If PVM is already running and if not autnmatically
executes pvmd oo this host, passing pvmd the command Line options and hostfile, Thus
PVM need pot be runniag to start the console.

pvm [-d<debugmask>] [hostfile]
pvm -n<hostname>

Debugmask is a hex nwnber correspondiag to the debug bits from pvmd.c See the
“Tinplementation”™ sectinn for more detalls on the debugmask.

SR

The -n optien s useful for specifying an alternate name for the master pvmd ({in
case hostname dvesn't match the IT address you want). This is useful if a host has a
multiple networks connected to it such as TDDI nr ATM, and you want VM to use a
partictlar network.

Ouce started the console prints the prompt:

pvm>»

and accepts comunands from standard input. M you get the message “Can’t Start
pvmd”. then check the Troubleshooting Startup section and try again.
The available console commands are:

add follewed by oue or more host names will add these hosts 1o the victual machine.
alias define or list command aliases.

conf lists the configuration of the virtual machine including hostuame. prmd task D,
architecture type. and a relative speed rating.

delete followed by one or more host games deletes these hosts, PVM processes still
cuening on these hosts are lost.

echo echo arguments.

halt kills all VM processes including console and then shuts down PVM. All daemons
exit,

help which can be used to get information alout any of the interactive commands,
Help may be followed by a command name which will list options and flags
available for this command.

id print conscle task id.

jobs list running jobs.

kill can be used to terminate any PVM p: wcess,
mstat show status of specified hosts.

ps -a lists all processes currently on the virtual machine. their locatieas. their task
IDs. and their parents’ task IDs.

pstat show status of a single PVM process.
quit exit console leaving daemons and PVM jobs running,

reset kills all PVM processes except consoles and resets all the internal PVM tables
and message queues. The daemons are left in an idle state.

seteny display or set environment variables.

sig followed by a signal number and tid. sends the signal to the task.

spawn start a P¥M application. Optioas include:

-count wumber of tasks, default is 1.
-(host) spawn on Lost, default is any.
-(PYM_ARCH) spawn of Lnsts of type PVM_ARCH.

-7 epable debugging.

-> redicect task vutput to console.
->file redirect task nutput to file.

->>file redirect task output append to file.
unalias undefine command alias.
version priat version of ihpvin being used.

The console reads $HOME/ _pvmre before reading commands from the tty, so you can
dn thivgs like:

alias 7 help

alias h help

alias j jobs

setenv PVM_EXPORT DISPLAY
print my id

echo new pvm shell

id

The two most popular methods of renning PVM 3 are to start pvm then add hosts
manually (pvm alsn accepts an optional hostfile argument) or to start pymd3 with a
Lustfile then start pm if desired.

Tor shat dowe PYM type halt at a PVM console prompt.

4.1. Host File Options

The kestfile defines the initial configuration of hnsts that PVM combines into a virteal
machine. Tt alsn contains Information abunt hosts that the user may wish to add to
the configuration later.

Only une person at a site needs to install PVM. hut each PVM user should have
their vwn hustfile. which describes their own personal virtual machipe.

The hostfile in its simplest form is just a list of hostnames ooe to a Lne. Blank Lnes
are ignosed. and lines that hegin with a # are comment lines. This allows the user to
document his hostfile and alsn provides a handy way to modify the initial ennfiguration
by commenting out vasious hostuames {see Tigure 1).

Several uptions can be specified on each line after the hostoame. The options are
separated by white space.

lo= userid allows the user to specify an alternate login name for this host; otherwise.
his login name on the start-up machine is used.

.10 -

configuration used for my run
sparky

azure.epm.ornl.gov
thud.cs.utk.edu

suné

ligure 1: Simple hostfile lists virtual machine configuration.

so=pw will cause PVM to prompt the user for a password on this host. This is useful
in the cases where the user has a different userid and password oun a remote
systetn. PVM uses rsh by default to start up remote pvind's. bt when pw is
specified PYM will use rexec() instead.

dx= location_of pvind This allows the user to specify a location other than the
default for this host. This is nseful if somenue waats to use his own personal copy
uf pvind,

ep= paths_to_user_executables This allows the user to specify a series of paths to
search down to flad the requested files to spawn on this host. Multiple paths are
separated by a colow. If ep= is not specified, thea PYM luuks for the application
tasks in $HOME/pvm3/bin/PVYM_ARCH.

sp= value Specifies the relative computational speed of the host compared to other
hosts o the configuration. The range of possible values is 1 to 1000000 witl 1000
as the default.

bx= location.of_debugger Specifies which debugger script to invoke on this host
if debugging is requested in the spawn routine. Note: the environinent variable

PVM DEBUGGER canalso be set. The default debugger is pvm3/lib/debugger.

wd= working_directory Specifies a working directory in which all spawned tasks on
this host will execute. The default is $HOME.

so=ms Specifies that wser will manually start a slave pvimd on this host. Useful if rsh
and rexec network services are disabled but IP connectivity exists. When using
this optinn you will see in the tty of the pvindd;

[t80040000] ready Fri Aug 27 18:47:47 1993
**x Manual startup #+*
Login to "honk" and type:

pvm3/1ib/pwmd -S -d0 -nhonk 1 50a%caf%:0ché 4096 2 80295c43:000

Type Tesponse:
on honk after typing the given lige. you should see:
ddpro<2312> arch<ALPHA> ip<8Ca$5c43:0aBe> mtu<4096>

which you skould relay back to the master pvind. At that polnt. you will see:

Thanks

and the twn pvmds should be able to communicate.

If the user wants to set any of the above options as defaults for a series of hosts.
then the user can place these options on a single line with a * for the hostaame field.
The defanlts will be in effect for all the following hosts wntil they are overridden by
annther set-defaults line.

Hosts that the user doesn’t want in the initial configuration but may add later can
he specified in the hostfile by heginning those lines with an &. An example hostfile
displaying most of these options is shown in Tigure 2.

Comment lines start with # (blank lines ignored)
gatus

ipsc dx=/usr/geist/pvm3/1ib/I860/pvmd3
ibmi.scri.fsu.edu lo=gst so=pw

set default opticns for following hosts with
* ep=$sun/probleml:"/nia/mathlib

sparky

#azure.epm.ornl.gov

midnight.epm.oxnl.gov

replace default options with new values
* lo=gageist so=pvw ep=probleml

thud.cs _utk.edu

speedy.cs.utk.edu

pachines for adding later are specified with &
% these only need listing if options are required
&sun4 aep=problemi

fcastor dx=/usr/local/bin/pvmd3
kdasher.cs.utk.edu lo=gageist

telvis dx="/pvm3/1ib/SUN4/pymd3

Cigure 2: PVM hostfile illustrating all options.

4.2, Troubleshooting Startup

If PV¥M has a problem starting up. it will print an error message either to the screen
wrin the log file /tmp/pwml.<uid>. This section should help in interpreting the erroc
message and explain how to solve the problem.

If the message says

[t80040000] Can’t start pvmd

LY -

Pirst check that your .xhosts file on the remote host contains the name of the host
from which you are starting PVM. An external check that your .rhosts file is set
correctly is to type:

% rsh remote_host ‘ls’

Other reasons to get this message include not having PVM installed on o host or not
having PYM_ROOT set correctly on some host. You can check this by typing:

% rsh remote_host ’'printenv’

Seme Unix shells. for example ksh, do not set environment vaciables ou remote hosts
when using rsh. I PVYM 3.3 there are two work arounds for such shells. Tirst, if you set
the exviroament variable. PYM_DPATH. on the master Liost to pym3/1ib/pymd. then
this will override the default dx path. Thke second method is to tell PVM explicitly
were to find the remote pvmd executable by using the dx= uption in the hostfile.

I PVM is manually killed, or stopped abnormally, (an example is system crash) then
check fur the existence of the file /tmp/pymd.<uid>. This file is used for authentication
and should exist only while PVM is running. If this file is left beliud. it prevents PYVM
froon starting. Simply delete this file.

If the message says

[t80040000] Login incorrect

then it probably means that there is not an account vn the remote wachine with your
login name, If your login name is different on the remete machive. the fix is to use the
lo= optioa in the hostfile.

If you get any other strange messages, then check your .cshre file. It is importact
that the wser not have any I/O in his .cshre file because this will interfere with the
start up of PYM. H you want to print out stuff when you log in, sach as who or aptime.
you shiuld either do it in your .login script or put the commands io an *if* statement
ter ensure that studf only gets printed when you are logging in interactively, not whe,
you're running a csh command script. Here is an example of how this can be done:

if { { tty -s } && $7prompt } then

acho terminal type is $TERM

stty erase *"?’ kill '"u’ intr "¢’ echo
endif

4.3. Compiling PVM Applications

A C program that makes PYM calls needs to be Lnked with 1ibpvm3.a. If the pro-
gramn also makes use of dysaunic groups, then it should be linked to Libgpvind.a before
libpym3.a. A Tortran program using PVM ueeds to be linked with Lbfpvind.a and
libpvm3.a. And if it uses dynamic groups then it needs to be linked to libfpving.a,
libgpvind.a, and 1ibpwm3.a in that order.

PVM programs that are being compiled to run on the andes of an Lotel 1860 should
be linked to 1ibpvm3pe.a and 1ibfpvm3pe.a instead of libpvm3.a and Libpvmd.a.

S13-

On the Tatel Paragon, PVM programs can run on either the service or cempute nodes.
Programs that are heing compiled to run on the compute nodes should be lLinked to
libpvmidpe.a, while programs designed to run on service nodes should be linked to
libpvmil.a. Master/slave applications, where the master runs on a service ande and
the slaves run oa compute nodes. would thus require different library specifications
in a Makefile. TORTRAK programs showld link to libfpvind.a ficst and then either
libpvmipe.a or libpvmd.a. All PVM applications on the Paragon also require linking
with NXLIB aud the Remote Procedure Call {rpc) libraries. as PVM requires them.
Applicatious enmpiled with either GNT C {gee) or C++ also require the Mach libraries.
The folluwing table summarizes whick lihrazies must be linked o the Paragon:

Application Application writter in:
Runs on: c FORTRAN
Service libpvm3d.a 1ibfpym3.a
Partition -1lrpe libpym3.a

-lnx -1lrpc
-lmach (*) ~1lnx
Compute libpvm3pe.a libfpvm3.a
Partition -1lrpc libpvmdpe.a
-lnx -lrpec
-lmach () -lnx

(*) must alsoc be included for GNU C or C++

The order of the libraries (from top to bottom for a given case) is important. The
exaniple nakefile for the Paragon in the PYM_ROOT /examples/PGOK directory pro-
vides a working example of the proper library links. A program compiled for the service
partition will not run in the compute partition, and vice versa: in buth instances the
applicatinn will either haug or fall to perforin message passing properly.

Tur all machines, example programs and makefile are supplied with the PVM source
code in the directory pym3/examples. A Readme file in this directory describes how to
build and cun the examples, The makefile demenstrates how C and Tortran applica-
tions should be linked with the PVM libraries. The makefile alse contains information
in itz header about additional libraries required on some architectures. An “archi-
tectire tndependent” make program is supplied with PYM. This script is located in
pvind/Lh/aimk and antomatically detects what kind of architecture it is renning on
and adds the correct additional Hbearies. To bulld any of the examples you caa type:

% aimk example_name

4.4. Running PVM Applications

Ounce PVM is ruzning, an application using PVM roatines can be started from a UNIX
command prompt on any of the hosts in the virtual machine. An application need not

14

be started on the same mackine the user happens to start PVM

Stdowt and stderr appear on the screen for all manually started PYM tasks. The
standard error from spawaned tasks is weitten to the log file /tmp/pyml.<uid> on the
host where P'VM was started. The easiest way to see standard output from spawned
PVM tasks is to use the redirection available in the pvm console. If standard output
is not redirected at the pvin cousole, then this output also goes to the log file.

Users sowetimes want to rua their programs with a nice value that is at a lower
priofity su the programs impinge less on workstation owners. There are a couple of
ways to accomplish this. The first method, which works with both Tortean and C
applications, is to replace your program with a shell script that starts your program.
Here is an example two line script:

#!/bin/sh
exac nice -10 your program $*

Then when you spawn the shell script it will exec your program at a niee level. The
second method is to call the UNIX function setprlority() in your program.

A whole series of applications inay be run on the existing PVM configuration, It is
Lot pecessary to start a new PVM for each application. although it may he NEeCessary
to reset PVM if an application crashes.

It is also possible 1o compile PVM with -DOVERLOADHOST defined. This allows
a user to create overlapping virtual machines. The next sections will describe how to
write PVM application programs.

5. User Interface

Ar alphabetical listing of all the routices is given in Appendix A. Appeadin A contains
a detailed description of each routine. including a description of eack argwmnent in each
routine and the possible error codes a routine may return and the possible reasons for
the error. Each listing includes examples of hoth C and Tortran use.

A concise summary of the PVM 3.0 routines can be found oo the PYVM quick
reference guide.

Io this section we give a brief deseription of the routines in the PVM 3.3 user
library. This section is organized hy the functivas of the routines. Tor example. in
the subsection on Dynamic Configuration is a discussion of the purpose of dynamic
eonfiguration, how a aser might take advantage of this functionality. and the ¢ and
Tortran PVM routines that pertain to this function.

Ln PYM 3 all PVM tasks are identified by an integer supplied by the local pyimc.
lo the following descriptions this identifier is called tid. It is similar to the process D
(PID) used in the UNIX system except the tid has encoded in it the location of the
process in the virtual machine. This encoding allows for more efficient communjcation
routiag, and allows for more efficient integeation into multiprocessnrs.

All the PVM coutines are writtes in C. C4++ applicatioas can lizk to the PVM
library. Fortran applications can call these routines through a Tortran 77 interface
supplied with the PV¥M 3 source, This interface translates arguments. whicl are passed
by reference in Tortran, to their values if eeded by the underlying C routines, The in-

215 -

terface also takes into account Tortran character string representativos and the various
naming conventions that different Tortran compilers use to call C fuactions.

5.1. Process Control

int tid = pymmytid(void)|

call pvmfmytid{ tid } l

The routine prmanytid() enrolls this process into PYM on its first call and generates
a ueique tid if the process was not started with pvmspawa(). It returns the tid of this
process and can be called multiple times. Any VM system call (not just pvinomytid)
will enroll a task in PYVM if the task is not enrolled before the call.
int info = pvm_exit(void)

call pvmfexit(info) i
The routine pyin_exit{) tells the local pvmnd that this process is leaving PVM. TLis

routine does not kil the process. whick can continue to perform tasks just like any
uther UNIX process,

int numt = pvmspawn{ char *task, char **argv, int flag, char *vhere,
int ntask, int *tids)

call pumfapawn{ task, flag, where, ntask, tids, numt) |

The routine pvinspawn(} starts up ntask copies of an executable file task on the
virtual machine. argyv is a pointer to an array of argunents to task with the end of
the array specified by NULL. If task takes no arguments then argv is NULL. The flag
argument i used to specify options, and is a sum of

PvinTaskDefault - PYVM chooses where to spawn processes,

PvinTaskHost - the where argument specifies a particular host to spawn on,
PvwTaskArch - the where argument specifies a PYM_ARCH to spawn on.
PvinTaskDebug - starts these processes up under debugger.

PvmTaskTrace - the PVM calls in these processes will generate trace data.
PvimMppTront - starts process up nn MPD from-ead/service ande.
PvimHustCumpl - starts process up on complement Lost sed.

PvmTaskTrace is a new feature i PVM 3.3, To display the events, a graph-
ical interface. called XPVM hLas been created. XPVM coumblnes the features of the
PVM console, the Xab debugging package, and ParaGraph to display real-time or post
mortem execitions. XPVM is available on netlib.

Ou return numt is set to the number of tasks successfully spawned or an error code
if no tasks could be started. If tasks were started. then pvinspawa() returns a vector
of the spawned tasks’ tids aad if some tasks could aot be started the corresponding
errer codes are placed in the last (ndesk — nunt) positions of the vector.

pvmspawn{) can also start tasks on multiprocessors, In the case of the Intel
iPSC/860 the following restrictions apply. Each spawn call gets a subcube of size

- 16 -

ntask and loads the progeam task on all of these nodes. The iPSC/860 OS has an
allocation limit of 10 subcubes acruss all users, so it is better to start a block of tasks
on an iPSC/860 with a single pvm_spawn() call rather than several calls. Two different
blocks of tasks spawned sepatately on the iPSC/860 can still communicate with eaclk
other as well as any vther PVM tasks even though they are in separate subcibes. The
iPSC/860 0S5 has a restriction that messages going from the nodes to the uatside wiorld
be less than 256 Kbytes.
int info = pymxill(int tid)|
call pvmfkill(tid, info)|

The routine pvm kill{) kills some other PYM task ideatified by tid. This routine is

unt designed to kill the calling task. which should he accomplished by calling pvm_exit{)
followed by exit().

5.2. Information

int tid = pvm_parent{ void) |

call pvmfparent(tid }]

The rutine pvim_parent() returns the tid of the process that spawned this task or
the value of PvmNeDarent if not created by pvm_spawn().
int pstat = pvmpatat{ int tid)I

call pvmfpstat(tid, pstat)l

The routine pvin-pstat{) returns the status of a PVM task identified by tid. It
returns PvinOk if the task is ruening, PvinNoTask if not. or PyvmBadParam if tid is
invalid.
int matat = pvmmstat(char *host)I

call pvmfmatat(host, matat)]

The routine pvm_mstat{) returns PvmOk if host is ronning. PvmHestTail if un-
reachable, or PvmNoHost if host is not in the virtual machine., This information cau
e useful when iinplementing application level fault tolerance.
int info = pvm_config{ int *nhost, int =*narch,

struct pvmhostinfo #*hestp)
call pvmfconfig(nhost, narch, dtid, name, arch, speed, info) I

The routine pvin_config{) returns information about the virtual machine including
the number of hosts, nhost. and the number of different data formats. narch. hestp
is a pointer to an array of pvmhostinfe structures. The array is of size nhost. Bach
pymhostinfestructure contains the pvind tid, host name, nane of the architecture, and
relative cpu speed for that host in the configuration. PVM does not use or determine the
speed value. The user can set this value in the hostfile and retrieve it with pvin_cenfig()
to use in an applicatice. The Tortran fuaction returns infermation about noe host per
call and cycles throwgh all the hosts. Thus, If pviafeonfig is called nhost times. the
entire virtual machine will be represented. The Dortran function does not reset itself
until the end of a cycle. If the virtual machine is changing rapidly. pvmfconfig will
not report the change uatil it is reset. The user can manually reset pvimfconfig in the

17 -

widdle of a cycle by calling pvinfconfig with nhost = -1.

int info = pvm_tasks(int which, int *ntask,
struct pvmtaskinfo *+taskp)

call pvmftasks{ which, ntask, tid, ptid, dtid, flag, aout, infe)—l

The matine pvmtasks(} returns information about the PVM tasks runaing on the
virtual machine. The integer which specifies which tasks to return information about.
The present uptivas are (), which means all tasks, a pvmd tid, which means tasks
ruaning on that host.or a tid, which means just the given task.

The number of tasks is returned in ntask. taskp is a pointer to an array of
pvmtaskinfo structures. Th~ array is of size ntask. Each taskinfo structure con-
tains the tid. pvind tid, parent tid. a status flag. and the spawned file name. (PVM
doesu’t kaow the file name of mannally started tasks } The Tortran function returus
information about one task per call and cycles through all the tasks. Thus, if where
= U and pvinftasks is called ntask times, all tasks will be represented. The Tortran
function dues not reset itself until the end of a cycle. H the number of tasks is changing
rapidly. pvimftasks will not report the change wntil it is reset. The user can manually
reset pvmftasks in the middle of a cycle by calling pvinftasks with ntask = -1.

int dtid = pvm_tidtchest(int tid)

call pvmftidtohost(tid, dtid)

If all & user reeds to koow is what Lost a task is runaing on, then pvin_tidtohost()
can return this information.

5.3. Dynamic Configuration

int info = pvm_addhosts(char *+hosts, int nhost, int *infos?
int info = pvm_delhosts(char **hosts, int nhest, int *infos)
call pvmfaddhost({ host, info)
call pvmfdelhost(host, info)
The 7 routines add or delete a'set of hosta in the virtual machine. The Tortran
routines add or delete a single host in the virtual machine. In the Fortran routice
info is returned as 1 or a status code. En the C versinn info is returned as the number
of hosts successfully added. The argument infos is au array of length nhoat that
contains the status code for each individual host being added or deleted. This allows
the user to check if noly one of a set of hosts caused a problem rather than trying te
add or delete the entire set of hosts agaln.

5.4, Signaling

int info = pvmsendsig(int tid, int signum)—l

call pvmfsendsig(tid, signum, info)I
pvinseadsig() sends a signal signum to another PVM task identified hy tid.
int info = pymnotify(int what, int megtag, int cnt, int tids)

call pvminotify{ what, msgtag, cnt, tids, info)

C18 -

The routine pvmnotify requests PVM to notify the caller on detecting certain
events, The present options are:

PvmnTaskExit - notify if a task exits.
PvinHostDelete - notify if a host is deleted (or fails).
PvinHostAdd - notify if a host is added.

In respouse to a notify request, soune number of messages (see Appendix A) are sent
by PVM back to the calling task. The messages are tagged with the code (msgtag)
supplied to aotify. The tids array specifies who to monitor when using TaskExit or
HostDelete. The array contains aothing when using HostAdd. OQutstandiog notifies
are consumed by each notification. Tor example. a HostAdd notification will aeed to
he followed by another call to pvin_aotify(} if this task is to be notified of further hosts
being added. If required, the routines pvm_config and pvmn_tasks can he used to obtain
task and pvmd tids.

If the host on which task A is runoing fails, and task B has asked to he notified if
task A exits, then task B will be notified even though the exit was caused indiceetly,

5.5, Setting and Getting Options

int oldval = pvm_setopt(int what, int val)
int val = pvm_getopt{ int what)

call pvmfsetopt(what, val, oldval)
call pvmfgetopt(what, val)

The routines pvm_setopt aud pvm_getopt are a general purpose function to alluw
the user to set or get options in the PVM system. In PVM 3 pvm_setopt can be used to
set several options including: automatic error message printiog. debugging level. and
communication routing method for all subsequent PVM calls. pvm_setopt returns the
previous value of set in oldval, The VM 3.3 what can take have the following values:

Option value MEANING

PymRoute 1 routing policy
PvmDebugMask 2 debugmask

PvmAutcErr 3 auta error reporting
PvmCutputTid 4 stdout device for children
PymCutputCode 3 output msgtag
PvmTraceTid 6 trace device for children
PvmTraceCode 7 trace msgtag
PvmFragSize 8 message fragment size

PvmResvTids § allow messages to be sent to reserved tags and tids
See Appendix A for allowable values for these options. Luture expaasions to this list
are planned,
pvin_setopt() can set several communication options inside of PVM such as rowtiag
method or fragment sizes to use. It can be called multiple times during an application
to selectively set up direct task-to-task communication links, but typical use is tn call
it oace after the initial call to pvin_mytid(). Tor example:

-19-

CALL PYMFSETOPT(PvmRoute, PvmRouteDirect)

The advantage of direct links is the observed factor of two boost n commuaication
performance. The drawback is the small number of direct links allowed by some UKIX
systems, which makes their use unscalable.

Wheu large messages ate being sent over FDDI or HiPPT networks, cominuaication
performance can sometimes be improved by setting a large fragment size such as G4K.

5.6. Message Passing

Sending a message is composed of three steps in PVM. Tirst, a send buffer must be
initialized by a call to pvm_initsend{) or pvm.ankbuf(). Second. the message must he
“packed” into this haffer using any oumber and combination of pvm.pk*() routines.
{In Toctran all message packing Is done with the pvmfpack() subroutine.) Third, the
compleled message is sent to another process by calling the pvmsend() routine or
multicast with the pvm_mecast() routine. In addition there are collective communica-
tion functions that pperate over an eutire group of tasks. for example. broadcast and
scatter/gather.

PYM also supplies the routine, pvin_psend(). which combines the three steps into
a single call. This allows for the possibility of faster intersal implementations, par-
ticularly by MPT vendors. pvm_psead{} only packs and sends a contiguous array of
a single data type. pvm-psend() uses its own send buffer and thus doesn’t affect a
pastially packed buffer to be nsed by pvin.send().

A message s received by calling either a blocking or non-blocking receive routine
and then *unpacking” rach of the packed items from the ceceive buffer. The receive
rautines can be set to accept ANY message. or any message from a specified suurce. or

any nessage with a specified message tag, or only messages with a given message tag
from a givew source. There is also a probe function that returus whether a message
has arcived. but does not actually receive it.

PV M alsu supplies the routine. pym_precv(), which combines a blocking receive and
unpack call. Like pvin.psend(). pvin_precv(]) is restricied to a contiguous aray of a sin-
gle data type. Between tasks riuning on an MPD such as the Paragon or T3D the user
should receive a pvim_psend() with a pvin_precv(). This restrictinn was done because
much faster MPP implementaticas are possible when pvim_psend() and pvin_precv{}
are matched. The restriction is oaly required within a MPP. Wher communication is
hetween hnsts. pvin_precv() can receive messages sent with pvm_psend(), pvm_send().
pvimancast(), nr pvin_heast{). Conversely, pvm_psend(} caa be received by any of the
TPVM receive rontives.,

If required. more general receive contexts can be handled by PYM 3. The routiae
pvmrecvi(} allvws users to define their own ceceive contexts that will e used by the
subsequent PVM receive routiaes.

5.6.1. Message Buffers

The following wmessage buffec routives are required only if the user wishes to manage
multiple message buffers inside an application. Multiple message huffers are not re-

L0 -

quired for most message passing between processes, In PYM 3 there is ane active send
buffer and one active receive huffer per process at any given wownent. The developer
may create any number of message buffers and switch hetween them for the packing
and sending of data. The packing, sending. receiving, and unpacking rontines only
affect the active huffers.

int bufid = pvmmkbuf(int encodingi’

call pvmfmkbuf(encoding, bufid)|
The reutine pvinmkbul creates a new eipty send buffer and specifies the encoding
method used for packing messages. [t returns a buffer identifier bufid.
The encoding options are:

PvmDataDefault - XDR encoding is used hy default because PVM can not
if the user is going to add a Leterogeneous wachine before this message is sent.
If the user knows that the next message will vuly be sent tu a machine that
understands the native format, then Le can use PrmDotaRaw encoding and save
on encoding costs.

PvmDataRaw - uo encoding is done. Messages are seat Lo their vriginal format. If
the receiving process can not read this format. then it will retura an ecror during
wnpacking.

PvmDataInPlace - data left in place. Buffer unly contains sizes and puinters to the
items to be sent. Whea pvm_send() is called the items are copied directly out
of the user's memory. This optinn decreases the number of times the message
is copied at the expense of requiring the user to not modify the items between
the time they are packed and the time they are sent. Another use of this option
werddd be to call pack vace and modify and send certain items (arrays) multiple
times during an application. An example would be passing of boundary regiens
in a discretized PDE Lplementation.

int bufid = pvm_initsend(int encoding)l

call pvmfinitsend{ encoding, bufid)

The routiae pvmainitsend clears the send buffer and creates a new wne fur packing a
new message. The encoding schewe used for this packiag is set by encoding. The new
buffer ideatifier is returned in bufid. If the user is ouly using a siogle send huffer then
pvidnitsend{) must be callect before packing a new message into the huffer. ntherwise
the existing message will he appended.
int info = pvmAfreebuf(int bufid)I

call pymffresbuf(bufid, info)|

The routine prm freebuf() disposes of the buffer with identifier bufid. This sheuld
be done after a message has been sent and is no longer needed. Call pvin_mkbuf() to
create a buffer for a new message if required. Neither of these calls is required when
using pvm_initsend(), which performs these functions for the user.
int bufid = pvm_getsbuf(void)J

call pymfgetabuf(bufid)|

L 21 -

pvin_getshuf(} returns the active send buffer identifier.
int bufid = pvm_getrbuf(veid)|
call pvmfgetrbuf(bufid)]

pvin_getrhuf() returns the active receive buffer identifier.
int oldbuf = pun_setsbuf(int bufid)]

call pymfsetsbuf(bufid, oldbuf)
This routine sets the active send huffer to bufid. saves the state of the previous

buffer, and returns the previous active huffer ilentifier oldbuf.

int oldbuf = pvm_setrbuf(int bufid)I

call pvmfsetrbuf(bufid, oldbuf)

This routine sets the active receive buffer tn bufid, saves the state of the previous
buffer. and returns the previous active buffer identifier oldbuf.

If bufid is set to 0 in pvin.setsbuf() or pvmsetrhuf() then the present huffer is
saved and there is un active baffer. This feature can be used to save the present state
of an application’s messages so that a math library or graphical interface which alsn
nse PVM messages will not interfere with the state of the application's buffers. After
they cinmplete, the application’s huffers can be resetl 1o active.

It is possible to forward messages without repacking thewn hy using the message
buffer routines. This is illustrated by the following fragment.

bufid = pvm_recv(arc, tag);
oldid = pvm_ setsbuf(bufid);
info = pvm_send{ dst, tag J;
info = pvm_freebuf(oldid);

5.6.2. Packing Data

Each of the following C routines packs an array of the given data type inte the active
send buffer. They can be called multiple times to pack a single message. Thus a
message can contain several arrays each with a different data type. There is no limit to
the complexity of the packed messages. but an application should unpack the messages
exactly like they were packed. C stroctures must be passed by packing their individual
elements.

The arguments for each of the rontines are a pointer tn the first item to be packed,
nitem which is the tutal aumber of items to pack from this array. and stride which
is the stride to use when packing. An exception is pvin_pkstr{) whick by definitina
packs a NULL terminated character string and thus does not need nitem nr stride
arguments.

D

int info = pvm_pkbyte(char #*cp, int nitem, int stride)

int infe = pvm_pkcplx(float =*xp, int nitem, int stride)

int info = pvm_pkdcplx{ double *zp, int nitem, int stride)

int info = pvm_pkdouble(dcuble *dp, int nitem, int strida }

int infe = pwvm_pkfloat{ float =*fp, int nitem, int stride)

int info = pvm_pkint(int *np, int nitem, int stride)

int info = pvm_pXlong(long =*np, int nitem, int stride }

int info = pvym_pkshort(short #*np, int nitem, int stride)

int info = pvm_pkuint(uneigned int *np, int nitem, int stride)
int info = pvm_pkushert(unsigned short *np, int nitem, int stride)
int info = pvm_pkulong(unsigned long *np, int nitem, int stride)
int info = pvm_pkstr(char *cp)

int info = pvm_packf(const char *fmt, ...)

PVM also supplies a packing coutine pvin_packf() that uses a printf-like format
expression to specify what and how to pack data into the send buffer. All variables are
passed as addresses if count and stride are specified; otherwise. variables are assumed
to be valies. A description of the format syntax is given in Appendix A.

A single Tortran subroutiae handles all the packing functions of the above C rou-
tines.

[call pvmfpack{ what, xp, nitem, stride, info)

The asgument xp is the first item of the array to be packed. Note that in Tortran
the number of characters in a string to be packed must he specified in nitem The
integer what specifies the type of data to be packed. The supported options are:

STRING 0 REAL4 1
BYTE1 1 COMPLEXS 3
INTEGERZ 2 REALS L
INTEGER4 J COMPLEXi& 7

These aames have beea predefined in parameter statements lu the include file
pvm3/include/fpvm3.h. Some vendors may extend this list to include G4 bit architec-
tures in their PVM implementations. We will be adding INTEGERS. REALIG. ete. as
soon as XD support for these data types is available.

5.6.3. Sending and Receiving Data

int info = pvmsend(int tid, int msgtag)

call pvmfsend(tid, msgtag, info)]

The routine pvmsend{) labels the message with an integer identifier msgtag and
sends it immediately to the process tid.
int info = pvmmcast(int *tida, int rntask, int msgtag)]

call pvmfmcast(ntask, tids, mesgtag, info)

The routine pvmn_mcast(} labels the message with an integer identifier msgtag and
broadcasts the message to all tasks specified in the integer array tids (except itself).
The tids array is of length ntaak.

.93 -

int info = pvmpsend(int tid, int msgtag, void »vp, int ent, int type)

call pvmfpsend(tid, msgtag, xp, cnt, type, infc)

The routive pvm-psend() packs and seads an array of the specified datatype to
the task identified by tid. The defined datatypes for Tortran ace the same as for
pvmipack(). In C the type argument can be any of the following:

PVM_STR PVM_FLOAT
PVM_BYTE PVM_CPLX
PVM_SHORT PVM_DOUBLE
PYM_INT PVM_DCPLX
PVM_LONG PYM_DCPLX
PYM_USHORT PVM_UINT
PVM_ULONG

These names are defined in pvm3/include/pym3.h.
int bufid = pvm.recv(int tid, int magtag)l

call pvmfrecv({ tid, magtag, bufid H
This hlocking, teceive routine will wait uatil a message with label msgtag has arrived
from tid. A value of -1 in msgtag or tid matches anything (wildeard). It then places
the message in a wew active receive buffer that is created. The previous active receive
Luffer is clearsd unless it has been saved with a pvimn_setrbuf() call.

int bufid = pvmnrecv(int tid, int magtag)I

call pvmfnrecv(tid, msgtag, bufid) l
If the requested message has not arrived. then the pon-blocking receive pvin_nreev()

returas bufid = 0. This routine can be called multiple times for the same message
tor check if it Las arrived while performing useful work between calls. When no moare
useful work can ke performed the blocking receive pvin_recv() caa be called for the
same message. If a wmessage with label msgtag bas artived from tid, pvin_orecv()
places this message in a new active receive buffer which it creates and returps the ID of
this buffer. The previeus active receive beffer is cleared unless it has heen saved with
a pvmsetrhuf(} call. A value of -1 in magtag or tid matches anything (wildcard).
int bufid = pvmprobe(int tid, int msgtag)|

call pvmfprobe(tid, msgtag, bufid)l

If the requested message has aot arrived, then pvm_probe() returus bufid = 0.
Otherwise. it returns a bufid for the message, but does not “receive” it. This routine
can be called multiple times for the same message to check if it has arrived while
performing nseful wark hetween calls. In addition pvm_bufinfo{) cag be called with the
returned hufid to determine information ahout the message befure receiving it.
int infe = pvmbufinfe(int bufid, int *bytes, int *magtag, int *tid)—I

call pvmfbufinfo(bufid, bytes, magtag, tid, info)I

int bufid = pvm.trecv(int tid, int msgtag, struct timeval #tmout }J

call pvmftrecv(tid, msgtag, sec, usec, bufid)I
TV M alsis supplies a timecut version of recelve, Consider the case where a message
is never going to arrive (due to error or failure). The routine pvonrecy would blnck

S

forever. There are times when the user wants to give up after waiting for a fixed amount
of time. The routine pvm_trecv() allows the user to specify a timeout pecind. If the
timeout period is set very large then pvm.trecv acts ke pvinrecv. If the timeout
perind is set to zero then pvm._trecy acts like pvinnrecy. Thas. pvin_trecy fills the gap
hetweenr the blocking and noublocking receive functions.

The coutine pvio_bufinfo{) returns msgtag, source tid. and length in bytes of the
message identified by bufid. It can be used to determine the label and sonrce of a
message that was received with wildcards specified.

int info = pvm_precv(int tid, int megtag, void *vp, int cmt,
int type, int #rtid, int *rtag, int *rent)

call pvmfprecv{ tid, msgtag, xp, cnt, type, rtid, rtag, rent, info) l

The routine pyin_precy(} combines the functions of a blocking receive and wnpacking
the received buffer. It does not return a bufid. Instead. it returns the actual values of
tid, msgtag. and cnt in rtid, rtag, rent respectively.

[int (*#01d) ()} = pvmrecvi{int (*new){int buf, int tid, int tag)) I

The rotine pvinrecvi() modifies the receive context used by the receive functions
and can be used to extend PVM. The default receive costext is to match oo snurce
and message tag. This can be modified to any user defined comparison function. {See
Appendix A for an example of creating a probe function with pyvm_recf().) There is no
Tortran interface routine for pyo_recvi().

5.6.4. Unpacking Data

The following €' routines unpack (inultiple) data types from the active receive bhuffer.
Tn an application they should match thelr corresponding pack routines in type, number
of items, and stride. nitem is the nwmber of itemns of the given type to anpack, and
stride js the strjde.

int info = pvm_upkbyte(char *cp, int nitem, int stride
int info = pvm_upkeplx(fleoat *xp, int nitem, int stride
int info = pvm_upkdcplx(double *zp, int nitem, int stride
int info = pvm_upkdouble(double *dp, int nitem, int stride
int info = pvm_upkfloat(float #fp, int nitem, int stride
int info = pvm_upkint(int *np, int nitem, int stride
int info = pvm_upklong(long *np, int nitem, int stride
int info = pvm_upkshort{ short =#np, int nitem, int stride
int info = pvm_upkuint(unasigned int *np, int nitem, int stride)
int info = pvm.upkushort(unsigned short *np, int nitem, int stride)}
int info = pvm_upkulong{ unsigned long *np, int nitem, int stride)
int info = pvm_.upkstr(char #cp)

B e

int info = pvm_unpackf(const char *fmt, ...)
The routine pvim_unpackf{} uses a printf-like format expression to specify what and

how to wnpack data from the receive huffer,

A single Tortran subroutine handles all the unpackiog functions of the above C rou-

tines.

call pvmfunpack(what, xp, nitem, stride, info)
The argnmert xp is the array tohe unpacked Into, The integer argument what specifies
the type of data to be vapacked. (Same what optioas as for pvmipack(}).

6. Dynamic Process Groups

The dynamic process group fuactions are built on top of the core PVM routines. There
is a separate library Tibgpvm3.a that must be linked with user programs that make use
of any of the group functions. The prmd does not perform the group functions. This is
handled by a group server that is automatically started when the first group function
is invoked. There is some debate about huw groups should be handled ia a message
passing interface. There are efficiency aud reliability issues. There are tradeoffs between
static verses dynamic groups. And some people argue that coly tasks in a group can
call group functions.

[n keeping with the PVM philosephy. the group functions are designed to he very
general apd transpagrent to the user at some cost in efficiency, Aoy PVM task can join
or leave apy group at any tine without having to inform any other task in the affectad
groups. Tasks can hroadcast messages to groups of which they are not a member. And
in general any PYM task may call any of the followiog group functions at any time.
The exceptions are pvmlvgroup(). pvm_barder(), and pvm_reduce() which by their
pature require the calling task to be a member of the specified group.

int inum = pvm.jeingroup(char *group)
int info = pvmlvgroup{ char *group)

call pvmfjoingroup(group, inum)
call pvmflvgroup{ group, info)

These routines allow a task to jnin or leave a user named group. The first call to
pymjoingronp() creates a greup with name group and puts the callipg task in this
group. pvmjoingroup{) returns the instance aumber (inum) of the process in this
group. Instance numbers run from 0 to the aumber of group members minus 1. In
PVM 3 a task can join mualtiple growps.

If a process leaves a group and then rejoins it that process may receive a different
instance pumber. Instance nwmbers are recyeled 20 a task joining a group will get the
liswest available instance number. But if multiple tasks are joining a group there is no
guarantee that a task will be assigned its previous jnstance aumber.

Tor assist the user in malntaining a contigneus set of instance aumnbers despite joining
and leaving, the pvindvgroup() function does not return until the task is confirmed to
have left. A pvi_joingrouy} called after this return will assign the vacant jnstance
nimber to the new task It is the users responsibility to maintain a contiguous set
of instance numbers if his algorithm requires it. If several tasks leave a group and no
tasks juin, then there will be gaps in the instance numbers.
int tid = pym_gettid(char #group, int inum)]

call pvmfgettid(group, inum, tid)
The coutine pvmn_gettid() returos the tid of the process with a given group name

-6 -

and instance number. pym_gettid() allows two tasks with no knowledge of each other
to get each other's tid simply by joiuing a common group.

int inum = pvmgetinst(char *group, int tid)J

call pvmfgetinst(group, tid, inum)]

The routine pvin_getiust() retusns the instance number of tid in the specified group.

int size = pvmgsize{ char *group)J

call pvmfgsize(group, size)l

The routiae pvm_gsize() returns the number of wembers in the specified group.

int info = pvmbarrier(char *group, int count)]

call pvmfbarrier{ group, count, info)

On calling pvmn_barrier{) the process hlocks until count members of a group Lhave
called pvin_barrier. In general count should be the total number of members of the
group. A count is required hecause with dynamic process groups PYM can oot know
kow many members are in a group at a given instant. It is an error for processes to
call pvin_barrier with a group it is ant a member of. It is also an ercor if the count
arguments acruss a given barrier call do not match. Tor example it is an error if oue
member of a group calls pvin_barrier() with a couat of 4, and another member calls
pvin_barcier() with a count of 3.

int info = pvm_bcast(char #group, int msgtag)]

call pvmfbcast(group, msgtag, info)I

pvm_beast{) labels the message with an integer identifier msgtag and Lroadeasts
the message to all tasks in the specified group except itself (if it is a member of the
group).

Tor pvin_beast() “all tasks” is defined to be thuse tasks the group server thinks are
in the growp when the routine is called. If tasks join the group during a broadeast they
may not receive the message. If tasks leave the group during a broadcast a copy of the
message will still be sent to them,

int info = pvmreduce(void (*func)(), veid *data,
int nitem, ipt datatyps,

int msgtag, char *group, int root)

call pvmfreduce(func, data, count, datatype,

magtag, group, root, info }

pvin_reduce{) perforins a global arithmetic operation across the group. for example,
global sum of global max. The result of the reductivn vperation s returned on root.
PVM supplies four predefined functinns that the user can place in func. These are:

PvmMax
PvmMin
PvmSum
PymProduct

The reduction operation is performed element-wise on the in put data. Der exaumple, if
the data array contains two floating point numbers and func is PvinMax. then the result
contains two numbers ~ the global maximum of each group member's first number and

the global maximum of each member’s second number,
Iin addition users can define their own global eperation fuaction to place in func.
See Appendix A for details. An example is given in PYM_ROCT/exanples/gexanple.
[Note: pvinreduce() dees not block. If a task calls pvm_redice and then leaves the
group before the root has called pvin_reduce an error may occur.|

7. Examples in C and Fortran

This section contains twoexample programs each Mlustrating a different way to orgacize
applications in PYM 3. The examples have heen purposely kept siaple to make them
easy to understand and explain. Each of the programs is presented in both C and
Tortran for a tetal of four listings. These examples and a few others are supplied with
the PVM sowrce in PVM_RCOT/examples.

The first exaunple is a master/slave model with eommunication between slaves. The
second example is a single program maoltiple data (SPMD) model.

In a master/slave model the master programn spawns and directs some number of
slave programs whick perform computations. PYM is aot restricted to this model. TFor
examnple, any PVM task can initiate processes ou other machines. But a inaster/slave
model is a useful programming paradigm and simple to illustrate, The master calls
pymanytid{), which as the first PVM call. enrolls this task in the PVM system. It then
calls pvmspawn() to execute a given number of slave programs on other machines in
PVM. The master program contains an example of broadeasting messages in PVM. The
master hroadcasts to the slaves the wumber of slaves started and a list of all the slave
tids. Each slave program calls pvin.anytid{) to determine their task ID in the virtual
machine, then uses the data broadeast fromn the master to create a unique orderiag
from 0 to nproc minus 1.

Subsequently, pyvmsead{) and pvm_recv(} are used to pass messages hetween pro-
Cesses,

When finished. all TVM programs call pvin_exit(} to allow PVM to disconnect any
sockets to the peocesses, flush 1/0 buffers. and to allow PVM &0 keep track of which
|)I‘(J('P¥-SF‘5 are fEH.lH‘U.lg.

In the SPMD model there is enly a single progran. and there Is no master programn
directing the computation. Such programs are sometimes called fostless programs.
There is still the izsue of getting all the processes initially started. In example 2 the
user starts the first copy of the program. By checking pvm_parent(). this copy can
determine that it was not spawned by PVM and thus must be the first copy. It then
spawns multiple copies of itself and passes them the array of tids. At this point each
copy is pqual and can work on its pactition of the data in collaboration with the other
processes. Using pvin_parent precludes starting the SPMD program from the PVM
console Lecause pvm_parent will return the tid of the console. This type of SPMD
prugram must be stacted from a UNIX prompt.

L uE -
#include "pvm3.n"
#define SLAVENAME "slavel”
main{)
{
int mytid; /+ my task id =/

int tida[32); /* slave task ids =/
int n, nprec, 1, who, msgtype;
float datal[100), result[32];

/* enroll in pvm */
mytid = pva_mytid(};

/% start up slave tasks */
puta("How many alave programa {1-32}7");
acant ("¥%d", &aproc):

pym_spawn (SLAVENAME, {chars*)0, 0, ", nproc, tida)};

/* Begin User Program %/
n = 100;
initialize_data(data, n };

/* Broadcast initial data to slave tasks =/
pvm_initsend(PvmDataRaw);

pvM_pkint (knproc, 1, 1);

pvm_pkint (tids, nproc, i);

pvm_pkint(&n, 1, 1);

pvm_pkiloat(data, n, 1);

pvm_mcast(tids, nproc, 0);

/* Walt for results from slaves */
magtype = B;
tor(1=0 ; il<mproc ; i++ }{

pve_racv{ -1, msgtype)

pym_upkint(&whe, 1, {)

pvm_upktfloat{ &resultiwhol, 1, 1 };

print? ("I got %f from %d\n",result[whol,who);
¥
/* Program Finished exit PVM before stopping */
pvi_exit{);

Tigure 3: C version of master example.

09 . -30-

program masterl
¢ INCLUDE FORTRAN PVM HEADER FILE

#include "pvm3.h" include 'fpwm3.h’

main(} integer i, info, nproc<, numt, msgtype, whe, myvid, tids(Q:32)
¢ : . . N doubla precisien result(32), data(100)

%nz :¥:1?52] ;* :y :a?: id ‘5 character=*12 nodaname, arch

in 1ias H as 1ds

int n, me, i, nproc, master, msagtype:
float data(100], result;
float work{);

< Enroll this program in PVM
call pvmfaytid{ mytid)

c Initiate nprec instances of slaval program
print =, *How many slave programs (1-32)7’
read *, nproc
nodename = ’slavel’
call pvmfspawn(ncdename, PYMDEFAULT, ’#', nprac, tids, numt)

/% enroll in pvm */
mytid = pvm_mytid(};

/% Receive data from master */
magtype = O;

pvm_recv({ ~1, magtype);
pvm_upkint(&nprec, {, 1);
pvm_upkint{tids, nproc, 1};
pvm_upkint(ér, i, 1);
pvm_upkfloat(data, n, 1};

¢ -———== Begin user program ---——---
n = 108
call initiate_data{ data, n)

e Broadcast data to all node programs
call pvmfinitsend{ 0, info)
call pvmfpack(INTEGER4, nproc, i, 1, infe)
call pwwtpack(INTEGER4, tids, nproc, 1, infe)
call pvmfpack(INTEGER4, n, 1, 1, info)

/* Do ¢alculations with data */ call pvmtpack(REALS, data, m, 1, info)

. magtype = 1
1t = k data, tids, P
resu verk(me, n, data, ctids, nproc) call pvmfmcast{ nproc, tids, msgtype, info)

/* Determine which alave T am {0 -- nproc-1} +/
for(i1=0; i<nproc ; i++)
if{ mytid == tids[i]){ me = i; breax; }

/* Send result to master */
pvm_initsend(PvmDataDefault);
pve_pkint(kme, 1, 1 };
pvm_pkfloat{ &result, 1, ! };
nsgtype = B;

master = pvm_parent();
pvm_serd(master, msgtype)

c Wait for results from nodes
msgtype = 2
do 30 iz1,nproc
call pymfrecv(-1, magtype, info)
call pvmfunpack(INTEGER4, who, 1, 1, info)
¢all pvmfunpack(REALS, resulv(who+l), i, 1, infe)
30 continue

. . € —mmmmmmmmmmee End user program -------—-
/* Program finished. Exit PVM before stopping */ c Program finished leave PVM befora sxiting
pvm_exit(};
N call pvafexit()
step
end

Flgure 1: C version of slave example.

Tigure 5: Fortrap version of master example.

- 31 - e

#detine NFROC 4
#include "pvm3.h"
main()

{

program slavel
¢ INCLUDE FORTRAN PVM HEADER FILE
include 'fpwm3.k’ int myvid, tids[NPROC], me, i

integer info, mytid, moid, magtype, me, tida(0:32)

mytid = pvm_mytid(}; /+ ENROLL IN PV¥ #/
double precision result, data(100) tida[0} = pym_parent(); /* FIND QUT IF I AM PARENT OR CHILD =%/
double precision work 3f(tidalfl < 0)4 /* THEN I AM THE PARENT =/
tids [0] = mytid;
c Enroll this program in PVM me = 0 /% START UP COPIES OF MYSELF =/
call pymfmyvid(mytid) pym_spawn(“spad", (char#+}0, 0, “”, NPROG-1, &tids[11};
< Get the master’s task id pvm,initsend(PvmDataDefault }; /% SEND TIDS ARRAY */
call pvmfparent(mtid) pvn_pxint{tids, NPROG, 1); /* TO CHILDREN */
pru_mcast{ktida{1l, NPROG-1, 0);
[t Begin user program -------- }
else{ /% T AM A CHILD %/
< Receive data from master pvm_recy(tids[0], 0): /+ RECEIVE TIDS ARRAY */
magtype = 1 pve_upkint(tids, WPRGC, 1);
call pvmfrecv(mtid, msgrype, info) for{ 1=i; I<NPROC ; i++)
¢all pvmrunpack(INTEGER4, nproc, 1, 1, info) 11(mycid == ti1ds[i]){ me = i; break; }
call pvmfunpack(INTEGER4, tids, nproc, 1, info) 1

call pvmfunpack{ INTEGER4, n, 1, 1, info)

/+ 411 WPROC tasks are equal now
call pvmfunpack{ REALS, data, n, 1, info)

*+ and can address each other by tids{0] thru tids[NPROC-1]

+ for each process ’me’ is process index [0-{NFROC-1}]
¢ Determine which slave I am (0 -- nprec-1) e — m—————- —-- +/
do 5 i=0: nproec dowork{ me, tids, NPROC)
if(tids{i) .eq. mytid) me = § pym_exit(}; /+ PROGRAM FINISHED EXIT PVM +/
E continue }
dowork({ me, tids, nproc) /* DOWGRK PASSES A TOKEN AROUND A RING #*/
c Do calculations with data it me, #tids, nproc
result = work(me, n, data, tids, nproc) {
int token, dest, count=1, stride=:i, msgtag=4;
c Send result to master it{ me == 0) {
call pymfinitsend(PVMDEFAULT, info) token = tids[0];
c¢all pvmfpack{ INTEGER#, me, 1, 1, infe) pve_initsend(PvmDatalafault }
call pvmfpack(REALS, result, 1, 1, info } pvm_pkint(ktoken, count, stride);
msgtype = 2 pvm_send(tids [me+1], magrag)
call pvmfsend(mtid, msgtype, info) pvm_recv(tidsInproc-11, msgrag)
}
¢ mmmmmmmm End user program —-—-—----- else {
pvm_recv(tidsme-1], magtag);
c Program finished. Leave PVM before exiting pvm_upkint{ &token, count, stride);
call pymfexit() pvm_initsend(PvaDataDefault);
8Top pvm_pkint{ ktoken, count, atride);
end dest = (me == nproc-1)? tids[0] : tids[me+1] ;
pvm_send{ dest, msgtag);
}
T'igure 6: Fortran version of slave example. ¥

Tigure 7: C version of SPMD exampie.

- 33 -

program spmd

< INCLUDE FORTRAN PVM HEADER FILE

include *fpvm3.h’

PARAMETER(NPROC=4)
integer mytid, me, numt, i
integer tida{0:KPROC)
ENROLL IN PVM
call pvafeytid(mytid }
FIND OUT IF I AM PARENT OR CRILD
call pvmfparent{tids{(0))
if{ tids(¢) .1t. ©) then
tids(0) = mytid
me = 0
START UFP COPIES DF MYSELF
call pvmfspawn(’apmd’, PVMDEFAULT, ’+', NPROC-!, tids(1), nuomt)
SERD TIDS ARRAY TO CHILDREN
call pvmfinitsend(¢, info)
call pvmfpack{ INTEGER4, tids, WPROC, 1, info)}
call pvmfmcast(NPROC-1, tids(1), ¢, info)
else
RECEIVE THE TIDS ARRAY AND SET ME
call pvmfrecv(tids(0), 0, inf¢)
call pvmfunpack(INTEGER4, tids, WPROC, 1, info)
do 30 i=i, NPROC-1
ifC mytid .eq. tida(i)) me = i
continue
endif

NPROC tasks are equal now
can address each ather by tids{0) thru tida(NPROC-1)
each process me => process number [0-(NPROG-1}]

call dowork{ me, tids, NPROC)

PROGRAM FINISHED EXIT FVM
call pvmfexit(}
stop
end

Tigure &: Fortean version of SPMD example (part 1).

Sat-

subroutine dowork(me, tids, npreoc)
include *fpvm3.h’

integer me, nproc, tids{ O:nproc)

integer token, dest, count, stride, msgtag
count = 1{

stride = 1

msgtag = 4

if(me .eq. ©) then
token = tids(0)
call pvmfinitsend(0, info)

call pvmfpack(INTEGER4, token, count, stride, info)

call pvmisend(tida(me+1), msgtag, info)

call pvmfrecv(tids(nproc-1), msgtag, info)
else

call pvmfrecv{ tids(me-1), magtag, info)

call pvmfunpack(INTEGER4, token, count, stride, info)

call pvmfinitsend(O, info)

call pvmfpack(INTEGER4, token, count, stride, info)

dest = tids(me+1)
if(me .eq. nproc-1) dest = tids(0)}
call pvmfgend(dest, msgtag, info)
endif
return
end

Tigure 9: Tortran version of SPMD example (part 2).

8. Writing Applications

Application programs view VM as a general and flexible parallel compating resource
that supports a message-passing model of computation. This resource may be ac-
cessed at three different levels: the transparent mode in which tasks are actomatically
executed on the most appropriate hosts (gecerally the least loaded computer), the
architecture-dependent mode in which the user may indicate specific architectures on
which particular tasks ate to execute. and the low-level mode in which a particular host
may be specified. Such layesing permits flexibility while retaining the ability to explnit
particular strengths of individual machines oo the network.

Application programs under PVM may possess arbitrary control and dependency
structures. [n other words, at any point ia the execution of a concurrent application,
the processes in existence may have arbitrary relatioaships between each other and
in addition. any process may conmuunicate and for synchronize with any other. This
allvws for the most general focm of MIMD parallel computation, but in practice most
concurrent applications are more structuced. Two typical strectures are the SPMD
model in which all processes are identical ard the master/slave model iz which a set
nf computational slave processes pedorms work for nne or more master processes.

8.1. General performance cousiderations

There are oo limitations to the programming paradigm a PYM user may choose. Auy
specific control and dependency structure may be implemented under the PYM system
by appropriate use of PYM constructs. On the other hand there are certain considera-
tions that the application developer should be aware when programming any message
passing systeim.

The first cousideration is task granwarity. This is typically measured as a ratio of
the number of bytes recelved by a process to the number of floating poist operations
a process performs. By doing soane simple calculations of the computational speed of
the machines in a PVM configuration and the available network bandwidth between
the machines. a user can get a rough lower bourd oa the task granularity to be used in
an application. The tradeoff is the larger the granatarity the higher the speedup but
often a reduction in the available parallelism as well.

The second consideration is the number of messages sent. The number of bytes
recelvedd may be sent in many small messages or in a few large messages. While us-
ing a few large messages reduces the total message start-up time. it may not cause
the nverall execution tune to decrease. There are cases where small messages can he
overlapped with other computation se that their ovechead is masked. The ability to
overlap communication with computation and the optimal sumber of nessages to send
are application dependent.

A third consideration is whether the application is hetter suited to fuactional paral-
lelism or data parallelisiz. We define functional parallelisin to be different machines in
a PVM configuration performing different tasks. Tor example, a vector supercomputer
may solve a part of a problem suited for vectorization, a multiprocessor may solve
another part of the prublem that is suited to parallelization, and a graphics worksta-
tien may be used to visualize the generated data in real time. Fack machine performs

- 36 -

different functions (possibly oo the sane data).

In the data parallelism model, the data is partitioned and distributed to all the
machines in the PVM configuration. Operations (often similar) are performed on each
set of data and informatioa is passed hetween processes until the problem is solved.
Daia parallelism has been popular on distributed-memory multiprocessors because it
regueires writiag ouly one parallel program that is executed on all the machines, and
hecause it can often be scaled up to hundreds of processors. Many linear algebra, PDE,
and matrix algerithms have been developed using the data parallelism model.

Of course in PVM both models cau be mixed in a hybrid that exploits the strengths
of each machiae. Cor example the parallel code that runs on the wultiprocessar in the
above fuactional example may itself be written in PVM using a data parallelism maocdel.

8.2. Network particular considerations

There are additional considerations for the application developer if he wishes to run his
parallel application over a artwork of machines. His parallel program will be sharing
the network with other users. This wultiuser, multitasking envirvnment affects hoth
the commupication and computational performance of his prograim in eomplex ways.

Tirst consider the effects of having different cownputational power nn each mmachine
in the configurativn. This can be due to haviag a heterogeneaus collection of machines
in the virtual machine which differ in their computational rates. Just between different
brands of woskstations there can be two orders of maguitude difference in power. Tor
supercowm puters there can be even more. But even if the user specifies a homogeneous
collection of nachines, he can see large differences ia the avallable performance on each
machine. This Is caused by the inultitasking of his own or uther user's tasks on a subset
of the configured machines. If the user divides his problem into identical pieces vne for
each machine, (a common approach to parallelization), then the above coasideratinn
may adversely effect his pecformance. His application will run as slow as the task oo the
slowest machine. If the tasks coordinate with each other, then even the fast machines
will be slowed down waiting for the data from the slowest tasks.,

Seciud consider the effacts of long message latency across the network. This could
be caused by the distance between machines if a wide-area network is being employved.
It can alse be caused by contention on your local network {rom your own program or
other users. Consider that Ethernet aetwarks are a hus. As such oaly one message
can be on the bus at any time. If the application is designed so that each of its tasks
ooly sends to a peighboriag task then oue might asswne there would be wo contention.
On a distributed memory multiprocessor. suck as an Intel Paragon. there wauld be
no contention and all the sends could proceed in parallel. But over Ethernet the
sends will be serialized leading to varying delays (latencies) in the messages arriving
at neighboring tasks. Other aetworks such as token ring, TIDTH. and HiPPL, all Lave
peoperties that can cause varying latencies. The user showld deterimine if latency
tolerance should he desigued into his algorithin,

Third consider that the computational performance and effective network hand-
width are dynamicly changing as other users share these resources. An application
may get a very good speedup during vne run and a poor speedup ou a run just a few

S37-

minutes later. Dhuring a run an application can have its normal synchronization pattern
thrown off causing some tasks to wait for data. In the worst case, a synchronization
error could exist in an application that oaly shows wp when the dynamic machine loads
fluctuvate in a particular way. Because such conditions are difficult to reproduce. these
types of ercors can he very hard to find.

Maay of these petwork considerations are taken care of by incorporating seme form
of Ioad balancing into a parallel application. The next section describes sone of the
pepular load balancisg methods.

8.3. Load Balancing

In a multivser network environwent we have fouad that load balancing can be the single
mest important performance enhancer, (6]. There are maay load halancing schemes
for parallel programs. In this secting we will describe the three most common schemes
wsed in aetwork computing.

The simplest method is stetée load balancing. In this method the problem is divided
iwp. and tasks are assigned to processors only vnce, The data partitioning may occur
wff-line before the job is started, or the partitioning may occur as an early step in an
application. The size of the tasks ur the number of tasks assigned to a given machine
can be varied to account for the different computational powers of the machines. Since
all the tasks can be active from the beginning. they can commuanicate and coordinate
with one another. On a lghtly lnaded aetwork, static load balancing can be quite
effoctive.

When the computational loads are varying a dynamic load halance scheme is re-
quired. The most popular method is called the Pool of Tasks paradigm. It is typically
implemented in a master/slave program where the master program creates and holds
the “pool™ and farms out tasks to slave programs as they fall idle. The pool is vswally
implemented as a queue and if the tasks vary in size then the larger tasks are placed
near the head of the queue. With this inethod all the slave processes are kept busy as
long as there are tasks left in the pool. Ag example of the Peol of Tasks paradigm can
be seen in the xep program supplied with the PV M source under pym3/xep. Since tasks
start and stup at arbitrary times with this methnd, it is hetter suited to applications
which require no communicatinn between slave programs and only communication to
the master and files.

A tbird load balarce scheme which doesn't use a master process requires that at
some predetermined time all the processes will reexamine and redistribute their work
loads. An example is in the solution of nonlinear PDEs, each linearized step could he
statically Inad halanced and between each linear step the processes exainine how the
problem has changed and redistribute the mesh points. There are several variations of
this basic scheme. Snme implementations never synchronize with all the processes hut
instead distribute excess load ouly with their neighbors. Some implementations wait
until a process signals that its load balance has gotten above some tolerance hefore
going through a load redistribution rather than waiting on a fixed time.

S 3K -

8. Debugging Methods

In general, debugging parallel programs is much more difficult thas debugging serial
programs. Not only are there more processes running simultaneously, but their inter-
action can also cause errors. Tor example a process may receive the wrong data that
later causes it to divide by zero. Another example is deadlock where a programming
ersof has caused all the processes to be waiting on inessages. All PYVM routines return
an error condition if some error has heen detected during their execution. A list of
these codes and their meaning is given in Table 2.

ERROR CODE MEANING
Pvm0k 0 okay
PymBadParam -2 bad parameter
PvmMismatch -3 barrier count mismatch
PymNoData -3 read past end of buffer
PymNoHost -6 no swuch host
PvmNoFile -7 ao such executable
PymNoMem -10 can’t get mmemory
PvmBadMsag -12 can’t decode received msg
PvmSysErr -4 pvmd ot responding
PvmNoBuf -13 no curreat huffer
PvmNoSuchBuf -16 bad message id
PymNullGroup -1V gull group name is illegal
PymDupGroup -18 already in group
PvmNoGroup -1% ne group with that name
PvmNotInGroup -20 neot in group
PvmNoInst 21 no such izstance in group
PvmHostFail -22 host failed
PvmNoParent -23 no pareat task
PymNotImpl <21 function not implemented
PymDSysErr <25 pvid system error
PvmBadVersion -26 pvmd-pvind protocol mismatch
PymOutOfRes =27 wout of resources
PvmDupHost -28 best already configured
PvmCantStart -29 failed to exec new slave pvmd
FymAlready -30 slave pvind already ruaning
PvmNoTask -1l task does oot exist
PvmNoEntry -2 1o such (groupdnstance)
PvmDupEntry -33 (group.iastance} already exists

Table 2: Error codes returned by PYM 3 routines.

By defauit PVM prints error coaditions detected in PVM routines. The routine
pvmsetopt() allows the user to tucn this automatic reporting of. Diagnostic prints
from spawned tasks can be viewed using the PYM console redirection or by calling

L300

pvincatchout() in the spawniog task {often the master task). pvin catchout() causes
the standard out put of all subsequently spawned tasks to appear on the standard output
of the spawaer.

PV M tasks can be started manually wnder any standard serial debugger, for example
dhx. stdout from tasks started manually always appears in the window in which it was
started.

PVM tasks that are spawned can also he started under a debugger. By setting the
flag option tu indude PvmTaskDebug in the pvimspawa() call. by default PYM
will execute the shell seript PVM_RO0T/1ib/debugger. As supplied this script starts an
xterm window oo the host PYM was started on and spawns the task under a debugger
in this window. The task being debugged can be executed on any of the hosts in the
virtual machine as specified by the flag and vhere argumeats in pva_spawn(). The
user can create Lis own personalized debugger seript to lnclude a preferred debugger
or even a parallel debugger if vne is available. The user can then tell PYM where to
find this seript by using the ba= optios in the hostfile.

Magnostic p:zint statements sent to stderr from a spawaed task will not appear
nu the usec's sepeen. All these prints are routed to a single log file of the form
/tmp/pyml.<uid> on the host where PVM was started. stdout statements may ap-
pear in this file as well although /0 buffering may make this a less wseful debugging
method. Tasks that are spawned from the PVM consele can have their stdout {and all
their children's stdout) redirected hack to the couscle window or to a separate file,

Tle rrutine pyvaisetopt() also allows the aser to set a debug mask which determines
the level of debug messages to be printed to /tmp/pvml.<uid>. By default the debug
level iz set to ‘nn debug messages’. The debug level can be changed imultiple times
inside an application to debug a single routine or section of code. The debug statements
deseribe noly what PVM is doing and not what the application is doing. The user must
infer what the application was doing from the PYVM debug statements. This may or
may not he reasonable depending oa the nature of the hug.

Experience has led to the followiag three steps in trying to debug PVM programs.
First. if possible. run the programn as a single process and debug as any other serial
progeam. The purpose of this step s to catel indexing and logic errors uarelated to
parallelismn. Quee these errors are corrected. go to the second step.

Second. tun the program using 2—1 processes un a single machine. PVM will mul-
titask these processes nn the single machine. The purpose of this step is to check the
communication syntax and logic. T'or example was a message tag of 5 used in the send
but the receiver Is waiting for a message with tag equal 0 1. A more common error
to discover at this step is the use of non-uniyue message tags. To llustrate assume
that the same message tag is always used. A process receives some initial data in three
separate messages, but it has oo way of determining which of the messages contains
what data. PVM returns any message that matches the requested sowrce and tag. so
it is up to the user to make sure that this pair uniquely identifies the contents of a
message. The non-anique tags error is often very hard to debug because it is sensitive
trr subtle synchronization effects and may not be reproducible from run to run. If the
error can not be determived by the PVM error codes or from a quick print statement,
then the user can get complete debugger control of his program by starting one or all of

210 -

lis tasks under debuggers. This allows break points. variable tracing. single stepping.
and trace backs for each process even while it passes messages back and forth to other
PVM tasks that may or may oot be running under dbx.

The third step is to run the same 2—1 processes across several machines. The
purpose of this step is to check for synchroaization errors that are produced by network
delays. The kind of errors often discovered at this step are sensitivity of the algorithm
to message arrival order, and program deadlock caused by logic errors sensitive to
network delays. Again complete debugger control can he obtained in this step, hut it
may aot be as useful hecause the debugger may shift or mask the timing errors nhserved
earlier.

10. Implementation Details

This secticn gives a glimpse at the design goals and implementation details of the
single-cpu UNIX (generic) version of PYM. A complete techuical description of PVM
can be found in [4].

There were three mnain goals wader consideration while building version 3. We
wanted the virtual machine to he able to scale to hundreds of hosts and thousands
of tasks. This requires efficient message-passing operations and. more unportaatly,
aperatinns (such as task management) to be as localized as puossible in order to avoid
hottlenecks.

We wanted the system 1o be portable to any version of UNIX and also tov mmachines
not running UNIX, especially MPTs (message passing machines with many processor
podes).

Finally. we waanted the system to be able to withstand host and network failuges,
allowiag fault-tolerant applications to be huilt.

In ocder to keep PVM as portable as possible, we avoided the nse of uperating
systemn or programming langnage features that would be be hard to retrofit if unavail-
able. We decided not to use mubti-threaded code, or more specifically, not to nverlap
1/0 and processing in tasks. Many UNIX machines have light- ur heavy-weight thread
packages or asynchronous I/Q system calls. but these are variakle enough that many
code changes would be required. Qa mnachines where threads are not available, it's pos-
sible to use signal-driven I/0 and interrupt handlers tu move data sewi-transparently
while computing, This solutive would he even more difficult to malntain, partly dus to
differences between various systems, hut mainly becawse the signal mechanisin is not
appropriate for the task. .

While the generic port is kept as simple as possible, PYM can still be optimized
for any particular machine. As facilities like threads hecome wore standardized, we
expect to make use of them.

We assume that sockets are avallable for interprocess commuuication and that each
Lost in a virtual machine group can connect directly to every other Lost using IP
protocols (TCP and UDT). That is, the pvind expects to he abie to send a packet to
another pvind in a single hop. The requirement of full IP connectivity eould presumably
be removed by specifying routes and allowing the pymds to farward messages. Note
that some MPT mackines don't make sockets available on the processing nodes, but

a1

do have them oa the front-eud {where the pvind runs).

10.1. Task Identifiers

PVM uses a 32-Lit integer called a task identifier {TID) to address pvinds, tasks. and
groups of tasks within a virtual iachine. & TID identifies a unique ohiect within its
entire virtual machine. however, TIDs are recycled when no loager ln use.

The TID contains four fields as shown o Cigure 10, It is cucrently partitioned as
indicated. however the sizes of the fields could someday change (possibly dynamically
as a virtual machine is configured). Since the TID is used so heavily, it is designed to
fit iuto the lasgest integer data type availabie on a wide range of machines,

3 2 1
1068687664321 098765432100876543210
+-- ———t e ———t ————————t
| | ! 1 |
e + -— e s + -~ +
S 6N . | B AN . Lo /

Tigure 10: Geuneric Task ID

The fields 5, G and H have weaning glohally. that is. each pyvind of a virtual
machine interprets them the same way. The H field contains a host number relative to
the virteal machine. As it starts up, each pvmd is configured with a unique nonzern
Liost unmber and therefore “owns™ part of the address space of the machine. Host
wumber zero is used, depending on context, to refer either tn the local pvind or to a
“shadow” pymd (called pvmd’), of the master pvmd. The maximum number of hosts
in a virtnal machine is Umited to 27 — 1 (1093). The mapping between Lost nwmbers
and Losts Is koewn to each pyind.

The S field is a listorical leftover. and causes slightly schizoid naming. Messages
are addressed toa pvmd by setting the § bit and the host field, and zetoing the L field.
In the future. this bit should be reclaimed to make the H or L space larger.

Each pvind is allowed to assign incal meaning to the L field (when the H field s set
to its own host number). with the exception that all bits cleared is reserved to mean
the pvind itself. In the generic UNTX poct, L field values are assigned by a counter,
aud the pvind maintains a map between L values and UNIX process [Ds. As with the
wwmber of hosts, the nwmber of tasks per host is limited hy the size of its TID field.
Since the L field is allotted 1% bits. at most 262143 tasks can exist concurrently on a
st

In multipmcessor ports the T field is often subdivided. for example into a partiting
field (P). a node awnber (X) field and a location bit (W) (Tigure 11).

The D field specifies a machine partition (sometimes called a “process type” or
“job™). iu the case where the pvind can manage multiple MPD partitions. The K field
determines a specific cpu node in the partition. The W bit indicates whether a task s

- 42 -

3 2 1
L098766432108BT7T6E432109876643210
e + --—% -=-= t-—m—— +
|] | | |
L ettt L L - B B o +
S G N ________ | S FW NP N | /

Tigure 11: MPT Task 1D

running on an MTT (compute) node o the Lost (service ande) processur, The setting
of the W bit can be determined by the "ps -a™ vutput from the PYM console. Since
the TID vutput by ps is a hexidecinal nwmber. the fifth digit from the right contains
the W bit. The following is a simple state table to determine if the W hit is set tn 0
1

W bit task running on contents of 6th tid digit
o} WPP compute node c,1,4,5,8,9,c,d
1 host/aervice node 2,3,6,7,a,b,e,f

Tor example. if your TID is 60001, then you know that your task is running oo an MPP
compute gode.”

The design of the TID enables the implementation to ineet some of the goals stated
earlier. Tasks can be assigned TIDs by their local pvinds without off-lost communica-
tion. eliminating a hottleneck at an ID server. Messages can be routed to a destination
from anywhere in the system, thanks to the hierarchical waming. Tortability is en-
hanced hecause the L field can be redefined easily. Tinally. space is reserved fur error
codes. When a function can return a vector of TIDs mixed with error codes, it is useful
if the error codes don’t correspond to legal TIDs.

The TID space is divided up as follows:

§ _G_ A Lo
Task identifier o 0 {..maxhost 1. .maxlocal
Pymd identifier 1 Q . .maxhost 0
Local pvmd (from task) 1 0 0 s}
Pwmd’' from master pvmd 1 0 Q a
Multicast address 0 1 1, .maxhost x
Error code 1 1 < small negative number >

Naturally, TIDs aze intended tn be npague to the application and the progeaminer
should not attempt tn predict their values or modify them without using functions
supplied with the programming library, More structured naming (from the applicating
programuming standpoint) can he obtained by wsing a name server library layered on
top of the raw P¥M calls, if the convenience is deemed worth the cost of name looki P

10.2. The PVM Daemon

One pvmd runs on each host of a virtual machine, and the pvinds are configured to
work together. Tvinds owned by (running as) one user do not interact with ones owned
by others. The pvind was designed to run wader a nonprivileged user [D and serve a
single user in order to reduce security risk. and to minimize the impact of one PVM
user on annther.

The pvmd doesn’t do acy computation, rather it se;ves as a message router and
controller. Tt provides a point of contact on each host. both from inside and sutside,
as well as authentication, process control and fault detectinn. Ille pvmds occasionally
ping each other ti verify reachability. and ones that doa’t answer are marked dead.
Pvinds are hopefully more survivable than application cnmponents, and will continue
to run in the eveat of a program crash, to ald in debugging,

The first prmd (started hy hand) is designated the “master™ pvmd. while the others
(started by the master) are called “slaves”. During inost normal nperations, all pvinds
are considered equal. Qnly the master can start new slave pvinds and add them to the
virtual machine configuration. Ttequests to reconfiguce the machine originating oa a
slave host are forwarded to the master. Likewise, only the master can foreibly delete
bosts from the machine. If the master pvind loses contact with a slave. it marks the
slave dead and deletes it from the eonfiguration. If a slave pvind loses contact with the
master, the slave shuts itself down. This algorithm ensures that the virtual machine
can't hecome partitioned aad continue to run as two partial machines. like a worm
cut in hall. Unfortunately, this impacts fault tolerance because the master must never
crash. There is carrently no way for the master to hand off its duty to another pvmd,
s it always remains part of the configuration.

The data structures of primary importance in the pvimd are the host and task
tables, which describe the virtual machine configuration and track tasks runnlng under
the pvind. Attached to these are queues of packets and messages, and “walt contexts”
to hold state information for multitasking in the pvind.

At startup time. a pvind configures itself as either a master or slave, dependiog o
its command line argumments. This is when it creates and binds sockets to talk to tasks
and nther pvmds, opens an error log file. and initializes tables. Tor a master pvmd,
configuration may include reading the hostfile and determining default parameters,
stich as the host name, A slave pvind gets its parameters from the command line and
sends a line of data back ta the starter process, for inclusion in the host table. H the
master pvind is given a file of hosis to be started antomatically, it sends a DM_ADDHOST
message Lo jtself, Thus the slave hosts are brought into the configuration just as though
they bad been added dyuamically. Slave pvind stactup is described in the next seciion.

After configuring itself, the pvind enters 2 loep in function work(). At the core of
the work lonp is a call to select(} that probes all sources of input for the pvmd {local
tasks and the setwork). lncoming packets are received and routed to their destinatioas.
Messages addressed to the pvind are reassembled and passed to nne of the entry points
loclentry(). netentry{) or schadentry().

10.2.1. Pvind Startup

Getting a slave pvind started is a messy task with oo good solutivn. The goal s to get
a pvid process ruaning on the new host, with ecough information {ie. the ideatity of
the master pvind) tolet it be fully configired and added as a peer.

Several diffecent mechanisms are available, depending ou the operating system and
local installation. Naturally, we want to use a method that is widely available, secure,
fast and easy to install. We'd like to avoid having to type passwords all the time. but
don’t want to put them in a file from where they can be stulen. No system meets
all of these criteria. Inetd would give fast. reliable startup, hut woulkd require that
a sysadmin install PYM on eack host to be used. Connecting tu an already-running
pvind or pvind server at a reserved port number presents similar prohlems. Starting
the pvid with an rlogin or telnet “chat” script would allow access even to hosts
with rah services disabled or IP-connected hosts belind firewall machines. and would
require ao spectal privilege to iustall. The main drawback is the effort reguired to
get the chat program and script working reliably, Two widely available systews are
rsh and rexec(). We use both to cover most of the features required. In addition, a
manual startup option allows the user to take the place of a chat program, starting the
pvind manually and typing in the confizuration.

rsh is a privileged program which can be used by the pvmd to run commands on
a forelgn host without a password. provided the destiation host can be made to trust
the source host. This can be dowe either by making it equivaleat (requires a sysadinin)
or by creating a .rhosts file on the destination host. As rshcan he a security risk, it's
use is often discowraged by disabling it or antomatically removing .rhosts files. The
alternative, rexec(), Is a function compiled into the pvind. Unlike rsh. which can’t
take a password. rexec() requires the user to supply nae at run time, either by typing
it in or placing it in a .netrc file (this is a really bad idea).

When the master pvind gets a DH_ADD message, it creates a new host table ent ry
for each requested host. It looks up the [P addresses and sets the aptions to default
settings or copies them from advisery host table entries. The hust deseriptors are kept
in a waitc.add structure attached to a walt eontext. and nut vet added to the Lost
table. Then, it forks a sbadow pvind {pvmd’) to do the dirty work. passing it a list of
hosts and commands to execute.

Auny of several steps in the startup process (for example getting the host IP address.
starting a shell) can block for seconds or minutes. and the master pvind must he able
te respund to other messages during this time. The shadow has host number 0 and
communicates with the master through the normal pyvmd-pemd interface, though it
uever talks to the slave pvinds. Likewise, the normal host failure mechanism is used
to provide fault recovery, The startup wperation has a wait coatext in the master
pviad. [n the eveat the shadow breaks. the master catches a SIGCHLD from it and
calls hostfailentry(). which cleans up.

Pvind’ uses rsh or rexec() (or manual startup) to start a pvimd on each new Lost.
pass it parameters and get a line of configuration information back from if. When
finished. pvind® sends a DM_STARTACK message back to the naster pvind, containing the
configuration lines or error messages. The master parses the results and completes the
host descriptors held in the wait context. Results ace seut back to the ariginator in

13-

a DM_ADDACK message. New hosts successfully started are configured into the machine
usiug the hust table update (DMKTUPD) protocol. The coafiguration dialog between
pvasl” and a new slave is similar 1 the following:

pvmd’ -> alave:

(exec) $PVM_ROOT/11b/pvmd -3 -d8 -nhonk 1 80afcaB6:0f5a 4096 3 80a96c43:0000

slave -> pvad’;
ddpro<2812> arch<ALPHA> ip<80aBEc43:0b31> mtu<4096>

pvad' -> slavae:
ECF

The paraweters of the waster pvind (debug mask, host table index. IP address
and MTU} and slave (host name. host table index and I address) are passed on the
command line. The slave replies with its configuration {prmd-pvmd protocol revision
aumber, bost architectuce, IP address and MTYU). It waits for an EOF from pvmd” and
disconuects frum the pipe. putting itself iu probationary ruaniog status (runstate =
PVMDSTARTUP). If it ceceives the rest of jts configuration information from the master
prmd witkin a timeout period {DDBAILTIME. by default five minutes) it comes up to
normal ruoning status. Otherwise. it assumes there is some problem with the master
and exits.

If a special task, called a “hoster™, has registered with the master pvind prior to
receipt of the DM_ADD request, the normal startup systemn is not used. Instead of forking
the pvind’, a SM_STHOST message is sent to the “hoster™ task. It must start the remote
pracesses as described above (using any mechanism it wants). pass parameters and
rollect replies. thew sead a SM_STHOSTACK message back to the pvmd. So. the method
of starting slave pvmds is dynamically replaceable. with a hoster that does not have to
understand the configuration protocel. If the hoster task fails during an add operation,
the pvmd uses the wait context to recover. It assumes that pone of the PCesses Were
started and sewds a DMADDACK message indicating a system erzor.

Note: Recent experience suggests that it would be cleaner to manage the shadow
pvad through the task interface instead of the hust interface. This would more natu-
radly allow multiple starters to run at oace {the parallel startup is currently implemented
explicitly in a single pvind’ process).

10.2.2. Host Table

A host table describes the configuration of a virtual machine. Host tables are usually
syuchronized across all pvinds in a virtnal machine, although they may not be in
agreement at all times. In pacrticular. hosts are deteted by a pvmd from its own host
table whenever it deterinines them to be unreachable (by timing out while trying to
conmunicate). In other words, the machine configuration may decay over time as
Liosts crask or their networks become disconnected. If a pvind koows it is heing killed
or panics. it may be able to ootify its peers, so they know it is down without haviag
to walt fur a timeout.

Pvmd 1 (masker) Pl \shadowy

Pumd } (new)

dm_addhost) _ |
starl_slaves(h

slave_config(y
B g . :

dra_htepd;)

S dm_htupdack() _ .

drn_hte omnuy()

drn_sddhostack(y

Finiched

Flgure 12: Addhost Timelige

The host tables of slave pvinds are mudified an command from the master pvind
using DM_HTUPD. DM_HTCOMMIT and DM_HTDEL messages. The delete operation is very
simple — on receiving a DH_HTDEL message. a pvind calls the hostfailentry() functiug
for eack host listed in the message, as though the deleted pvinds have crashed. The
add operation is done more carefully. with a three-phase commit. in order tn guarantee
global availability of the pew losts synehronously witl completion of the add-host
request. A task calls pvm_addhost (). which sends a request tu the task’s pvind. wlhich
in ture sends a DM_ADD message o the master pvimd (possibly itself). The master
pvind uses its shadow process ta start aad configure the new slaves. then broadeasts
a DMHTUPD wessage. Upon receiviag this lwessage. each slave knows the identity of
the new pvind. and the uew pymd knows the identities of the previously existing ones.
The master waits for an acknowledging bM_HTUEDACK message from every slave, theq
sends a DM_ADDACK reply to the origival request, giving the new Lost ID. Tinaily, ar
HT.CONMIT inessage is broadcast. which commands the slaves to flush the old host table.
When several hosts are added at once. the wirk is doue in parallel, and the host table
updated all at once, allowiag the whole aperation to take ouly sightly more time thag
for a single hnst,)

Host descriptors (hostd) can be shared by multiple host tables, that is. each Lostd
has a refcount of how many Lost tables include it. As the configuration of the machine
changes, the descriptor for each host (except ones added and deleted of coirse) remains
the same.

Host tables serve multiple uses: They describe the configusation of the machine and
hold packet queues and message buffers. They allow the pvind to manpipulate sets of

hosts. for example when picking candidate hosts on which to spawn a task, or updating
the virtual maclhiae configuration. Also. the advisory host file supplied to the master
pvmd is parsed and stored in a host table.

10.2.3. Task Tahle

Each pvind maintaius a list of all tasks under jts management, Every task. regardless
of state, is a wember of a threaded list. sorted by t_tid {task ID}. Most tasks are also
kept in a second list. sorted by t_pid. In the generic port, t_pid holds the process ID
of the task. The head of both lists is a dwniny task descripior, pointed to by glabal
locltasks. Since the pvind often peeds to search for a task by TID or PID. it could
he maore efficient to maintaln these two lists as self-halancing trees.

10.2.4. Wait Contexts

Wait contexts {waltes) are used by the prmd to hold state information whea a thread
of uperation wust be iaterrupted. The pvind is oot truly multi-threaded. but can
perform operations concurrently. Tor example, when a pvind gets a syscall from a task,
it sometimes has to interact with another pvind. Since it serves as a inessage router,
it can’t block while waiting for the foreign pyvmd to respond. Instead. it saves any
infrirmation specific to the syscall in a waitc and returns immediately to the work()
lovp. When the reply arrives, the pvmd uses the information stashed in the waite
to complete the syscall and reply to the task. Waitcs are numbered serialy. and tle
number is sent 1 the message header alung with the request and returned with the
reply.

Tur certain operations, the TIDs involved and the parameter kind are the only
information saved. The waitc includes a few extra fields to haudle most of the remalaing
cases. and a puinter, wa_spec. which can poiat to a block of extra data for special cases.
These are the spawn and host startup operatioes, in which wa_spec points to a struct
waltc_apawn or struct waitc_add.

Soune operations reguire more than one phase of waiting — this can be in series
ot parallel. or even nested (if the fureign pvind has to make another request). In the
parallel case, a separate waitc is created for each foreign host. The individual waites
are “peered” together to fndicate they pertain to the same operation. Their wa_peer
and wa_rpeer fields are linked together to form a list (with oo sentizel pode). I a
walte has 0o peers, its peer links polat to itself, puttiag it in a group of one. Tsaally.
all waites in a peer group share puinters to any common data, for example a wa_spec
bluck. All existing multi-host parallel operations are coajuactions; a peer group of
waites s finished waitiog when every walte in the group Is finished. As replies come
hack, finished waitcs are collapsed out of the list and deleted. Tinally. when the finished
waite s the only one in its group. the operation is complete.

Wlen a foreign host fails or a task exits, the pvind searches wait1list for any waites
blocked on its TID. These are terminated. with differing results depending on the kind
of wait. Waltes blocking for the dead Lost or task are not deleted immediately. Instead.
their va_tid flelds are zerned to keep the wait ID active.

- A8 -

10.2.5. Fault Detection and Recovery

T'rom the prmd’s polat of view, fault tolerance means that it can detect when a foreign
pvind is down and recover without crashing. If the foreign pvind was the master,
hawever, it has to shut down. Otherwise, the pymd itself doesn’t care about host
failures, except that it must complete any operatious waiting on the dead hosts, Trom
the task's point of view. fault detection means that any operation involving a down
st will return an error condition. instead of simply hanging forever. It is left 1o the
application programmer to use this capability wisely.

Tault detection originates in the pvmd-pvmd protecol. when a packet goes up-
acknowledged for three minutes. Function hostfailentry() is called. whick scans
waitlist and terminates apy waits involving the failed host. (See Pvind-Pyvmd Comn-
muaication section for details)

10.3. The Programming Library

The libpvm library is a collection of functions that allow a task to interface with the
pvmd and other tasks. It contains functions for packing (composing) and vapacking
messages, as well as ones that perforn PYM “syscalls™. using the message functinus
to send service requests to the pvind and receive replies. It is intenticnally kept as
simple and small as possible. Since it shares address space with unkuown, poesibly
buggy, code, it can be easily brokea or subverted. Mirimal sanity-checking of syscall
parameters is performed. leaving further authentication to the prmd.

The programning library is written in C and se paturally supports € and C44
applications. The Tortran library. 1ibfpvm3.a. is also written in € and is a set of
“wrapper” functions that conform e the Fortran calling conventions and call the C
library functions, The Tortran/C linking requirements are portably met by preprocess-
ing the C sowrce code for the Tortran library with ma before compilativg.

The tap level of the Libpvm Lbrary. including most of the programming interfare
functioas. is weitter in a machinefoperating system-independent style. The bottom
level is kept separate and can be madified or replaced with a aew machine-specific hue
when porting PVM to a new OS or MPP.

Ou the first call to (most) any ibpvin function, that function calls pvmbeatask() to
initialize the Library state and coanect the task to its pvind. The details of connecting
are slightly different between anonymous tasks (not spawned by the pvind) and spawned
tasks.

So that anonymous tasks can find it, the pvind publishes the address of the socket
whete it listens for connections in /tmp/pvmd. <uid>, where #id is the numeric user ID
uader which the pvind runs. This file cuntains a line such as “7£000001:06£7". As
a shorteut, spawned tasks inherit enviroument variable PYMSOCK. containing the same
informating.

A spawped task needs a second bit of data te reconnect suceessfully, namely its
expected process [T When a task is spawned by the pvmd, a task descri ptor (described
earlier) Is created for during the ceee phase. The deseriptor is necessary, for example.
to stash any messages that acrive for the task before it's fully reconnected and ready to
recejve them. Diring reconnection. the task identifies itself to the pvmd by its PID. If

249 -

the task is always the child of the pvind, (i.e. the process czce'd by it) then it conld use
its PID as returned by getpid{) to ideatify itself. To allow for intervening processes,
such as dehuggers, the pvmd passes an envimament variable, PYMEPID. to the task,
which uses that value in preference 1o its real PID. The task also passes its real PID
so it can be controlied by the pvmd via signals,

S0, pvmbeatask() creates 3 TCP socket and does a proper connection dance with
the pvmd, They must each prove their identity 1o the other, to prevent a different nser
from spoufing the system. The pvind and task each create a file in /tmp owned and
writahle ouly by their UID. They attempt to write in each others’ files then check their
ow files for change. If successful. have proved their idestities, Note this authentication
is ouly as stroug as the filesystem and the authesity of root on each machine.

A protocol serial cumber (TDPROTOCOL. in tdpro.h) is compared whenever a task
counects to its pyind or another task. This nummber should be incremented whegever a
change iu the protocol makes it incompatibie with the previous version.

Discoanecting is much simpler. Tt can be done forcibly by a close from either end.
for example by exiting the task process. The function pym_sxit() performs a clean

shutdown. such that the process can be connected again later (it would get a different
TID).

10.4. Commnnication

We chose to hase PVM commuaication vn TCP and UDP Internet protocels, While
other. more appropriate. protocols exist. they aren't as generally available, which would
limit portability of the system. Another concessinn is that the PYM protocol drivers run
as nurmal processes (pymd and tasks). without modifications to the operating system.
Naturallv. the message-passing performance is degraded somewhat by this strategy.
It's expensive to read timers and manage meinory from user space, while extra context
switches and copy uperatinns are incurred. Performaace would be better if the code was
integrated intis the kernel, or alternatively, if the aetwork interface was made directly
available tn processes. hypassing the kerpel. However, when runnieg on Fthernet. the
eifects of this vverliead seem to be winimal. Performance is determined mare by the
quality of the network code in the kernel. Wlen runuing on faster networks, direct
task-task routing impeoves performance by minimizing the number of heps.

This section explains where and how TCP and UDP are employed and describes
the PVM protocals built oa them. There are three conpections tr consider: Betwesn
pvinds, hetween a pvind and its tasks, and between tasks.

10.4.1. Pvind-Pvind Commuunication

PVM dapmons communicate with vne another through UDP sockets. As UDP s an
unreliable delivery service whick can lose. duplicate or reorder packets. we need an
acknowledgement and retry imechanisimn. UDP also imposes a limit on the teugth of a
packet, which requires PYM to fragmeat long messages. Using UDD we built a reliable
sequenced packet delivery service, and on top of that a message layer, providing a
connection similar to a TCP stream. hut with record bhounds.,

We cousidered using TCT. but three factors make it inappropriate. Tirst. the

- 30 -

virtual machine must be able to scale to huadreds of hosts. Each open TCD connectiog
consumes a file descriptor in the pvmd, and some operating systems limit the number
of open files to as few as 32. A single UDD socket can send tu and receive from any
aumber of remote UDP sockets. Next, a virtual machine composed of N Losts would
peed up to N(N - 1}/2 connections, which would be expensive 1o establish. Since the
identity of every host in the virtual machine is known, our protocol can be initialized
to the correct state without a connect phase. Tinally, the pvmd-pvind packet service
must be able to detect when foreign pvinds or hosts have crashed or the aetwork has
gone down. To accomplish this, we peed to set timeouts in the prostocol layver. While
we might have used the TCD keepalive option, we don't have adequate control over the
idle time between keepalives and timeout parameters.

All the parameters and default values for pvmd-pvmd commenication are defined
in file ddpro.h. Also defined there age the message codes for the various pvimd entry
points (DMXXX). A serial nunber (DDPROTCCOL)} is checked whenever a pvind is added
to the virtual machine, [t must be incremented whenever a change is made to the
protocol that makes it jncompatible with previous versions.

The headers for packets and messages are shown i Figures 13 and 11. Multi-hyte
values are sent in “network byte order”, that is. most significant byte first,

Byte 0 1 z 3

+- et T e — e +
| Destination TID |
+- ————t T e o T— T T ———— +
| Source TID |
+- E— 4o mmmo + ————t
| Sequence Number | Ack Number |
+- + -- + pmmmm e +
I F 1 [AIFIDIELS !
I F 1 kctxlalolol Unused i
[11 KINITIR M]
= -—-- + ———— + -— + ———4
/ /

Tigure 13: Pvmd-pymd Packet Header

The source and destination fields hold the TIDs of the true source and final desti
aation of packet, regardless of the route it takes.

Sequence and acknowledgement numbers start at 1 and increment to 63333, then
wrap around to zero. They are initialized in the host table for new hosts so that the
conuection duesn't need to be explicitly established hetween pvinds.

The fags bits ace defined as follows:

SOM, EOM - Mark the first and last fragments { packets) of & message. Intervenlng
fragments have hoth bits cleared. These are used by tasks and pvind to detect message
boundaries. When the pvmd refragments a packet in order to send it vver a network
with a small MTU, it adjusts the SOM and EOM bits as necessary.

DAT - Means that data is contained in the packet and the sequence awmnber js

Byte O L 2 3

L pmmmm e === R e +
| Kessage Code |
ommmmmm e m—— e m—————= +—-- -1 -t
| Message Encoding -or- HRemote Wait Context Number |
po—————-- = + -1+ ———
/ /

Tigure 11: Message Header

valid. The packet, even if zero-length. should be delivered.

ACK - Means that the acknowledgement number field is valid. This bit may he
combined with the DAT bit to piggyback an acknowledgement on a data packet. Cur-
rently, however, the pvind generates an acknowledgement packet for each data packet
as soen as it is received. o order to get more accurate round-trip timing data.

[IN - Signals that the pvind is closing down the connection. A packet with the
TIN bit set {and DAT cleared) signals the first phase of an orderly shutdown. When
an acknowledgement arrives (ACK bit and ack number matching the sequence munher
from the TIN packet). a final packet is sent with both TIN and ACK bits set. {f the
pvid panics. (fur example on a trapped seginent violation) it tries to sead a packet
with T'IN and ACK bits set tn every peer hefore it exits,

The state vf a connection between pvids is kept in the host table entry {(struct
hostd). The state of a packet s kept in its struct pkt. Packets waiting to be sent to
a hnst are queued in TITO hd_txq. Packets may originate in local tasks or the pvind
itself, and are appended to this quene hy the routing code. Ko receive queues are
used, because incoming packets are passed immediately through to other send queues
or reassembled into messages (ur discarded). When the message is fully reassembled.
the pvimd passes it to function netentry(}, which dispatches it to the appropriate
entry point. Tigure 16 shows a diagram of packet routing inside the pvind.

To improve perforinance over high-latency networks, the protocol allows multiple
awtstanding packets na a connection. se two more quewes are required. hd_opq {and
global opq) hinld lsts of wnacknowledged packets. hd_rxq holds packets received out of
sequence until they can be accented.

When it arrives at the destination pvind, each packet generates an acknowledge-
ment packet back tn the sender. The difference in time hetween sending a packet
and getting the ackarwledgement back is used to estimate the rownd-trip time 1o
the foreign host. Each update is filtered into the estimate according to formula:
hdortf, = 073+ bdorit,) + 023+ rit. Whea the acknowledgement for a packet comes
hack, it is removed from hd_opg and discarded. Each unacknowledged packet has a
retry timer and count. and is resent wntil it is ackaowledged by the foreign prmd. The
timer starts at three times the estimated rownd-irip time, and doubles for each retry
wntil it reaches 18 seconds. The cound-trip time estimate is limited to nine seconds and
the backoff is bounded in order 4o allow at least 10 packets to be sent to a host hefore
giving up. After three minutes of resendiog with no acknowledgement, a packets gets

BT

expired.
If a packet expires due to timeout. the foreign host or pvmd is assumed to be down
or unreachable, and the local pvmd gives up on it (forever), calling hostfailentry()
All the parameters and default values meationed above are deficed in file ddpre.h.

10.4.2. Pvind-Task Communication

A task talks to its pvmd over a TCT connection. UDP mnight seem e appropriate,
as it is already a packet delivery service, whereas TCT s a stream protocol, requiring
us to recreate packet houndaries. Unfortunately UDDP ise't reliable; it can lnse packets
even within a host. Since an wureliable delivery system requises a retry mechaniam
(with timers) at hoth ends, and because one desigu agswnpticm 15 that tasks can't
he interrupted while computing to perform [0, we're furced to use TCDP. Kiste: We
ooginally used TNTX-demain datagrams {analogous to UDD but used within a single
host) for the pvind-task connectinn. Wkile this appeared to he reliable, it depends o
the operating svstem implementation. More importantly, this protoenl isn't as widely
availahle as TCD.

10.4.3. Pvind-Task Protocol

The packet delivery system between a pvind and task is wuch simpler than between
two pvinds because TCP offers reliable delivery. The pvind and task malotain a TIFQ
of packets destined for each other, and switch hetween reading and writing on the TCP
connection.

The main drawback with wsing TCP (as oppused to UDP) foe the pyind-task link is
that the number of system calls needed to transfer a packet Getween a task and prind
increases. Over UDD, a single sendto() and recvfrom() are required to trawsfer a
packet. Since TCT provides nu record marks (to distisguish back-to-back packets from
one asother}, we have to send the wverall packet length along with the Lheader. So
a packet can still be seat by a single write() call hut. when done naively must he
recelved by two read () calls, the first to get the header and the second 1o get the data.

When there is a lot of traffic on the pvind-task connection. a simple sptimization
can reduce the average number of read calls back tor abuui one per packet. [, when
reading the packet budy, the requested length of the read is increased by the size of
a packet header, it may succeed in getting both the hody of corrent packet and and
Leader of the next packet at once. We have the lieader for the next packet for free
and can read the body with a single call tn 7ead. so the average number of calls is
reduced. Note: This was once implemented, hut was removed while updating the code
and hasn't yet heea relntroduced.

The packet beader is shown in Tigure 13, Ko sequence numbers are needed. and
the ouly flags are SOM and EQOM. which are used as in the pvind-pvind protocol,

10.4.4. Databufs

The pvmd and libpym both peed to manage large amounts of dynamic data. waloly
fragments of message text. vften in multiple copies. I order to avold copying. data is

- a3

Byte 0 L 2 3

+-- e -4 + +
| Destination TID |
D gmmmm e B 4o

| Source TID

oo -———t pomm + --

| Packet Length

$mmmmen -+ - ——————- e

[O O O - -1

11111 koial Unuased

[R AT T

oo mm e oo e Am e + ——— +
/ /

Tigure 15: Pvind-Task Packet Header

refeounted. allecating a few extra bytes for an integer at the head of the data. A pointer
to the data itself is passed around, and the refeount maintenaace routives subtract from
this pointer to access the refeount or free the block, When the refeount of a databuf is
decremented to zer, the block is freed.

10.4.5. Message Fragment Descriptors

PVM features dynamic-length inessages. which means that a inessage can he composed
without declaring its maximum length ahead of time. The pack functions allocate
wemory in steps, using databufs to store the data, and frag descriptors to chain the
databufs together. Tragmeats are geaerally allocated with length equal to the largest
LDP packet sendable by the pvind. Space is reserved at the beginning of eack fragment
buffer to allow writing message and packet headers in place hefore seading. The struct
frag used to keep fragments is defined in frag.h:

atruct frag {
struct frag *fr_link; // chain or 0
struct frag *fr_rlink;

char *fr_buf; // buffer or zerc if master frag
char #fr_dat; // data
int fr_max; // size of buffer
int fr_len; // length of data
atruct
int ret : 16; // refceunt (of chain if master else of frag)
int dab : 1; // buffer is a databuf
int apr : 1, // sparae data (csz, 1lnc valid)
} fr_u;
int fr_csz: // chunk size
int fr_lnc; // lead to next chunk

}

A frag holds a poiuter (fr_dat) to a strip of data in memory and its length (fr_len).

254 -

It also keeps a pointer (fr_buf) to the allocated buffer containing the strip, and the
length of the whole buffer (fromax); these ace used to reserve space to prepend or
append data. A frag has forward and backward link pointers so it can be chained into
a list; this iz how a message is stored.

Bach frag keeps a count of active references to it. When the refeount of a frag
is decremented to zero. the frag descriptor is freed (and the waderlying data refcount
decremented). Iu the case where a frag descriptor is the head of a list. its cefcouat field
applies to the entire list. When it reaches zern, every frag in the list s freed.

10.4.6. Packet Buffers

Packet descriptors are used to track message fragments inside the pvme. Their struc-
ture is defined as follows:

struct pko {

struct pht =pk_link; /7 queue or 0

struct pkt *pk_rlink;

struct pkt *pk_tlink; // scheduling queue or 0
struct pkt *pk_trlink;

int pk_src; // source tid

int px_dast; // dest tid

int pk_flag; // tlags

char #pk_buf; // buftfer ¢r zerc if master pkt
int pk_max; // size of buffer

¢har *pk_dat; // data

int pk_len; // length of data

struct hostd *pk_hoatd; // receiving host

int pk_seq; // seq num

int pk_ack; // ack num

struct timeval px_rtv; // time to retry

struct timeval pk_rta; // next-retry accumulator

struct timeval pk_rto;
struct timaval pk_at;
int pk_nrt;

total time spent on pkt
time pkt firat sent
retry count

}

The fields pk-buf, pkmax, pk.dat and pklen are used in the same ways as the
similarly pamed fields of a frag. The additional fields o track sparse data are not
needed.

Unlike a frag, a packet can only be referenced in vne place. su it doesn't have a
refcount. The waderlylog data may be multiply referenced, though. In addition to
data, pkts contain several fields necessary for operation of the pvmd-pvind protocol.
The pvmd-task protocol is much simpler. so the timer and sequence mumher fields are
unused in pkts queued for tasks.

In function netinput() in the pvmd, packets are received directly into a packet
bufler long enough to hold the largest packet the pvmd can receive. To route a packet,
the pvmd simply chains it onto the end of the send queue fir its destination. If the
packet has multiple destinations (see multicasting section), the packet descriptor is

replicated . counting extra references on the underlying databuf. After the last copy of
the packet is sent, the databuf is freed.

In soume cases, the pvmd can receive a packet {from a task) that is too long for the
netwoerk interface of the destination host, or even the Incal pvmd. It refragments the
packet hy replicating the packet descriptor {similar to above). The pk_dat and pklen
fields of the descriptors are adjusted to cover successive chunks of the criginal packet.
with each chunk small enough to send. At send time. in netoutput (). the pvind saves
under where it writes the packet header, seads the packet, then cestores the data.

10.4.7. Message Buffers

[n compasison to libpym. the message packing functions in the pvmd are very simple.
The message encoders/decnders handle unly jntegers and strings. Integers nccupy four
byies each with bytes in petwork order (bits 31,24 followed by bits 23..16. ...). Byte
strings are packed as an integer length (including the terminating null if ASCIT strings).
followed by the bytes and zero to three bytes of zero to round the total length to a
multiple of four. In Bbpvin. the *foo” encoder vector is usad when talking to the pvind.
This encoding suffices for the needs of the pvmd, which pever needs to pass around
floating-point wwmbers or loag/short integers.

[the pvmd as in libpvm. a message is stored in frag buffers, and can grow dynam-
ically as more data Is packed into it. The struciure used to hold a message js:

struct mesg {

struct mesg *m_link; // chain or 0

struct meag *m_rlink;

int m_ref; // refcount

int m_len; // total length

int m_dst; // dst addr

int m_arc; /F arc addr

int m_enc; // data enceding {(for pvmd-task}
int m_cod; // type cede

int m_wid; // wait serlal (for pvmd-pvmd)
int m_flag;

struct frag sm_frag; // master frag or 0 if we're master mesg
atruct frag #m_cfrag; // keeps unpack state

int m_cpos; // kaepa unpack state

};

10.4.8. Messages in the Pvind

Functivns pkint() and pketr() append integers and null-terminated strings, respec-
tively. onto a message. The corresponding unpacking functions are upkint () and
upkstr(}. Unsigoed integers are packed as signed oues, but are unpacked usieg
upkuint{). Another function, upkstralloc(). dynamically allocates space for the
string it nupacks. All these functions use lower-level functions bytepk() and byteupk(},
to write and read raw bytes tu and from messages.

Messages are sent by calling functivn sendmessage(). which routes the nessage by
its destinatiun address. If for a remote destination. message fragments are attached

- 36 -

to packets and delivered by the packet routing layer. If the message Is addressed
to the pvind itself, sendmessage() simply passes the whole message descriptor to
netentry{). the network message entry point. avoiding the overhead of the packet
layer. This loupback interface js used often by the pvmd. T example, if it schedules a
request and chooses itself as the target., it doesa’t have to treat the message differently.
It sends the message as usual and waits for a reply, which comes immediately. During
a complex vperation, netentry() may be reeutered several times as the pvmnd sends
itself messages. Eventually the stack is uowound and a reply goes to the originator.

When it packetizes a mmessage, sendmessage() prepends a message header (shown
in Tigure 14) tu the first fragment hefore handiag it off. The pvind and lihpvin use the
same header for messages. Code contains an integer tag (message type). The second
field Las different interpretations to the pvind and fihpvm. Pvmds use the secoud field
to pass the wait [D (if any, zero if pone) associated with the message {operation).
The usage of wait IDs was described earlier. Libpvimn uses the second field to pass the
encoding style of the message. as it can pack messages in a punber of formats. When
sending to another pvmd, sendmessage() sets the second field to mwid. and when
seading to a task, sets it te m.cod (1. or “foo”).

Incoming messages are reassembled from packets by loclinpkt() if from a task
or by netinpkt() if from another pvmd. Onpce reassembled. the appropriate entry
point is called (loclentry(), netentry() or schedentry()). Using the tag in the
message header. these functions multiplex control to oue of the dvteae () tmrrre() or
sn_rza() entry polats i the tag has a legal value, stherwise the message Is discarded.
Each of the entry puints performs a specific function i the pvmd. In general it nopacks
parameters froin the message body. takes some activn (or looks up some data). and
generates a response message.

Pvinds take almost a0 autonowmous action, rather syscalls initlated by tasks are
what cause things to happea. The only functions that pvmds do automatically are to
ping other pvmds to check vetwork health and delete down hosts from the machive
configuration.

A graph of packet and message routing inside the pyvind is shown in Tigure 16.

10.4.9, Message Encoders

To allow the PVM programmer to manage message buffers, fur example to save, recall
or get information about them, they are labeled with integer message [Ds (MIDs). Each
message buffer has a unique MID, which is its index in the message lieap, allowing it to
be located guickly. When a message buffer is freed, its MID is recycled. The message
Leap starts out small and is extended as it runs out of free MIDs.)

Libpvin provides a set of functions for packing typed data into messages and re-
covering it at the other end. Any primitive data type can he packed into a mmessage.
in one of several encoding formats. Each message buffer Lholds a vector of fuactions
for eacoding/decoding all the primitive types (struct encvec), initlalized when the
huffer is created. So. for example. to pack a long integer the generic pack function
pvmpklong() calls (ub.codef->enclong) () of the current pack huffer.

There are currently five sets of encodecs (and decnders) defined. The encoder/decoder

sendmessage () = mesg_to_task() \

- \
-~
A
. pkt_to_host () _Av-...... hd_txq

7 \
\

> loclentry ()

"':."_?__loclinpkt{l " o e e e e L _txg
oy

-.._-5 \\

Ny, o
locllinpue ()= 7y * schentry()

TET LN () = e e ol o npKE (

netentry()

work{}

e e o il Packet
bd_txg = netautput (] i Message
— Function call

t_tuge————= | oclcutput(]
Iigure 1G: Packet and Message Routing

vector used in a buffer is determined by the format parameter passed to pymmkbuf ()
when creating a new message. and by the encoding field of the message header when
receiving a message. The two most commonly used ones pack data into “raw"” (host
uative} and “default™ (XDR) formats. “Inplace” encoders pack descriptoss of the data
instead of the data itself. The data is left in place until the imessage is actually sent.
There are nojnplace decoders; these entries call a functioa that always returns an error.
“Ton™ encoders can pack only integers and strings. and must be used when composiog a
message for the prud. Tinally, “alien™ decoders are installed when a received message
can't he unpacked because its format doesn’t match any of the decoders available in
the task. This allows the message to be held or forwarded, but any attempt to read
data from it will result in an error

Oue drawhack to using encnder vectors is that, since they “touch™ every function for
every format. the linker must include all the functions out of libpvm in every executable,
even if they're ant used.

10.4.10. Packet Handling Functions

Tour functions handle all packet traffic into and out of Libpvm.
Mroute() is called by higher-level functious such as pvm_send() and pvm_recv() to
send and receive messages, It establishes any necessary routes hefore calling mxfer().
Mxfer() polls for messages, possibly blocking until one is received or until a.specified
timeout. It calls meinput{) to copy fragments into the task and assemble them into
wessages. Tn the generic version of PYM. mxfer(} wses select(} to poll all roates

.58 -

{sockets) in order to find those ready for input or output,
Pymmctl () is called by mxinput() whenever a control message is received. Control
messages are covered 1o the next section.

10.4.11. Control Messages

Control messages are sent like regular messages to a task, but have tags in a reserved
space {(hetween TC_FIRST and TC_LAST). When the task dawnlvads a control message.
instead of queuetng it for ceceipt, it passes the message to the pvmmctl() fuaction,
and then discards it. Like loclentry() in the pvind. pvmmct1(} is an sntry point in
the task. causing it 1o take some action. The main difference is that coateol messages
can't always he used to get the task’s attention, since it must be in mxfer (). sending
or receiving in order to get them.

The following control nessage tags are defined, The first three are used by the
direct routing mechanism which is discussed in the next sectiva. In the future control
wmessages may be used to do things such as set debugging and tracing masks ia the task

as it ruos.
Tag Meaning

TC_CCNREQ Connection request
TC_CONACK Connection ack
TC_TASKEXIT Task exited/doesn’t exist
TC¢_NOOP Do nothing

TC_OUTPUT Claim child stdout data

10.4.12. Message Direct Routing

Direct routing allnws ue task to send messages to another through s TCP liak. avoidisg
the overhead of copying them through the pvinds, This mechanism is implemented
entirely in libpvm, by taking advantage of the nntify and contcol message facilities.

By default. any message seat to another task is ruuted to the pymd. which forwards
it to the destination. If direct routing is enabled (prmrowtcopt = Pem RouteDireet)
when a message (addressed to a task) is passed to mrouta(). it atiempts to create a
direct route if vae doesn’t already exist. The route may be granted nr refused by the
destination task, or fail (if the destination doesn’t exist). The message and route {or
default route) are thea passed to mxfer().

Libpvmn maictains a protocol cantrol block (struct ttpeb) for each active or denied
counection, in list tt1ist. To request a connection. mroute{) makes a new ttpch and
creates and binds asocket. It seads a TC.CONREQ control message to the destination
via the default route. At the same time, it seads a TM XOTIT'Y message to the pvimnd.
to he aotified if the destination task exits, with closure (message tag) TC_TASKEXIT.
Ther it puts the ttpch in TTCONWAIT state, and waits until the state of the ttpch
changes to something other thas TTCONWAIT, calling mxfer() ia blocking mode
repeatedly to receive messages.

When the destination task eaters mxfer(), for example to receive a message, it gets
the TC.CONREQ message. I its routing policy {(pemrouteopt! = PrmDont Route)
and libpvm implementatio allow a direct connection, and it has resources available,

230 -

and the protocol vession (TDPROTQCOL) in the request matches its own, it grants
the request. It makes a ttpch with state TTGREKWAIT, creates and binds a socket and
listens on it, then replies with a TC.CONACK message. If the destination denies the
connection, it creates a ttpch with state TTDENY and nacks with a TC.CONACK
message. The originator recelves the TC.CONACK message. and either opens the
conpection (state = TTOPEN) or marks the route denied {state = TTDENY).
Tinally, mroute{) passes the original message to mxfer(). whiclk sends it. Denisd
connections must be cached in order to prevent repeated aegotiation.

If the destination doesn't exist, the TC_.CONACK message never arrives hecause the
TC.CONREQ message is silently dropped by the pvinds. However, the TC_TASKEXIT
inessage geaerated by the notify systemn acrives in its place. and the ttpch state is set
to TTHENY.

This connect scheme alse works if both ends try to establish a coannection at
the sawe tine. They both eater TTCONWAIT. and whea they receive each others’
TC.CONREQ wmessages, they go directly tn the TTOPEN state. The state diagram
for a conuection Is shown in Cigure 17.

{ne PCA) receive CONREQ
i CBNRES e et et
- . =0

pos1 TaskExit notify “ Lstea)
CONWAIT mroute{) GRNWAIT
have tequesied cleans up have granted
expect ack or taust aceept() when other
croesed pequest connocts

receive
CONACK(ACK)
Foeive ad X socket connects,
CONACK(NACK) connect() o !
DENY
<onnection denied, OPE‘J
do not try again link is up
read EOF on sock,
bad wrile,
DEAD receive TASKEXIT
waitng Lo free
PCH structure

Tigure 17: Task-Task Covpection State Diagram

10.4.13. Multicasting

Libpvin provides a function, pymmcast (). that sends a message to maltiple destinations
simultaneously, hopefully in less time than several calls to pym_send{). The cucrent
implementation only routes multicast messages through the pvmds and uses a N
fanout to simplify the fault-tolerance issues. The problem is to ensure that failure of a
host doesn’t cause the loss of any messages (other than unes to that host). The packet
routing layer of the pvmd cooperates with the libpvim to multicast a message.

To form a multicast address TID (or GID. the G hit is set {refer to Tigure 10}.
Each pvmd owas part of the GID-space. with the H field set tu its hnst index {as with
TIDs). The L field is assigned by a counter that is incremented for each multicast.
S, a new multicast address is used for each message. then recycled. The prmd uses a
struct mca to keep a record of active multicasts.

To initiate a multicast, the task sends a TM MCA message to its pvid. containing
alist of all recipient tids. In tmomea (). the pvmd creates a new multicast descriptor and
GID. [t sorts them. removes bogus ones and duplicates and caches the List of add resses
in the mca. Next, to each destipation pvind in the multicast list (oues with destination
tasks), it sends a DM_MCA message containing the destinations oa that host. Uinally.
the GID is sect back to the task in the TM MCA reply message.

The task now sends the nulticast message to the pvoud. addressed ti the multicast
address. As each packet arrives at the pvmd, the roating layer replicates it vnce for
each local destination {tasks on the same host), and ouce for each foreign pvmd. When
a wnulticast packet arrives at a destination pvind. it is again replicated and delivered
te each destinatico task. The pvmd-pvind communication preserves packet order, so
the multicast address and data packets arrive in order at each destination.

As it forwards multicast packets, each pvind eavesdrops on the Leader flags. When
it sees a packet with bit EOM set. the pvmd koows it has reached the end of the
multicast message, and flushes the mea.

10.5. Environment Variables

Experience seems to indicate that inhesited environment {UNIN enviren)is useful to
an application. Tor example, environment variables can be wsed to distinguish a group
of related tasks or set debugging variables.

PYM makes increasing use of environment. and will prabably eventually support it
even o1 nachines where the concept is not native. For anw, it allows a task 1o export
any part of environ tn tasks spawned hy it. Setting variable PYM_EXPORT to the names
of other variables causes them to be exported through spawn. Tur example, setting:

PVM_EXPORT=DISPLAY:SHELL

exports the variables DISPLAY and SHELL to children tasks (and PYM_EXPORT ton).

14.6. Standard Input and Output

Bach task, except for anonymous ones {not started by spawn) inherits a stdowd sink
from its parent. Any vutput generated by the task is sest to this device. packed into
PVM messages. The sink is a < TID. code > pair; messages ate sent to the TID with

S61 -

tag equal t the specified code. The tag helps the message sink task select messages to
receive and identify the source (siace it may Lave no prior koowledge of the task from
which the message originates).

OQutput messages for a task come from its pvind. since it reads the pipe coanectsd
to the task’s stdout. If the autput TID is set to zere (the default for a task with on
parent]. the essages go to the master pvmd. where they are written oo its error log.

Children spawned by a task inherit its outpat sink. Before the spawl, the parent
can use pvm_setopt to alter the output TID or codde. This doesn't affect where the
output uf the parent task itself gnes. A task may set output-TID to ooe of three things:
The value lnherited from its parent, its own TID or zern. [t can set output-code ouly
if outpatTID is set to its swu FTID. This means that sutput can't he assigned to an
arhitrary task. It's not clear this restriction is a good one.

Fiour types of messages are sent to an outpnt sink. The message body formats for
each type ace:

Spawn:

(code) { // task has been spawned
int tid, // task id
inv -1, // signals spawn
int ptid // TID of parent

¥

Begin:

(code) { // 1irst output from tasx
int tid, // task id
int -2, // signals task creation
int ptid // TID of parent

}

Qutput:

(code} { // output from a task
int tid, // task id
int count, // length of curput fragment
char data[count] // output fragment

H

ECF*

(code) { // last output from a task
int tid, // task id
int 0 // signals EOF

}

The first two items in the message body are always the task [D and output count.
which distinguishes between the four message types. I'or each task, nne message each
with count equal to -1, -2 and 0 will be seat, along with zern or more messages with
couat > 0. Types —2. > 0 and 0 will be received in order, as they originate from the
same source (the pvmd of the target task). Type -1 originates at the pvmd of the
parent task, so it can e received in any order relative to the others.

- 62 -

The output sink is expected to understand the differeat types of messages and use
them to know when to stop Listening for cutput from a task {EOL) or group of tasks
(global EOT). The messages are designed this way to prevent race conditions when
a task spawns another task. ther immediately exits. The output sink might get the
EOT message from the first task and decide the growp is finished. oty to find more
output later from second task. But either the —2 message or the - | message for the
second task must arrive hefore the 0 message from the first task. The states of a task
as inferred from oatput messages received are shown in Tigure 18,

Exited

o >

Unstarted

Tiguare 18: Qutput States of a Task

The libpvm function pym_catchout () uses this ontput collection feature to put the
output from children of a task into a file (for example its own stdout stream).

It sets output TID to its owa task ID, and the outpet code to TC.OUTPUT, which
Is a control wnessage. Qutput from childrea and grandehildren tasks is collected by
the pvimds and sent to the task, where it is received by pymmetl(} and printed by
pymclaimo().

10.7. Tracing

PVM includes a task teacing system huilt inte the libpva library, which records the
parameters and results of all calls to Lbpvm functions. This descriptinn is sketchy
because this is the release of the tracing code. h

Libpvm generates trace-event messages when any of the functions is called. and
seads the messages to its inherited trace data sink. Tasks alst inherit a trace mask,
which is used to enable tracing per function. The mask is passed as a hexadecimal
string in environment variable PYNTMASK. Trace data lsn't generated at all if tracing
isn't enabled (since it's expensive).

Constants related to interpreticg trace messages are defined in public header file

S 63 -

pymtev.h. Trace data from a task is collected ln a manner similar to the output
redirection discussed above. Like the type —1. -2 and 0 messages which hracket
output from a task. TEV_SPNTASK. TEV.NEWTASK and TEV_ENDTASK trace inessages are
generated by the pvmds to bracket trace messages.

10.8. Conscle Internals

The PVM console is used to manage the virtual machine - to reconfigure it or start
and stop processes. In addition, it's an example program that makes use of most of
the Lbpvin functions.

The console uses pym_get£ds() and select () to check for input from the keyboard
and messages from the pvind simultaneously. Keyboard input is passed to the command
interpreter, while messages contain notification (for example Host Add) or cutput from
a task.

The cousole can wse output redirection (described earlier) to collect nutput from
spawned tasks. Normally, when spawning a task the console sets output-TID to zerc,
=0 any output goes to the default sink {for example. the master pvmmd log file). Using
spawn flags ~> or ~>> causes the console to set output-TID to itself and output-code
to a unique “job” awnber {assigned by a counter),

TUaless some intermediate task radirects the vutput again, when output is generated
by child tasks or their children, it is sent back to the console. By assigning a wnlque code
to each task spawued. the consnle can malntain separate “johs™ or “process groups”.
which are sets of tasks with matching cutput condes. Most of the code to haodle output
recirectinn is in the console, while only a few sinall changes were made to the pvmd
and Libpvm. We cluose this route because it keeps the complexity vut nf the core of the
systenn.

The console has a tickle command. whick in turn calls libpvin function pvm_tickle().

This is used to set the pvind debug mask and dumip the contents of various data struc-
tures. Tor example, the command tickle 6 18 sets the pvimd debug mask to 0x13
{bits 3 and 1) and tickle 1 dwmps the current host table (to the pvmd log file).
pvm_tickle() is an undocumented finction in libpvin and not copsidered an official
part uf the PYM jnterface. Nevertheless, if you wish tn use 1his fuaction, the optioas
fuur tickle cau be found by typing help tickle in the console.

10.9. Resource Limitations

Resource limits imposed by the vperating system and available hardware aze iz turn
passed to PVM applicaticos. Whenever possible, PVM tries to avoid setting explicit
limits, rather it returas an error when resonrces are exhausted. Naturally, competition
between users on the same host or aetwork affects some Limits dynamically.

10.8.1. Tu the PVM Daemon

How many tasks each pvind can manage is limited by two factors: The number of
processes allowed a user by the nperating system. and the nuwmber of file descriptors
available to the pvmd. The limit on processes is generally not an issue, since it doesn’t

264 -

make sense to have a huge number of tasks running on a uniprocessor machine,

Fach task consumes cue file descriptor in the pvmd. for the pvmd-task TCT stream.
Each spawned task {(not vaes connected anonymously) consumes an extra descriptor,
since its output is read through a pipe by the pvmd (closing stdeut and stderr in the
task wold reclaim this slot). A few more file descriptors are always in use by the pvind
for the local and network sockets and error log file. Tor example, with a Lmit of 64
apen files. a user should be able to have up to 30 tasks running per host.

The pvind may become a bottleneck if all these tasks try to talk to one another
through it.

The pvmd wses dynamically allocated memory to sture message packets en route
between tasks. Until the receiving task accepts the packets. they accumulate in the
pvind iz a TITQ. Ne flow control is imposed by the pvmd — it will happily store all the
packets given to it. wntil it can't get any more memory. If an application is designed
st that tasks can keep sending even when the receiving end is off doing something else
and not receiving. the system will eventually ruw out of memuory.

14.8.2. In the Task

As with the pvind, a task may bhave a limit oo the swnber of others it can connect
to directly. Each dicect route to a task has a separate TCD connection {which is
bidirectional), and so consumes a file descripter. Thus with a limit of 61 open files.
a task can establish direct foutes to about 69 sther tasks. Note this Linit is oely in
effect when using task-task direct routing. Messages routed via the pvmds oaly use the
default pvmd-task connection.

The maximam size of a PVM message is limited by the amouut of memary available
to the task. Because messages are gererally packed using data existing elsewhere in
memuory, and they nust reside In memory between being packed and seat. the largest
pussible message a task can send should be somewbat less than half the available
memory. Note that as a message is sent, memory for packet buffers is allucated by
the pvind, aggravating the situation. Inplace message encoding alleviates this problem
somewhat, because the data is aot copied into message buffers tn the sender. However,
on the receiving end. the entire inessage is downlnaded iuto the task before the recejve
call accepta it, possibly leaving 20 romn to unpack it.

In a similar vein, if many tasks send to a single destination all at once. the des-
tination task or pvind may be overloaded as it tries to store the messages. Keeping
messages from heing freed when new oaes are received by uslng pym_setrbuf() alse
USeS WP I0emory.

These problems can sometimes be avoided by rearranging the application code, far
example to use smaller messages, ellminate bottlenecks, and process messages in the
otder in whick they are generated.

10.10. Multiprocessor Ports

This section describes the technical details of the PYM multiprocessar ports to message-
passing multicompuaters as well as shared-memory systems. The implementations and
related issues are discussed to assist tle experienced programmers who are interested

in porting PVM te other multiprocessor platforms.

PVM provides an interface that hides the system details from the programumer.
PVM applications will run uachanged between multicomputer and workstations as
lowg as file /O and the multicomputer’s memory limitations are respected. The vcly
thing that needs to be changed is the Makefile. The user does not have to know how
to allocate nodes on the system or how to load a program eato the nodes. since PVM
takes care of these tasks.

A single PVM daeman runs ca the iPSC/860. CM-3. and TID MPP systems and
serves as the gateway to the outside world. On some sytems this requires the prmd he
run on a front-end machine and to be built with a different compiler. Ou other MPP
systemns such as the Paragon and the IBM SP-2 one pvind runs on each computational
node. On most shared-memory systems the operating system selects a processor to run
the pvind, and may even migrate the pvmd.

Because the Paragon O3 creates proxy processes when executing seripts, it is gen-
erally not possible to “add™ the Paragon to a virteal machine. Instead. the wser should
start PVM oo the Paragon and then “add™ vutside hosts. Tier example, to start PVM
on a four node pagtition type:

pexec $PVM_RCOOT/1ib/PGCN/pvmd3 -nz 4 &
pvm

At this point the user can add other hosts or run a PYM application.

Nutethat a useful hack for Pasagoa sites ruaning PVM is to modify the PVM_ROOT /Lib/ pyind

setipt to account for the fact that the PVM daemon starts in the compute partition.
Tes keep the PVM dasmeon from trying to grab the entire compute partition, the penul-
timate line of this script can be modified to something like:

exec $PVYM_ROOT/1ib/$PVM_ARCH/pvmd3 -pn ‘whoami‘ $¢

This hack forces a Paragon user to create a specifically named partition to cun PVM in;
if the partition does not exist then the daemon startup will fail. Such local nodifications
tu the Paragon pyvmd script ean be dowe on a site-wide or per-user basis to suit the
needs of PVM users or the Paragon system administrator.

10.10.1, Message Passing Architectures

On MPDs where message-passing is supported by the operating system, the PYM
message- passing functions are translated into the native send and receive system calls.
Since the TID contains the task's location, the inessages to he sent directly to the
target task, without any help from the daemon.

When a task calls pym_spawn(). the dasmon handles the request and loads the new
processes onta the nodes. The way PVM allocates nodes is system-dependent. On the
CM3, the entive partition is allocated to the user when he logs on. On the iPSC/860.
P¥M will get a subcube big enough to accommodate all the tasks to be spawned; only
tasks spawned together reside in the same subecube. (Note the KX nperatiag systewn
limits the number of active subcubes systemn wide to 10. pvin_spawn{) will fail when
this limit is reached or when there are not enough nodes available.) In the case of the

- 06 -

Paragon. PVM uses the default partition unless a different one is specified when prind
is invoked. Pvmd and the spawned tasks formn ope giant parallel application. The
user can set the appropeiate NX environment variables such as NX_DI'LT_SIZE hefore
starting PVM, or he can specify the equivaient command-line arguments to pvind (i.e.,
pvind -sz 32).

PVM uses the native asynchroneus message- passing primitives whenever possible.
One drawhack to this choice js that the eperating system can cun out of message handles
or buffer space very quickly if a lot of messages are seut at once. In this case. PYVM will
be forced to switch to syachronous sead. To improve performance. a task should call
pviasend{) as soon as the data hecome available. so (hepefully) when the other task
calls pvmn_recv() the message will already be in its buffer. PVM buffers oue incoming
packet between calls to pvm_send()/pvinsecv(). A large inessage, lowever, is hroken
up inte maay fixed-size fragments during packing, and each piece is sent sepasately. The
size of these fragments is set by MAXTRAGSIZE i pvmmimd.h. Buffering oue of these
fragments won't do much gond unless pvimsend{} and pvm_recv() are synchronized.

10.10.2, Shared-Memory Architectures

Ie the shared-memory implementation. each task wwns a shaced buffer created with a
shmget() (or equivalent) system call. The task ID is used as the “key™ to the shared
segment. A task communicates with other tasks by mapping their message buffers into
its own memory space.

To enroll in PYM, the task first writes its UNIX process 1D into pvind's incoming
hox. Tt then lonks for the assigned task [D in pyvimd's pid—tid table.

The message buffer is divided into pages, each holds one fragment. The fragment
size is therefore equal to the systemm page size subtracted hy the size of the shared-
mewmory header, which contains the lock and the reference conat. The first page is the
incoming box. while the rest of the pages hold vutgoing fragments. To send a message.
the task first packs the message body into its huffer, then delivers the message header,
which contains the sender’s TID and the location of the data. tu the incemning hox
of the intended recipient. When pvm_recv() is called. PVM checks the incoming hox.
locates and wnpacks the messages (if any), and decreases the reference cuunt so the
space can be reused, If a task is not able to deliver the header directly because the
receiviag box is full, it will block wutil the other task is ready.

Inevitably some overhead will be incurred when a message is packed into and an-
packed from the buffer, as is the case with all other P¥M implemeatations. If the huffer
Is full, then the data must first be copied into a temporary buffer in the process's private
space and later transferred to the shared buffer.

Memory contention is asvally not a problem, Each process has its own huffer and
each page of the buffer has its own lock. Oualy the page being written to is locked.
and an process should be trying to read from this page because the Leader has not
been sent out. Different processes can read from the same page without jnterfering
with each other, so multicasting will be efficient (they do have to decrease the counter
afterwards, resulting in some contention). The only tine contention occurs is when
two or mose processes trying to deliver the message header to the same process at the

- BT -

same time. But since the header is very short (8 bytes), such contention should ant
cause any significant delay.

Tre minlmize the possibility of page faults. PVM attenpts to use only a small number
of pages in the message huffer and recycle them as snon as they have been read hy all
intended reciplents.

Ouce a task’s buffer has beea mapped, it will not be unmapped, ucless the system
limits the number of mapped segments, This saves time for any subsequent message
exchanges with the same process.

10.10.3. Functions to Port

Seven functions serve as the MPP *intecface™ for PVM. The implementation of these
functinns is systemn depeadent. and the source code should be kept in the file pymdmimd . c
{message-passing) or pymdshmem. ¢ (shared-wemary). We give a briel description of
each of these functious helow.

veid mpp_init{int arge, char ==argv);
Initializatien. Called once when PVE is started. Arguments argc and argv
are passed from pymd main(}.

int mpp_load(int flags, char #name, char *argv, int count, int %tids, int ptid);
Create particion if necessary. Lead exaecutable onto nedes; create new
entries in task table, encode ncde number and preocess type inte task IDs.
flags: exec optiens;

name: axecutable te be loaded;

argv: command line argument for executable;
COUnt: number of tasks to be created;

tids: array to store new task IDs;

ptid: parent task ID.

vold mpp_output{struct task *tp, struct pkt *pp);
Send all pending packets to nodes via nhatlve send. Nods number and proceas
type are extracted from task ID.
tp: destination task;
pp: packet.

int mpp_mcast(struct pkt pp, int *tids, int ntask);
Global send.
pp: packet;
tids: list of destinavion task IDs;
ntask: how many.

in

o

mpp_probe(};
Probe for pending packets from nodes (non-blocking). Returns 1 if packats
are found, otherwise 0.

void mpp_input();
Receive pending packets (from ncdes) via native receive.

void mpp_free(int vid)

S GY -

Remove node/process-type from active list.
tid: task ID.

10.11. Debugging the PVM Source

To help catch mewory allocating errors in the system code, the pvind and Lbpvm use
a sanity-checking library called #malloc. Imalloc functions are wrappers for the regular
fibe functions malloc(), realloe{) and free(). Upou detecting an error. the imallec
functions abort the program so the fault can be traced.

The following checks and functicas are performed by imalioe:

1. The length argument to malloc is checked for jnsane values. A length of zero is
changed to one so it succeeds.

2. EBack allocated block is tracked in a hash table to detect whea free() s called
more than cuce on a block or on something pot from mallec().

3. Imallec!) and irealloc() write pads filled with a psewdo-random pattern
outside the bounds of each block. which are checked hy i free(} to detect when
something writes past the end of a block.

1. Ifree() zeros each block befure it frees it so further references may fail and
make themselves known.

i

. Each block is tagged with a serial awmber and string to indicate its use. The
heap space can be dumped ur sanity-checked at any time hy calling i_dump{).
This helps find memory leaks.

Since the overhead of this checking is quite severe. it is disabled at compile time by
default. Defining USELPVM_ALLAC iu the source Makefile(s) switches it on.

The pvind and libpvm each have a debugging mask that can be set to enable logging
of various information. Logging information is divided up into classes. each of whick
is enabled separately by a bit in the debug mask. The pvmd command line option =d
sets the debug mask of the pvmd to the (hexadecimal) value specified; the default is
zero. Slave pvinds inherit the debug mask of the master at the time they are stacted.
The debug mask of a pvind can be set at any time using the console tickle command
on that host. The debug mask in libpvn can be set in the task with prm_setopt ().

Note: The debug mask is aot intended for debugging application programs.

The pvind debug mask bits are defined in ddproh, and the Ghpvm bits in lpvm.c.
The meanings of the bits are not well defined and are subject tn change. as they're
intended to he used when fixiag or wodifying the pvind or libpvm. Presently, the hits
in the dehug mask correspond to

- (9.

Name bt debug messages about

pkt 1 packet routing

msg 2 message routing

tak 1 task ereation/exit

slv 8 slave pviad configuration
hst 10 host table updates

sel 20 select loop in pvind (helow packet routing layer)
net 10 network twiddling

mpp %0 mpp related aptions

ach 106 scheduler interface

TFhe prmnd includes several registers and couaters to sample certain eveats, such
as the number of calls made to select () or the number of packets refragmented by
the netwiek code. These values can be computed from a debug log, but the counters
have less adverse mpact on the performance of the pyvmd than would generating a
kuge log file. The counters can be dumped or reset using the pvm_tickle{) function
or the cousole tickle enmmand, The code to gather statistics is normally switched out
at compile-time. To enable it, edit the makefile and add -DSTATISTICS to the compile
upptions,

11. Support

Several avenues exist for getting help with usivg PVM. A PVM bulletin board exists
ou the Iuteruet for nsers to exchange ideas, tricks. successes and problems. The news
group hame is comp.parallel.pvm. Several venduors including Cray Researck, Convex,
SGLIBM. Intel. DEC, and Thinking Machines have decided to supply and support
PVM software oo their systems. Several software compauies have alse sprung up te
offer nser installation and support for PVM. The PVM developers also answer mail as
time permits: PVM problems or questions cap be sent to pym@msr. epn.ornl -gov for
a guick and friendly reply. The first anoual PYM User's Gmup meeting was held in
Kuoxville in May 1993. The slides from this meeting are available in postscript form
by ftp frum netlih2@es utkedu in the pvm3/ug directory.

12. References

[1] Beguelin. Dongacsa. Geist. Manchek. Sunderam A User's Guide to PVM (Paralle]
Virtual Machine) ORNL/TM-11826. July 1991.

{2] T. Green. J. Paske DQS 2.x/3.0 Proceedings of Cluster Workshop "93 at SCRI
Tlusida State Upniversity. Dec. 1993.

(3] M. Litzkow, M. Livny. aad M. Mutka. Condor ~~ A Lunder of idle workstations. In
Proceedings of the Eighth Conferenee on Distributed Computing Systems, San Jose,
California, June 1988.

(1] R. Manchek PVM Design Master's Thesis University of Tennessee. June 1994,

[3] Platform Computing Corporation 203 College St. Suite J03. Toronte Qntario,

(6] B.Schmidt, V. Sunderam Empirical Analysis of Overheads in Cluster Envirsnments
Coecurrency: Practice and Experience 6 (1), pp 1-32 Tebruary 1991.

S 71 - -T2 -

13. Appendix A. Reference pages for PYM 3 routines pvmfaddhost() pvin_addhosts()

This appendix coatains an alphabetical listing of all the PVM routines. Each routiae

is described in detail for both C and Tortean use. There are examples and diagnostics Adds vne or more hosts to the virtual machine.
for each routine.

Synapsis

C int info = pvm_addhosta(char #**hosts, int nhest, int *infos)
Fortran call pvmfaddhost(host, info)

Parameters
hests — an array of poisters to character strings containing the
names of the machines to be added.
nhost - integer specifying the number of husts to be added.
infes - integerarray of length nhost which contains the status code
returned by the roatine for the individual hosts, Values less
than zero indicate an error.
host - character string containing the name of the machine io be
added.
info - integer status code returned by the contine. Values less than
nhost indicate partial failure, values less than 1 indicate
total failure.
Discussion

The tutine pvm_addhosta adds the Lst of computers pointed to in hosts to the
existing configuration of computers making up the virtual machine, I pym_addbosts
is successful info will be wqual to nhest. Tartial success s indicated by 1
<=info<nhost, and tetal failure by info< 1. The array infes can be checked
to determine which host caused the ecror.

The Tortran rontine pynfaddhost adds a single hust to the configuration with
each call.

If a host fails. the PVM system will continue to function. The user can use this
rritine to increase the fault tolerance of the PVM application. The status of
hosts can be requested by the application using pvm_mstat and pvm_config. If
a kost bas failed it will be automatically deleted from the configuration. Using
pvim_addhosts a replacement host can be added by the application, It is still
the respousibility of the application developer to make the application tolerant
of host failuze. Another use of this feature would be to add nnre hosts as they
become available, for example an a weekend. or if the application dynamically
determines it could use more computational power.

Examples

static char *hosts([] = {

nsparky",
"thud.cs.utk.edu",

= pvm_addhests(hosts, 2, infos);

CALL PVMFADDHOST(’azure”, INFO }

C:
};
info
Fortran:
Errors

The following error conditions can be returned by pvm_addhosts

pvmfbarrier() pvm _barrier()

Nawne Pissible cause

PvmmBadParam giviag an invalid argument value.
PymAlready already been added.

PemSysErr lucal pyvmd is not responding.

The fllowing error conditinoos can e returned in infos

Name Possible cause

PvinBadParam bad hostaame svatax.

I'vimNnHaost we suel luost.

PvinCantStart falled to start pvind oo host.
PymhipHost host already in configuration.
PyvmBadVersion remote pvmd version doesn't mateh.
PvinQutOffles PVM has rua out of system resources.

Blocks the calling process until all processes in a group have called it.

Synopsis

C int info = pvm barrier(char *group, int count)
Fortran call pvmfbarrier(group, count, info)

Parameters
group — character string growp name, The group must exist and the
calling process must be a member of the group.
count - integer specifying the numbher of group members that must
call pvin_barrier before they are all released. Theugh not
required, count is expected 1o be the total number of mem-
bers of the specified group.
infe - integer status code returned by the routine. Values less
than zero jndicate an ereor.
Discussion

The routine pym_barrier blucks the calling process wntil count members of the
group have called pvm_barrier. The count arginent is required hecause processes
could Be jnining the given group after nther processes have called pym_barrier.
Thus PVM doesn't keow how many group members to wait for at any given in-
stant. Although count can be set less, it is typically the total number of members
of the group. So the logical function of the pvin_harrier call is to provide a group
syachronization. During any given barrier call all participating group members
must call barrier with the same count value. Ounce a given harsier has been sue-
cessfully passed. pvmbarrier can be called again by the same group using the
saine group namne.

As a special case if count equals -1 ther PVM will use the value of pvul_gsize! }
ie. all the group members. This case is useful after a group is established and
not changing during an application.

If pein_barrier is successful, info will be 0. If some error necurs then info will
be < 0.

-1
.

- T6 -

Exam ples pvmfbcast () pvm_bcast()
C:
inum = pm. jolngroup("worker!); broadeasts the data in the active message buffer.
: : . Synopsis
info = pvm_barrier("worker", 5);
Fortran; C int info = pwvmbcast{ char *group, int magtag)
CALL PYMFIDINGROUP(*shakers’, INUM) Fortran call pvmfbcast{ group, msgtag, infe)
COUNT = 10
CALL PVMFBARRIER(’shakers’, COUNT, INFGC) Parameters
Errors group character string group name of an existing group.
megtag integer message tag supplied by the user. msgtag should be
These eror conditions can be returned by pvm barrier >= 0. It allows the user’s program to distinguish between
Name Possible canse - .(hﬂ'erent- kinds of messages . . '
PvmSysEre pvmd was nt started of has crashed. info — integer ste{‘tu? code returned by the routive. Values less
- than zero indicate an ercor.
PvmBadParam Eiving a count < 1.
PymNoGroup giving a nou-existent group name. Disenssion

PvmNothnGronp calling 58 is not | ;)
' z process is not in specified group.
) The routine pvm_bcast broadcasts a message stored in the active send buffer to

all the members of group. In PVM 3.2 the broadcast message is ant seat back to
the sender. Aoy PV M task cap call pvm_beast(}. it need not be a member of the
group. The content of the message can be distinguished by msgtag. If prim_heast
is successful. infe will be 0. If some error occurs then info will he < Q.

pvm_hcast is asyochroncus. Cemputation en the sending processor resumes as
soon as the message is safely on its way to the recelving processors. This is
in contrast to synchrouous commuaication, during which computation on the
sending processor halts unti]l a matching receive is executed by all the receiving
PIOCESSOIS.

pvin_beast first determines the tids of the group members by checking a group
data hase. A multicast is performed to these tids. If the growp is changed during
a broadecast the change will not be reflected in the broadeast. Multicasting is
not supported by most multiprocessor vendnrs. Typically their native calls only
support broadcasting to all the user’s processes on a multiprocessor. Because of
this omissioa. pvin_hcast may aot be an efficient communication method en some

multiprocessors.

-3
3

~ _ - 78 -
-) pvmfbufinfo() pvim_bufinfo()
xam ples
c: turns inf tivn about the reguested imessage haffer
info = pvm_initsend(PvmDataRaw J; returns intormation about the requested m ssage Dualle
info = pvm_pkint(array, 10, 1); _
msgtag = 5 ; Synopsis
5 - o n t) ;
info = pvm_beast("worker”, msgtag c int info = pvm_bufinfo(int bufid, int sbytes,
Fortran: int *msgrtag, int *tid)
AULT . BL2E.
ohL iﬁ:i;;éﬁig?(pignfm 1) INFO) Fortran call pvrtbufinfo(bufid, bytes, msgtag, tid, info)
CALL » [
' ker’, 5, INFO)
CALL PVMFBCAST(’'worker Parameters
Errors bufid lateger specifying a particular messape huffer identifier,
bytes - iateger returning the length in bytes of the eutige message,
. conditic be re i by pvm_bcast o .] ' ’
These error conditions can be returped by p magtag - integer returning the message label.
Name Possible cause tid — integer returring the source of the message.
PvmSysErr pvind was not started or has crashed. infa — integer status cade returned by the rontine. Values Ioss
PvmBadPasam giving a negative msgtag. than zero indicate an error.
PvmNoGroup giving a non-existent group name.
Discussion

The routine pym_bufinfo returns information about the iquested message buffer,
Typically it is used to determine facts about the last recelved essage such as
its size or suurce. pvm_bufinfe is especially useful when an application is able tn
feceive any incoming message, and the action taken depeads on the source tid
and the megtag associated with the message that comes in first. ¥ pvmn bufinfo
is successful. info will he 0. I some error accurs then info will be < 0.

Examples
C:
bufid = pym_recv(-1, -1);
info = pvm_bufinfo(bufid, kbytes, &type, ksource);
Fortran:
CALL PVMFRECV(-1, -1, BUFID)
CALL PVYMFBUFINFO(BUFID, BYTES, TYPE, SOURCE, INFO)
Errors

These error conditions can be retucned by pvm_bufinfo:

Name Possible cause
PviNoSuchBuf specified buffer does aot exist,

PvmBadParam irvalld argunent

pvmfcatchout() pvim_catchout() Examples
C:
' o : sl #include <stdic.h>
Catch nutput frem child tasks. pvm_catchout {stdout);
) Fortran:
Synopsie CALL PVMFCATCHOUT(1 }
C #include <gtdio.h>

int bufid = pvmcatchout(FILE xff)

Errors
Yortran call pvmfcatchout(onoff)

No errar conditions are returned by pvm_catchout

Parameters
ff Tile descriptor un which to write collected nutput.
onoff - [Integer parameter. Turns output collection oo or off.

Discussion

The routine pymcatchout causes the calling task (the parent) to cateh output
from tasks spawned after the call to pvmocatchout. Characters priated on stdouf
or stderrin children tasks are collected by the pvinds and sent in crntrol Inessages
to the parent task. which tags each line and appends it to the specified file.
Output frean grandehildren {spawned by children) tasks is alsn collected. provided
the clildren don’t reset PymOutputTid using pymsetopt().

Eacli live of ouatput has oue of the following forms:

[txxxxx] BEGIN

[txxxxx] (text from child task)
[txxxxx] END

The output from each task includes one BEGIN line and one END line with
whatever the task prints in hetween.

I O the ontput file descriptor may be specified. Giving a aull poluter turns
ontput collection off. [Kote file option not implemented in TVM 2.3.0 Witk put
pues ta calling task's stelout]

In Tortran, ontput coliection ean ouly e tucned on or off. and is lngged to stdout
of the parent task.

I pvm_exit is called while vutput collection is in effect, it will hlock watil all
tasks sewding It output have exited, in order to print all their aoutput. To aviid
s, output eollection can he turned off by calling pvincatchout{0) before calling

pryvinexit.

pyin_eatehout]) always eturps PyvmOk.

pvmfconfig()

T

pvm _config(}

Returns tnformation about the present virtual machine cenfiguration.

Synopsis
C

Fortran

Parameters

nhost —

narch -

hostp

deid
name
arch

speed

info -

Discussion

int infe = pvmconfig(int *nhost, int *narch,
struct pvmhostinfo **hostp)
atruct pvmhostinfo{
int hi_tid;
char *hi_name;
char *hi_arch;
int hi_speed;
} hostp;
call pvmfconfig(nhost, narch, dtid,
name, arch, speed, info)

integer returning the nwnber of hosts (pymds} in the virtual
machine.

integer returning the numnber of different data formats being
used.

puinter to an array of stractueres that contain information
about each bost. including its pvnd task ID. name. archi-
tecture, and relative speed.

Integer returning pvind task ID for this host.

Character string returning name of this host.

Character string returning nawme of host architectuse.
Integer retusning relative speed of this host. Default value
is 1004.

integer status code returued by the routine. Values less
than zero indicate an error.

The routine pvm_config returns information about the preseat virtual machine.
The information returned is similar to that available from the console cemnmand
conf. The C functicn returns information about the eatire virtual machine in
one call. The Tortran function returns information about one host per call and
cycles through all the hosts. Thus, if pvmiconfig is called ahost times, the entire
virtual machine will be represented. If pvin_config is successful, info will he Q.
If some error occurs, info will he < 0.

Examples

C:

Fortran:

Errors

infc = pvm_config{ &nhost, &narch, ghostp);

Do i=1, NHOST
CALL PVMFCONFIG(NHOST,NARCH,DTID(i) ,HOST(i1},ARCH(i),

SPEED(i),INFO)
Enddo

The followiag ecror condition can be returned by pym_config

Name

Possible Cause

PvinSysErr

pvind not responding.

8) it

mefdelhOSt() pvm_delhogts() Examples
C: ‘
i i tatic char shosts[] =
deletes one or more hosts from the virtual machine. statlc , "
'spaTky",
"thyd.cs.utk.edu"”,
Synopsis }
C int info = pvm.delhosts{ char **hosts, int nhost, int *infos) info = pvm_delhosts(hosts, 2);
Fortran call pvmfdelhost(host, infe) Fortran:
CALL PVMFDELKGST(*azure’, INFO)
Parameters
. . L. Errors
hosts - an array of pointess to character strings containing the
names of the inachines to he deleted. These eccor conditions can be returned by pvm_delhosts
nhost - integer specifying the number of hosts to he deleted, Passihl
: . e s . Name ossible cause
infes - integer array of lengt..h nhost “1'11(']1. cluuta.mb the st'a.t us code PemBadTaram gving aa (ivald argument value.
retucaed by the routine for the individual hosts. Values less andi
than zero indicate an error. PvinSysEer local pymd not responding.
hast - character string containing the name of the machine to he PvinQuiOfRes PVM has run out of system resources.
deleted,
info - integerstatus code returned by the routine. Values less thag
abost indicate partial failure. values less than 1 jndicate
total fajlire.
Discussion

The routine pvm_delhosts deletes the ceputers pointed to in hosts, from the
exlsting confignration of computers making up the virtual machize. All PVM
processes and the prmd running on these computers are killed as the computer
is deleted. I pvidethosts is successful, info will he nhost. DPartial success is
indicated by 1 <= info < nhest. and tutal failure by infe < 1. The array infos
can be checked tn determine whicl host caused the ecmr.

The Turtran coutine pvmfdelhost deletes a single host {rom the configuration
with each call.

Hoa lost fails. the PVM system will continue to fonction and will autematically
delete this Tost from the virtual machine. An application can he natified of a
Lost fallure by calling pyimonotify. 1t is still the responsibility of the application
developer t make Lis application tolerant of host failure.

L83 -

pvmfexit() pvim_exit()

tells the local pymd that this process is leaving PVM.

Synopsis

C int info = pym_exit(void)
Fortran call pvmfexit(info)

Parameters
info - integer status code returned by the routine. Values fess
than zero indicate an error.
Discussion

The routine pym_exit tells the local pvind that this process is leaving PVM. This
rontine does uot kil the process, which cac continue to perform tasks just like
any other serial process.

Py exit should be called by all PYM processes hefoce they stop or exit for good.
It must he called by processes that were not started with pvmspawn.

Examples
C:
/* Program done */
pvm. exit();
exit();
Fortran:
CALL PVMFEXIT(INFQ)
STOP
Errors
Naume Puossible cause

PvinSysErr pvmd not responding

T
pvmffreebuf() pvin_freebuf()
disposes of a wessage huffer.
Synopsis
C int info = pvm_freebuf(int bufid)

Fortran call pvmffreebut(bufid, info)

Paramneters
bufid — iuteger message buffer identifier.
infe - integer status code reterned by the mautine. Values less
than zero indicate an ecror.
Discussion

The routine pym_freebuf frees the memory associated with the wessage huffer
identified by bufid. Message buffers are created by pvieankbaf, pvm_initsend.
and pvimrecv. If pvinfreebuf is successful. info will be 0. If BOILE OLTOL NCCHLS
then info will he < 0.

pvmfreebuf can be called for a sead boffer created by pyvinankbaf after the
message has beew sent and is o longer needed.

Rteceive huffers typically do not have tn be freed wnless they have been saved
in the course of using multiple buffers. But pvin freebuf can he
receive buffers as well. So messages that have arrived but are ao longer needed
due to some other event in an application can be destroyed so they will not
consune huffer space. . -

used 1o destroy

Typically multiple send and receive buffers are gt needed and the user can sim ply
use the pvm_initsend routine to reset the default send buffer.

There are several cases where maltiple buffers ace wseful. One example where
multiple message huffers are reeded involves lilraries or graplical interfaces that
use PYM and interact with a running PYM application hut o

ooaot want te
interfere witk the application’s own commuaication.

When multiple buffers are used they generally ase made and freed fur each mes-
sage that is packed. Iu fact. pvin_initsend simply does a. pvmareehuf followed by
a pvm_mkbaf for the default huffes,

Examples
C:
bufid = pym_mkbuf(PvmDataDefault);
info = pvm_freebuf({ bufid);
Fortran:
CALL PVMFMKBUF(PVMDEFAULT, BUFID)
CALL PVMFFREEBUF(BUFID, INFO)
Errors

These error conditions ean be retarned by pym_freebu?

Name Possible cause

PvinBadParam giving ar invalid argument value,
PyvaNoSuchBuf giving an invalid hufid value.

pvmfgather()

S8R -

pvi_gather()

A specified member of the group gathers data from each memhes of the group into a

single array.
Synopsis
C

Fortran

Parameters

result

data

count

datatype

msgtag

group
rootginat

info

Discussion

int irfo = pvm_gather(veoid *result, void *data,

int count, int datatype, int msgtag,
char #group, int recotginst)

call pvmfgather(rasult. data, count, datatype,
magtag, group, rootginst, info)

Ou the root this is a pointer to the stasting address of an
array datatype of local values which are tn be accumulated
from the members of the gronp. This array should be of
length at least equal to the number of group members. times
count. This argument is significant only on the root.

Tor each group member this is a pointer to the starting
address of an array of length count which will be sent tn
the specified root member of the group.

Integer specifying the number of elements of type datatype
te be sent by each member of the group to the root.
Loteger specifying the type of the entries in the result and
data arrays. Tor a list of supported types see pyvm_psend().
Integer message tag supplied by the user. msgtag should he
>= 0.

Character string group name of an existing group.

Luteger iastance number of geoup member who perfocms the
gather of the messages from the members of the group.
[nteger status code returned by the routine. Values less
than zero indicate an error.

pvmgather() gathers data from each member of the group to & single member
of the group, epecified by rootginst. All group members must call pvio_gather().
each sends its array of length count of datatype to the oot which concateqates
these messages in order relative to the sender’s instance nnmber in the Eronp.
Thus the first count entries in the result atray will be the data from grou s member
L. the aext count eatrles from group mewmber 2. aad so on.

S0 -

[n using the scatter and gather routines, keep in mind that C stores multidimen-
sional arrays in row order. typically starting with aw initial index of 0; whereas,
Tortran stores arrays in columa oeder. typically starting with an iodex of 1.

Note: pvingather(} does oot block. If a task calls pvm.gather and then leaves
the group before the root has called pvmgather an error may occur.

The current algorithm is very simple and rebust. Tuture implemeatations will
make mure efficient use of the architecture to allow greater parallelism.

Examples
C:
info = pvm_gather(kgetmatrix, &myrow, 10, PVM_INT,
magtag, "workers", rootginst);
Fortran:
CALL PVMFGATHER{GETMATRIX, MYCCLUMN, COUNT, INTEGER4,
MTAG, ’'workers’, ROOT, INFO)
Errors

These ercor conditions can be returned by pvm_gather

Name Possible cause

PvmBadParam giving an invalid argument value.
PvmNolust Calling task is not in the group.
PvmSysErr local pvmd is not responding.

- 940 -

pvinfgetinst() pvm _getinst()

returns the instasce number in a group of a PVYM process,

Syuopsis

C int inum = pvm getinst(char *group, int tid)
Fortran call pvmfgetinst(group, tid, inum }

Parameters
group - character string group uame of an existing I,
tid - integer lask identifier of 3 PVM process.
inum - integer instance number returned by the routine. [nstance
aumbers start at 0 and count up. Values less than zero
indicate an error.
Discussion

The routive pvm.getinst takes a group name group and a. PVM task identifier
tid and returns the wnigue instance aymber that correspunds ti the input. If
pyingetinst is successful, inum will e = 0. If some error ocenrs then inum will

he < 0.
Examples
C:
inum = pvm_getinst(“worker", pvm_mytid() »;
inum = pvm_getinst("worker", tidf{i]);
Fortran:
CALL PVMFGETINST('GRCUP3’, TID, INUM)
Errors

These ecror conditions can be returned hy pvm_getinat

Naine Possible canse
PvmSysErr pvind was not started or has crashed.
PvinBadParam giving an invalid tid value.

PvmnKoGrowp giving a aon-existent ZIDILD nae,

PvmNotlnGroup specifying a group in which the tid is not a mem-
ber.

-91 -

pvmifgetopt() pvin_getopt()

Shows various Ubpym options

Synopsis

C int val = pvm_getopt{ int what)
Fortran call pvmfgetrbuf{ what, val }

Parameters
what - Iuteger defining what to get, Opiions include:
Option value MEANING
PvmRoute 1 mouting policy
PumDebugMask 2 debugmask
PymAutoErr 3 awto error repocting
PvmOutputTid 41 stdout device for children
PvmOutputCode J output msgtag
PvmTraceTid G trace device fir children
PvmTraceCode 7 trace msgtag
PvmFragSize % nessage fragment size
PvmResvyTids 9 Allow use of reserved nsgtags and TIDs
val - luteger specifying value of option. Predefined route values
dare:
Option value MEANING
PvmDontRoute 1
PvmAllowDirect 2
PvmRouteDirect
Discussion

The routine pvm_getopt alliws the user to see the value of aptions set in PVM.
Ses penisetopt for a description of aptions that can be set.

Examples

C:

route_method = pym_getopt(PvmRoute);
Fortran:

CALL PVMFGETOPT{ PYMAUTGERR, VAL)

-9 -

Errors
These error conditions can be returned by pvm_getopt

Name Possible cause

PvmBadPacam giving an lnvalid argument.

S Q3 -

pvmfgetrbuf()

pvm_getrbuf()

tetutns the message buffer identifier for the active receive huffer.
Synopsis

C int bufid = pvm_getrbuf(veid }

Fortran call pvmfgetrbuf(bufid)
Parameters

bufid - integer the returned message huffer identifier for the active

receive huffer.

Discussion

The routine pvin_getrbuf returns the message huffer identifier bufid for the active
receive huffer or 0 if there is no current huffer.

Examples
C:
bufid = pvm.getrbuf{);
Fortran:
CALL PVMFGETRBUF(BUFID)
Errors

No error conditions are retugned by pym.getrbuf

-9 -
pvimfgetsbuf() pvm _getsbuf()

teturns the message huffer identifier for the active send by ffor.
Synopsis

C int bufid = pvm.getsbuf(void)

Fortran call pvmfgetsbuf(bufid)
Parameters

bufid — integer the returned wmessage buffer identifier for the active

send buffer,

Discussion

The routine pvm_getsbuf returns the message buffer identifier bufid for the active
send buffer or 0 if there is an current huffer,

Examples
C:
bufid = pvm_getsbuf();
Fortran:
CALL PYMFGETSBUF(BUFID)
Errors

Ne error conditinns are returned by pvm_getsbuf

pvinfgettid() pvm_gettid()

returns the tid of the process identified hy a group name and instance number.
Synopsis

C int tid = pvm_gettid(char *group, int inum)
Fortran call pvmfgettid{ group, inum, tid)

Parameters
group — character string that contains the aame of an existing group.
inum - integer instance nuwber of the process in the group.
tid - integer task ideatifier returned.

Discussion

The routine pvm_gettid returns the tid of the PVM process identified by the

group name group and the instance number inum. I pvim_gettid is successful.
tid will he > 0. If some error occurs then tid will he < (1

Fxamples
[833
tid = pvm gettid("worker",0);
Fortran:
CALL PYMFGETTID(’worker',5,TID)
Errors

These error enuditions can be returned by pym_gettid.

Nawme
PvmSysbrr

Puzsible canse

Can nnt contact the local pvind most likely it is
wt running.

PvmBadTaraw Bad Parameter wmost likely a KULL character

shring
PyvinNoGroap

PvindNolnst

No grisup exists by that saine.

Ko sucl instance in the group.

- 96 -

pvmfgsize() pvmn_gsize()

e

reticns the number of members presently in the aamed group.

Synopsis

C int size = pvmgsiza(char #group)
Fortran call pvmfgsize(group, size)

Parameters
group - chartacter string group name of an existing growp.
size — integer returning the aumber of members presently in the
group, Values less than zero indicate an error.
Discussion

The routine pym_gsize returns the size of the group named group. If there is an
error size will be negative,

Since groups can change dynamically in PVM 3. this routine can only guarantee

to return the instantaneous size of a given group.

Examples

C:

size = pvm_gsize("worker");
Fortran:

CALL PYMFGSIZE(’group2’, SIZE)

Errors

These error conditions can be returned by pym_gsize

Name Pussible cause

PvmSysErr pvind was not started or has crashed

PvmBadParam giving an jnvalid group name.

pvinfhalt pvm_halt()

Shuts dowa the entire PVM system.

Synopsis
C int info = pvm_halt(void)
Fortran call pvmfhalt(info)
Parameters

info - Ioteger returns the error status.

Discussion
The routine pvmhalt shuts down the entice PVM system including remote tasks,
remote pvind. the local tasks (includiug the calling task) and the local pvmd.
Errors
The fullowing error condition can be returned by pym_hals

Nawe Possible cause
PvmnSysEer local pvind is not respoadiog.

9% -
pvmfhostsync() pvm_hostsync()
Get time-of-day clock from PVM Lost,
Synopsis
C kinclude <sys/time.h>

int info = pvm_hostsync(int host, atruct timeval *clk,
struct timeval *delta }

Fortran call pvmfhostsync(host, clksec, clkusec,
deltasac, deltausec, info)

Parameters

host

cikor
clksec and
clkusec)
delta or
deltagsec and
deltausec} -

TID of host.
Returus time-of-day clock sample {rom Lost.

Returns difference between local clock and remote host
clock.

Discussion

pvmhostaync () samples the time-nf day elock of @ host in the virtual machine

and returns hoth the clock value aud the difference between lncal

and remnte
clocks.

To reduce the delta error due i message transit time. local elock samples are
taken hefore and after reading the remute clock, Delta is the difference hetween
the mean lacal clocks and remote clock.

Rote that the delta time can be negative, The microsecunds field is
walized to 0..999999. while the sign of the seconds
delta.

always nor-
field gives the sign of the

Lo C,if clk or delta is input as a null pointer, that paraineter is not returged.

Errors

The following error conditions can be returped by pvm_synchost

Name Possible cause

PvmSysErr local pvind is not responding.

PvinNoHost no such host,

PvinHostFaill host is anreachable (and thus possibly failed).

.09 -

pvmfinitsend() pvm_initsend()

clear defanlt send huffer and specify message encoding.

Synopsis

C int bufid = pvm.initsend(int encoding)
Fortran call pvmfinitsend(encoding, bufid)

Parameters
encoding — integes specifying the next message's encoding scheine.
Options in C are:
Encuoding value MEANING
PvmDataDefault (¢ XDIt
PvmDataRaw 1 a0 encoding
PvmDatalnPlace 2 data left in place
bufid — uteger reterned contalning the message buffer identifier.
Values less thaw zero indicate an efror,
Discussion

The routine pym_initsend clears the send buffer and prepares it fior packing a
uew message. The encoding scheme used for this packing is set by encoding.
NDR euending Is used by default because VM can not koow if the wser is gOing
t add a heterngenenns machine befure this message is sent. If the user kaows
that the next message will ouly be sent to a machine that understands the native

format_ then he can wse PomDateRaw eucoding and save on enending costs.

PvmDatalnllace encoding specifies that data be left in place <iring packing.
The wessage buffer vnly cuntains the sizes and pointers to the items to be sent.
Whew pymsend s called the jtems are copied directly out of the user's mermory.
This nption decceases the pwnher of times a message is copied at the expense of
requiting the user o not wedify the items between the time they are packed and
the time they are sent. The PvmDatalnPlace is not inplemented ia PYM 3.2,

If pvardnitsend Is successful, thes bufid will contain the message buffer identifier.

If some error occurs they bufid will be < 0.

See also pyamkhud.

Examples

- 100 -

bufid = pvm_initsend(PvmDataDefault);
infe = pvm_pkint(array, 10, 1 J);
magtag = 3 ;
info = pvm_send{ tid, msgtag);
Fortran:
CALL PVNFINITSEND(PVMRAW, BUFID)
CALL PVMFPACK(REAL4, DATA, 100, 1, INFO)
CALL PVMFSEND{ TID, 3, INFO)

Errors

These error conditions can be returoed by pvm_initsend

Name Possible cause
PvmBadParam giving an invalid encoding value
PvmNoMem Malloe has failed. There iz not enough memory

to create the huffer

- 101 -

pvmfjoingroup() pvm_joingroup()

enrolls the calling process in a named group.

Synopsis

C int inum = pvm_joingroup(char *group)
Fortran call pvmfjoingroup(group, inum)

Parameters
group - character string grouwp name of an existing group.
inum - integer instance nwmber returned by the routine. Instance
numbers start at 0 and count up. Values less than zem
indicate an error.
Discussion

The routive pvm_joingroup enrolls the calliag task in the group named group
and returus the instance number inum of this task in this group. If there is an
ecror inum will be negative,

[nstance numbers start at 0 and count up. When using groups a (growp, inum)
pair uniguely identifies a PYM process. This is consisteat with the previous
PVM naming schemes, If a task leaves a group by calling pymJvgroup and
later rejoins the same group, the task is not guaranteed to get the same instance
number. PVM attempts to reuwse old instance numbers, so when a task joias a
group it will get the lowest available instance nunher. A PYM 3 task can be a

- 102 -

pvmfkill() pvin_kill(}

terminates o specified PYM process.,

Synopsis

C int info = pvm kill(int tid)
Fortran call pvmfkill¢ tid, info)

Parameters
tid - luteger task identifier of the PYM pracess to be Killad (ot
vourself).
info - uteger status code returned by the routine Val ues less
than zero indicate an error.
Discussion

The routine pvmkill sends a terminate {(SIGTERM) signal to tt
identified by tid. In the case of multiprocessors the termin
with & host dependent methnd for killing a process. If pvu
will be 0. If sume error occurs then info will he < 0.

e PVM process
ate signal is replaced
kill Is suceessful. info

pymkill js nut designed to kill the calling process. To kill vuuself ju € call

:)vm.ﬂxit() followed by exit(}. Tro kill yourself in Tortran call pvinfexit followed
by stop.

member of multiple groups simultaneously.

Examples
C:
inum = pvm_joingroup{ "worker" };
Fortran:
CALL PVMFIOINGROUR(’'group2’, INUM)
Errors

These error ennditions can be returned by pvm_joingroup

Name Pussible cause
PemSysErr pvid was aot started or has crashed.

PvmBadParam giving a NULL group name.
PymDupGroup trying to join a group you ace already in.

Examples
C:
info = pym_kill{ tid),
Fortran:
CALL PVYMFKILL(TID, INFO)
Errors

These error conditions can be returned by pvm_kill

Name Possible cause
PvmBadParam giving an invalid tid value,
PvmSysErr pvmd aot respuading.

- 103 -

pvmflvgroup() pvm_lvgroup()
wgearolls the calling process from a named group.
Synopsis
c int info = pvmlvgroup(char #group)
Fortran call pvmflvgroup(group, info)
Parameters
group - chasacter string gronp uame of an existing group.
info - integer status code returned by the routine. Values less
than zero indicate an ecror.
Discussion

The roatine pym lvgroup unenrolls the calling process from the group named
group. If there is an errur info will he negative.

If & process leaves a giowp by calling either pvmlvgroup or pvm_exit. and later
erjuins the same group, the process may be assigned a new instance number. Old
wstance nuihers are reassigned to processes calling pvoi_joingroup.

Examples
C:
info = pvm_lvgroup{ “"worker" J:
Fourtran:
CALL PVMFLVGROUF(’group2’, INFQ)
Errors

These ercor conditions can be returned by pvmlvgroup

Natae Possible cause

PvimSysLn pyind not eespoading.

PemBadPaam giving a NULL group name.
. . .
PeiNoGeoup giving a non-existent group name.

PemNotInGroup asking toleave a group vou are not a member of.

- 104 -

pvmfmcast() pvm_mcast()

multicasts the data in the active message buffer to a set of tasks.

Synopsis

C int info = pvmncast(int *tids, int ntask, int msgtag)
Fortran call pvmfmcast(ntask, tids, msgtag, info)

Parameters
ntask - integer specifying the nmmber of tasks to be sent 1o
tids - integer array of length at least ntask coutaining the task
IDs of the tasks to be seat to.
msgtag — icteger message tag supplied by the user. msgtag should be
>=0,
infe - integer status code returned hy the routine. Values less
than zere indicate an error.
Discussion

The routine pvmmcast multicasts a message stored in the active send huffer to
ntask tasks specified in the tids array. The message is uot seat o the caller
even if its tid is in tids.. The content of the message can he distinguished by
msgtag. I pvmomcast is successful, info will be 0. If some error vecurs then
info will be < 0.

The receiving processes can call either pym_ecv ur pyimonrecy to receive their
copy of the multicast. pvmoncast is asynchronons. Computation on the sending
processor resumes as soon as the message is safely on its way to the receiving
processors. This is in coatrast to syachronows communication. during which
computation on the sending processor halts until the matching receive is executed
by the receiving processor,

pvin.mcast first determines which other pvimds contain the specified tasks. Then
passes the message to these pvmds which in tucn distribute the message to their
local tasks without further network traffic.

Multicasting is not supported by most multiprocessar vendors. Typically their
native calls oaly support broadeasting to all the user’s prowcesses on a multiproces-
sor. Because of this omission, pvin_meast may uot he an efficient communicatiog
method on some nultiprocessors except in the special case of broadeasting to all

PVM processes.

Examples

- 105 -

C:
infe = pvm_initsend{ PvmDataRaw };
info = pvm_pkint(array, 10, 1);
msgtag = & ;
infe = pum_mcast(tids, ntask, msgtag J;
Fortran:
CALL PVMFINITSEND{PVMDEFAULT)
CALL PYMFPACK(REAL4, DATA, 100, 1, INFD
CALL PVMFMCAST{ NPROC, TIDS, &, INFO
Errurb’

These ermpr conditions can be returned by pvm mcast

- 166 -

pvmfmkbuf() pvm_mkbuf()

Naue Possible cause
PvmBadParam giving a msgtag < 0.
PrmSysErr pvind not responding.
PvmNoBuf no send buffer.

creates a uew message huffer.

Synopsis

C int bufid = pvmmkbuf(int encoding)
Fortran call pvmfmkbuf(enceding, bufid)

Parameters
encoding - integer specifying the huffer’s encodiog schrme.
Optinas in C are:
Encending value MEANING
PvmDataDefault 0 XDR
FvmDataRaw 1 oo encoding
PvmDatalnPlace 2 data left in place
bufid - integer message buffer identifier returned. Values less than
zero indicate an error.
Discussion

The routine pvm mkbuf creates a uew message buffer and sets its ence wing status
trencoding. If pvimankbufis successful. bufid will he the ideatifier for the new
buffer, which can be used as a send buffer. If some ermor veeurs then bufid will
be < 0.

With the default setting XDR encoding is used when packing the essage because
PVM can aot know if the user s golag to add a heteragenenus machine hefore this
message is seat. The other options to epcoding allow the user to take advantage of
kuowledge about his virtual machine even when it is heterogeneous. Tor example.
if the user kuows that the next message will only be sent to a machine that
inderstands the native format, then he can use PvmDataRaw encoding and save
o encoding costs. ’

PvmDatalnPlace encoding specifies that data be left i place during packing.
The message buffer only contains the sizes and pointers to the ems to he sent.
When pvm send is called the items are capied directly out uf the yser's mesmory.
This option decreases the number of times a message is copied at the expense of
requiring the user to aot modify the items hetween the tine they are packed and
the time they are seat. The PvmDatalnPlace is alse uot implemented in PVM
3.2,

pym_mkbuf is required if the user wishes to manage multiple message buffers and
should be wsed in conjuuctinon with pvinfreebuf. pvm freebuf should he called
for a send buffer after a message has been sent and is an lnnger needed.

- 167 -

Receive huffers are created automatically by the pvm_reev and pvin_arecy rou-

tines and do oot have to be freed unless they have been explicitly saved with
pvm sefebuf.

Ty pically multiple send and receive haffers are not needed and the user can simply
use the pvin_initsend routine to reset the default send buffer,

There are several cases where multiple buffers are wseful. One example where
multiple message buffers are needed involves libraries or graphical interfaces that
use PYM and interact with a ruuning PVM application but do aot want to
interfers with the application's own eommunication.

When maltipte buffers are used they gererally are made and freed for each mes-
sage that is packed.

FExamples
C:
bufid = pvm_mkbuf(PvmDataRaw);
/% gend message */
info = pvm_freebuf(bufid);
Fortran:

CALL PVMFMKBUF (PVMDEFAULT, MBUF)
* SEND MESSAGE HERE
CALL PVMFFREEBUF(MBUF, INFOD)

Errors

These error condition can he returned by pym_nkbuf

Name Possible canse

PymBadParam giviug ae jnvalid encoding value,

PvmNoMem Malloe has failed. There is not enough memnry
tor create the huffer

- 108 -

pvmfmstat() pvin_mstat()

returns the status of a host in the virtual machine.

Synopsis

C int mstat = pvmmetat(char shost)
Fortran <call pvmfmstat(hest, mstat)

Parameters
host - character string containing the host name.
mstat - integer returnivg machine status:
value MEANING
PvinQOk hest is OK
PvinNoHost host is not in victual machine
PvmHostlail host is unreachable (and thus possibly failed)
Discussion

The routine pymmstat returns the status mstat of the computer named host
with respect to ruaning PVM processes, This routine can be used tu determine
if a particular host has failed aad if the virtual machine aeeds to he reconfigured.

Examples

C:

mstat = pvm_mstat("mar.ornl.gov")
Fortran:

CALL PVMFMSTAT(’msr.ornl.gov’, MSTAT)

Errors
These error conditions can be returned by pymmstat

Nate Possible cause

PvmSyshir pviud pot responding.
PvinNoHost giviag a host name uot in the virtual machine.

PvinHostTail host is unreachable (and thus possibly failed).

- 109 -

pvmfmytid() pvm_mytid()

returns the #/d of the process

Synopsis

C int tid = pvmmytid(void)
Fortran call pvmfmytid(tid }

Parameters

tid - integer task identifier of the calling PVM process is re-
turned. Values less than zero indicate an error.

Discussion

The reutine eprolls this process into PVM oa its first call and generates a unigue
tid if this process was not created by pvm_spawa. pvmoanytid returns the tid
of the calling process and can he called multiple times in an applicatios. Any
PVM system call (not just pvmonytid) will enroll a task in PVM if the task is
nod enrolled before the call.

The tid is a 32 bit pusitive integer created by the local pvind. The 32 bits are
divided into fields that encode various infornation about this process such as its
tocation in the virtual machine {i.e. local pvind address). the CPU number in
the case where the process is nn a multiprocessor, and a process ID field. This
informating is used by VM and is not expected to be used by applicaticns.

If PYM has not been started before an application calls pvm_mytid the returaed
tid will he < 0.

Examples
C:
tid = pvm_mytid();
Fortran:
CALL PYMFMYTID(TID }
Errors

This error condition can be returned by pvmmytid

Name Possible cause
PvmSysErr pvind aot responding.

- 110 -

pvmfnotify() pvin_notify()

Request aotification of PVM event such as host failure,

Synopsis

C int info = pvm_notify(int what, int msgtag,
int cnt, int *tids)
Fortran call pvmfnotify(what, msgtag, cnt, tids, info)

Parameters
what = integer identifier of what event should trigger the autifica-
tion. Tresently the aptives are:
value MEANING
PvTaskExit notify if task exits
PvmBostDelete notify if host is deleted
PvinHost Add notify if hast is added
magtag -~ integer message tag to be used in notification,
cnt - integer specifying the length of the tids a rray fur Pvimn-

TaskExit and PvmHostDelete, Fur PvinHost Add specifies
the number of times to potify.

tids - integer array of length ntask that coutains a st of task er
pvind tids to be notified. The array should be ey with
the PvmBEostAdd optioa.

info — integer status cinde returned by the routine. Values less
than zero indicate an error.

Discussion

The routine pvmnotify requests PVM to notify the caller on detecting certain
events. [u response to a uotify request. some nmber of messages (gee helow) are
sent by PVM back to the calling task. The messages are tagged with the code

(msgtag) supplied to notify.

The tids array specifies who to wonitor when using TaskExit or HostDelete, it
contains nothing when using Hostddd, If required, the routives pvinconfig and
pvin_tasks can be used to obtain task and pvind tids,

The potification messages have the following fermat:

PvmTaskExit One notify message for each tid requested.

The message body
contains a single tid of exited task.

PymHostDelete One message for eack tid requested. The mess

age bady contains
a single pvind-tid of exited pvind.

PvmHostAdd Up to cnt aolify messages are seat. The message body contains an
integer count followed by a list of pvmd-tids of the pew pvmds. The counter of

- 110 - 112 -

PvmHostAdd messages remaining is updated by seccessive calls to pvm_notify. pvmfnrecv() pvm_nrecv()
Specifying a cnt of -1 turns on PvimEostAdd messages until a future notify; a

couat of zero disables them. -

Tids in the antify messages are packed as integers. nan-blockiag receive.

The calling task(s) are responsihle for receiving the message with the specified
msghag and taking appmpriate action. uture versions of PVM may expand the
list of available notificatinn events. C int bufid = pvmnrscv{ int tid, int msgtag)
Fortran call pvmfnrecv(tid, msgtag, bufid)

Synopsis

Nuote that the notify request is “consumed” - e.g. 2 PvmHostAdd teqest gener-
ates asingle reply niessage.

Parameters
Examples tid — integer task identifier of sending process supplied by the
user. (A -1 in this argument matches any tid {wildcard).)
e g . megtag — Integer message tag supplied by the user. msgtag should
Fort info = pvm_notify(PvmHostAdd, 9999, 1, dummy) be >= 0. (A -1 in this argument matches any message tag
ortran: CALL PYRFKOTIEVC Py {wildeard).}
PYMKOSTDELETE, 1112, NPROC, TIDS, INFO) bufid - integer returning the value of the new active receive buffer

¥rrors identifier. ¥alues less thaa zero indicate an error.

Name Possible cause Discussion

PvmSysErr pemd not responding. , R .] :

PemBadParam giviag an invalid acgument valie, The routine pvmnrecy checks to see if a message with Jabel msgtag has arrived

from tid. [f a matching message has arrived pvmonrecy immediately places the
message 0 a new active receive huffer, which also clears the current receive huffer
i any, and returns the buffer identifier in bufid.

If the requested message has not arrived. then pvin_nreev immediately returns
with a ¢ ia bufid. If some error occurs bufid will be < 0.

A -1 in magtag or tid matches anything. This allows the user the following
options. If tid = -1 and msgtag is defined by the user, then pvm_nrecv will
accept a message from any process which has a matching msgtag. [f msgtag
= —1 and tid is defined by the user. then pvm_nrecv will accept any message
that is sent from process tid. If tid = —1 and msgtag = — 1. then pym_nrecv will
accept any message from any process.

pvm_nrecy is aon-blocking in the sense that the routine always returns iinmnedi-
ately either with the message or with the information that the message has rot
arrived at the local pvind yet. pvm_nrecy can be called multiple tines to check if
a giver message has arrived yet. I addition pvm_recv can be called for the same
nessage if the application runs ont of work it could do before receiving the data.

[f pvm_arecy returns with the message. then the data in the message can he
unpacked into the user's memory using the uapack mutines.

The P¥M model guarantees the following about message order. If task 1 sends
message A to task 2. then task | sends message B to task 2, message A will arrive
at task 2 hefore message B. Moreover. if both messages arrive hefors task 2 does
a receive, then a wildcard receive will always return message A,

< 113 - <11 -

Examples P"mfpa(‘k(} [)VIll_pk*()
C:

tid = pvm_parent(); pack the active message huffer with arrays of prescribed data tvpe
megtag = 4 ;

arrived = pvm_nrecv(tid, msgtag); Synopsis
if(arrived > 0) c
info = pvm_upkint(tid.array, 10, 1); int infe = pym_packf(const char *fmt, ...)
else . int info = pvm pkbyte(char =*xp, int nitem, int stride)
5 /* go do other computing */ int info = pvm_pkcplx(float *Cp, int nitem, int stride)
ortran: int infe = pvm_pkdcplx(double *zp, int nitem, int stride
CALL PVMFNRECV(-1, 4, ARRIVED) int info = Evm:gkdozbli(double *dg, int nitem, int stride ;
Sl i -GT(.,'KC(] ;N?E{Z?Ftlm TIDS, 25, 1, INFO) int info = pvm_pkfloat(float #fp, int nitem, int stride)
g:ti g\‘;:gg:g:cx(REALS, MATRIX, 100. 100, INFO) int Info = pvm.pkint(int eip, int aitem, int stride)
int info = pvm_pkuint(unsigned int *ip, int nitem, int stride)
ELSE int info = pvm_pkushert(unsigned short #ip, int nitem, int stride)
* GD DO USEFUL WORK int infe = pvm_pkulong{ unsigned long *ip, int nitem, int stride)
ENDIF int info = pym_pklong(long *ip, int nitem, int stride)
int info = pvm_pkshort(short =ip, int nitem, int stride)
Errors int info = pvm_pkstr(char wap)
These error conditions can he returned by pvm.nrecy. Fortran
Kaine Puossible cause call pvmfpack(what, xp, nitem, stride, info)
PvmBadParam giving an invalid tid value or msgtag.
PvmSysErr prmd not responding. Parameters
fmt - Printflike format expressiog specifylug what to pack. (See discus-
sion).
nitem - The total aumber of idems ta be packed {ant the number of hytes).
stride - The stride to be used when packing the items. Torexample, if steide=
2 in pvm_pkeplx, then every sther complex nwber will be packed.
Xp = polater to the begianing of a block of bytes, Can be any data type.
but must match the cortesponding napack data type.
cp - complex array at least aitem*stride [tems long.
zZp = double precisivn complex array at least nitem*stride items long.
dp = double precision real array at least nitem*stride Mems long.
fp - real array at least pitem*stride items long.
ip - ivteger array at least nitem*stride jtems long.
ip - integer*2 array at least nitem*stride jtems long.

sp = polater to a null terminated character string.

- 113 -

what - juteger specifying the type of data being packed.
what options
STRING 0t REAL4 1
BYTEL 1 COMPLEX8 3
INTEGER2 2 REALS]
INTEGER4 3 CCMPLEX16 T
info - integer status code returned by the routine. Values less than zero

indicate an errog.

Discussion

Fach of the pvm_pk# routines packs an array of the givea data type into the
active send buffer. The arguments for each of the routines are a pointer to the
first item to be packed. nitem which is the total number of items to pack from
this array. and stride which s the stride to use when packing.

An exception is pvio-pkstr() which by definition packs a NULL terminated char-
acter string and thus does not need nitem or stride argumerts. The Tortran
routine pvinfpack(STRING. ...) expects nitem to be the number of characters
in the string and stride to he 1.

If the packing is successful. info will he 0. If some ercor occuss then info will
be < 0.

A single variable {pot ag array) can he packed by setting nitem= 1 and stride=
1. C structures have to be packed one data type at a thne.

The toutiae pyvm_packf() uses a printflike format expression to specify what and
hiw to pack data into the sead bhuffer. All variables are passed as addresses if
count and stride are specified; otherwise, variables are assumed to e values. A
BNT-like description of the fermat syutax is:

format : null | init | format fmt

init : null | Y% ¥

fmt : *Y%’ count stride modifiers fchar
fchar : *c’ | d* | *f7 | "x* | '8’
count : null § [0-9]+ | %’

stride : null | *.* { [C-9]+ | '*x*)
modifiers : null | modifiers mchar
mchar : *h’ | '1’ | 'u’

Formats:
+ means initsend - must match an int (how) in the param list.
pack/unpack bytes
integers
float
complex float
string

v oW HooLn

- 114 -

Modifiers:
k short {int)
1 1leng (int, float, complex float}
u unsigned (int)

"#' count or stride must match an int in the param list.

Future extensions to the what argument in pvmfpack will include 61 bit types
when XDR encoding of these types is avallable. Meanwhile users should be aware
that precision can be lost when passing data frem a 61 bit machine like a Cray
to a 32 bit machine like a SPARCstation. As a mpemonic the what argument
name includes the number of bytes of precision to expect. By setting encoding
to PYMRAW (see pvinfinitsend) data can be transferred between twn 64 bit
machines with full precision even if the PYM configuration is heterogeneous.

Messages should be unpacked exactly like they were packed to insure data in-
tegrity. Packing integers and unpacking them as floats will nften fail because a
type encoding will have occurred transferring the data between heterogensous
kosts. Packing 10 integers and 100 floats then trying to unpack only 3 integerss
and the 100 floats will also fail.

Examples

C:
info = pvm_initsend(PvmDataDefault);
info = pvm_pkstr{ "initial data");
info = pvm_pkint{ &size, 1, 1);
info = pvm_pkint(array, size, 1);
info = pvm_pkdouble{ matrix, sizessize, 1);
msgtag = 3 ;
infe = pvm_send{ tid, msgtag);
Fortran:
CALL PVMFINITSEND(PVMRAW, INFQ)
CALL PVMFPACK(INTEGER4, NSIZE, 1, 1, INFO)

CALL PVMFPACK(STRING, ’Tow S of NXN matrix’, 18, 1, INFO)

CALL PVMFPACK(REAL8, A(5,1), NSIZE, NSIZE , INFO)
CALL PVMFSEND(TID, MSGTAG, INFO)

Errors

Naune Possible cause
PvmNoMem Malloc has failed. Message buffer size lins ex-
ceeded the available memory on this host.

PvmNoBuf There is 0o active sead buffer to pack inte. Try
calling pvm.initsend before packing MPeSSage.

pvmfparent() pvim_parent()

retures the tid of the process that spawned the calling process.
Synopsis

C int tid = pvm_parent(void)
Fortran call pymfparent(tid)

Parameters
tid - integer returns the task identifier of the parent of the call-
ing process. I the calling process was not created with
pvmspawn, then tid = PvmNoParent.
Discussion

The routine pvm_parent returns the tid of the process that spawned the calling

process. If the calling process was not created with pvm_spawn, then tid is set
tn PvinNaParent.

Examples
C:
tid = pvm_parent(};
Fortran:
CALL PVMFPARENT(TID)
Errors

this error conditivg can be returned by pvm_parent.

Naie TPossible cause
PvimNoTarent The calling process was
pVIn_Spawi.

not created with

- 118 -

pvimfperror() pvm_perror()

prints the error status of the last PVM call.
Synopsis

C int info = pvm_perror(char #msg }
Fortran call pvmfperror{ msg, info)

Parameters
msg - character string supplied by the user which will be
prepeaded to the error mmessage of the last PYM call.
info - integer status code returned by the routiar. Values less
than zero indicate an ernor.
Discussion

The routine pvm_perror returns the error message of the last VM call. The user

can use msg to add additional inforination to the error message, fur example, its
location.

All stdout and stderr messages are placed in the file /tmp/pvinl. <uid> oo the
master pvind's kost.

Examples
C:
if{ pvm_send(tid, magtag);
pvm_perror();
Fortran:
CALL PVMFSEND(TID, MSGTAG)
IF(INFO .LT. 0) CALL PVMFPERROR(*Step 67, INFO)
Errors

No error ceadition is returned by pvm_perrer.

- 119 - . 120 -

pvmfprecv() pvin_precv() PYM_BYTE byte
PVM_SHORT short
PVM_INT int
Receive a message directly into a huffer. PVM_FLOAT real
PYM_CPLX complex
Synopsis PYM_DOUBLE double
N . . : ; DCPLX doubl lex
C int info = pvmpsend{ int tid, int msgtag, : FVM eubte comp
i i PVM_LOKG long integer
char *buf, int len, int datatype) PYM_USHORT unsigned shert int
int atid, int atag, int alen) VI UIRT e i
Fortran call pvmfpsend(tid, msgtag, buf, len, datatype, - _g .
. : PVM_ULONG unsigned long int
atid, atag, alen, info)
Parameters In Tortran the same data types specified for pymfunpack() should be used.
tid - lnteger task identifier of sending process (to match). The PVM wmodel gunarantees the {ollowing about message order. If t.ask’ 1 sends
.] . N S hould } message A to task 2. then task | sends message B to task 2, message & will acrive
msgtag - luteger message tag (to match) msgtag should he >= 0. at task 2 hefore message B. Moreover, if both messages arrive befure task 2 does
buf - Dointer to a buffer to receive into. a receive, then a wildeard receive will always return message A.
len - Length of buffer (in multiple of data type size). , \ . , . , .

)) pvm_precv is blocking which means the routine waits until a message matching
datatype — Type of data tu which buf poiats {see helow). the user specified tid and msgtag values arrives at the local pvind. If the message
atid - Returns actual TID of sender. has already arrived then pvm_recy returns inmediately with the message.
at ?g - Dteturus actual message tag. prm_precv does aot affect the state of the cucrent receive message buffer (created
atid - Returns actual inessage length. by the other receive functions).
info - lnteger status cocdle returned by the routine. Values less

than zero lndicate an ecror. Examples
Discussion C:
infe = pvm_precv(tid, msgtag, array, cnt, PVM_FLOAT,
The routive pvo_precy blocks the process uatil a message with lahel magtag has ksrc, katag, &acat);
arrived from tid. pvm_precy then places the contents of the message in the Fortran:

supplied buffer, buf, up to a waximwn leagth of len * (size of data type). CALL PVMFPRETV(-1, 4, BUF, CNT, REAL4,

pyii.precy can receive messages sent by pvm_psend, pvin_send, pvim_mcast, or SRC, ATAG, ACNT, INFQ)
pvin_beast.

A -1 i msgtag or tid matches anything. This allows the user the following Errors

options. If tid = -1 and msgtag Is defined by the user, thea pvm_precy will These error conditions can be retiurned hy pvm_prec
accept a message from any process which has a watching msgtag, If msgtag

= -1 and tid is defined by the user, then pvm_precy will accept any message Name Possible cause

that is sent from process tid. If tid = —1 and msgtag = -1, then pvm_precy will PvmBadParam givisg an invalid tid or a msgtag.
accept any message from any process. PymSysErr prmd not respoading.

Lu C the datatype parameter must be one of the following, depending on the type
of data to be sent:

datatype Data Type
PYM_STR string

- 121 -
pvimfprebe() pvm_probe()
check if message has arrived
Synopsis
C int bufid = pvmprobe{ int tid, int msgtag)

Fortran call pvmfprebe(tid, msgtag, bufid)

Parameters
tid - integer task identifier of sending process supplied by the
user. (A -1 in this argument matches any tid {(wildcard).)
msgtag - Integer message tag supplied by the user. msgtag should
be >= 0. {A -1 in this argument matches any message tag
[wildcard).)
bufid - integer returning the value of the new active receive huffer

identifier. Values less than zero indicate an error.

Discussion

The routine pym_probe checks to see if a message with label msgtag has arrived
from tid. 1f a matching message Las arrived pvm_probe returns a huffer identifier
in bufid. This bufid can be used in a pvinhufinfo call to determine infornation
abont the message such as its sowrce and length.

If the requested message has not arrived. then pvm_probe returns with a 0 in
bufid. If some ecror occurs bufid will he < 0.

A -1 in magtag or tid matches anything. This allows the user the following
optings. If tid = -1 and msgtag is defined by the user. then pvm_probe will
acrept a message from any process which has a matching msgtag. If msgtag
= -1 aud tid is defined by the user. then pvaprobe will accept any message
that is sent from process tid. If tid = -1 and msgtag = —1. then prm_probe will
accept any message from any process,

pvn.probe can he called multiple tines to check if a given message las arrived
vet, After the message has artived, pvinorecy must he called before the message
can be unpacked into the user’s memory using the unpack routines.

- 192 -

Examples
C:
tid = pvm_parent();
msgtag = 4 ;
arrived = pvm_probe(tid, msgtag);
if(arrived » 0)
info = pvm_bufinfo{ arrived, klen, &tag, &tid);
else
/* go do other computing */
Fortran:
CALL PVMFPROBE(-1, &, ARRIVED)
I¥ (ARRIVED .GT. ©) THEN
CALL PVMFBUFINFO{ ARRIVED, LEN, TaG, TID, INFO)
ELSE
* GO DO USEFUL WORK
ENDIF
Errors

These error coaditions can be returned by pvm_probe.

Name Possible cause

PvmBadParam giving an invalid fid value or msetag.
PvinSysErr pvind oot respunding.

- 123 -

S121 .

pvmfpsend() pvm_psend() PVK_DCPLX double complex
BVM_LONG long integer
PYM_USHCRT unsigned shert int
Pack and send data in one call. PVYM_UINT unsigned int
PVM_ULONG unsigned long int
Synopsis
C int info = pvm_psend(int tid, int msgrag, In Tortran the same data types specified for pack should he used.

char *buf, int len, int datatype

The PVM model guarantees the following about message oeder. If task 1 sends
Fortran call pvmfpsend(tid, msgtag, buf, len, datatype, info)

message A to task 2, then task 1 sends message B to task 2. message A will arrive
at task 2 hefore message B. Moreover, if both messages arrive before task 2 does

Parameters a receive. then a wildcard recejve will always retura message A
tid - integer task identifier of destination process. pvin-psend does not affect the state of the current outgoing message bhuffer (ce-
msgtag — integer imessage tag supplied by the user, msgiag should he ated by pvinnitsend and used hy pvimnsend).
>= 0.
buf - Pointer to a buffer to send, Examples
len - Length of huffer (in multiple of data type size). o
t - Fre ta to which 1 int 2 % ’ : .
datatype Type of data to which huf points (see helow) info = pum_psend(tid, msgtag, array, 1000, PVM_FLOAT)
infe - integer status code returned hy the roatine. Values less Fortran:
thaa zero indicate an error. CALL PYMFPSEND(TID, MSGTAG, BUF, CNT, REAL4, INFO)
Discussion Errors

The routize pym_psend takes a pointer to a buffer buf its length len and its data These error conditions can be geturaed by pym_psend
type datatype and seads this data directly to the PVM task idertified by tid. ’
Name Possible cause

pvin_psend data can be received by pvm_precy. pvm._recy, pym_trecv, or pvm_arecy. — - —
PvmBadParam giving an invalid tid or a msgtag.

msgtag is used to label the content of the message. H pvm_psend is successful.

. " . PvinSysErr pvind not respending.
info will he 0. If some error occurs then info will be < 0. ¥ I : &

The pvm_psend routine is asyochronous. Computation on the sending processor
resuines as sonh as the message is safely on its way to the receiviag processor.
This is in contrast to synchronous communication, during which computation on
the sending processor halts notil the matching receive is executed by the receiving
ProOCesRaT,

In C the datatype parameter must be one of the following, depeading on the type
of data to be sent:

datatype Data Type
FVM_STR string
PVM_BYTE byte
PVM_SHORT short
PYM_INT int
PVM_FLOAT real
PVM_CPLX complex

PVM_DOUBLE double

- 123 -

pvinfpstat() pvm_pstat()

returns the status of the specified PVM process.

Synopsis

C int status = pvm pstat{ tid }
Fortran call pvmfpstat(tid, status)

Parameters
tid - integer task identifier of the PVM process in question.
status - integer returns the status of the PVM process identified by
tid. Status is PvinOk if the task is running, PvnNoTask
if not, and PvimBadParam if the tid is bad.
Discussion

The routine pym_pstat returns the status of the process identified by tid. Also
ante that pvin_notify(} can be used to notify the caller that a task has failed.

Exainples
C:
tid = pvm_parent{);
status = pvm_patat(tid);
Fortran:
CALL PYMFPARENT(TID)
CALL PYMFPSTAT(TID, STATUS)
Errors

The fullvwing ecrer conditious can be returned by pvm_pstat.

Naune Tossible cause

PvinBadParamm Bad Parameter mnst likely an invalid tid value.

PvinSysErr pyaud aut responding.

PviiNoTask Task nut running.

- 126 -
pvmfrecv() pvim_recv()
receive a message
Synopsis
C int bufid = pvmrecv(int tid, int msgtag)

Fortran <call pvmfrecv{ tid, magtag, bufid)

Parameters
tid - integer task ldentifier of sending pracess supplied by the
user. (A -1 in this argument matches any tid (wildeard).)
msgtag - integer message tag supplied by the user. msgtag shouid be
>= 0. It allows the user's program to distinguish hetween
different kKinds of messages . (& -1 in this argument mmatches
any message tag {(wildcard).)
bufid - inoteger returns the value of the new active receive huffer
identifier. Values less than zero indicate an error.
Discussion

The routine pvmrecy blocks the process untll a massage with label msgtag las
arrived from tid. pvw_recy then places the message in a new active receive huffer.
which also clears the current ceceive huffer.

A -1 in magtag or tid matches anything. This allows the user the following
optioes. If tid = —1 and nsgtag is defined by the user. then pyvorecy will aceept
a message {rom any process which has a matching msgtag. If msglag = —1 and
tid is defined by the user, then pvm_recy will accept any message that is seqt
from process tid. If tid = —1 and msgtag = -1, then pvmrecv will accept any
message from any process.

The PVM madel guarantees the followlng about message order. If task 1 sends
message A to task 2, then task 1 sends message B to task 2. message 4 will arrive
at task 2 before message B. Moreover, if buth messages arrive hefore task 2 does
a receive, then a wildcard receive will always return message A.

If pvin_recy is successful, bufid will be the value of the new active receive huffer
identifier. If sowe error occurs then bufid will be < 0,

pvmnrecv is blocking whick means the routine waits watil 2 message matching the
user specified tid and msgtag values arrives at the local pvmd. [f the Inessage
has already arrived then pym_recv returns immediately with the inessage.

Once prm_recy returns, the data in the message can be unpacked into the user's
memory using the unpack routines.

- 127 - S 12% -

Examples _ pvm_recvf()

C:

tid = pvm_parent(); redefines the enmparison function used to accept messages,
msgtag = 4 ; '

bufid = pvm_recv(tid, msgtag); Synopsis
info = pvm_upkint{ tid_array, 10, 1);
info = pvm_upkint(problem_size, 1, 1 }; C int {*01d)() = pvm_recvi({ int (*new){ int bufid,
infe = pvm_upkfloat{ input_array, 100, 1 }; int tid, int tag))
Fortran: Fortran NOT AVAILABLE
CALL PVMFRECV(-1, 4, BUFID)
CALL PVMFUNPACK({ INTEGER4, TIDS, 25, 1, INFQ) Parameters
CALL PVMFUNPACK{ REAL8&, MATRIX, 100, 100, INFO) tid ~ integer task identifier of sending process supplied by the
LUser.,
Errors tag - integer message tag supplied by the user.
These error conditions car be returned by pem_recy bufid - isteger message buffer identifier.
Name Pussible cause . Discussion
PvinBadParam giving an invalid tid value. or msgtag < —1{.
PvmSysErr prmd not responding. The routine prm_recvt defines the comparison functing to he used by the prm_recy

and pvm_arecv functiogs. [t is available as a means to costomize PVM message
passing. pvin.recvf sets a user supplied comparison function to evaluate messages
for receiving . The default comnparison fuaction evaluates the source aud Inessage
tag assoclated with all incoming messages.

pvuirecvf is intended for sophisticated C programmers who understand the func-
tion of such routines (like signal) and who require a receive routine that can match
on more complex message contexts than the default provides.

pvmrecvf returns 0 if the default matching function; otherwise. it returas the
matching function. The matching function shonld retucn:

Value Action taken
< 0 return immediately with this ercor code
0 do not pick this message
1 pick this message and do pot scan the rest
> 1 pick this highest ranked message after scanning them all

- 129 - - 130 -

Example: Implementing probe with recvf pvmfreduce() pvm_reduce()

#include "pvm3d.h"

Perforins a reduce eperation over members of the specified groups.
static int feundit = 0;

Syuopsis
static int
foo_match(mid, tid, code) C int info = pvm_reduce(void (*#func)(),
int mid; void *data, int count, int datatype,
int tid; int msgtag, char *group, int root)
int code; Fortran call pvmfreduce(func, data, count, datatypa,
{ msgtag, group, root, info)
int t, ¢, cc;
Parameters
if ((cc = pvm_bufinfolmid, (int*)0, &c, &)} < 0) func - Tuaction which defines the operation performed on the

return cc;
if ((tid == -1 || tid == t)
& (code == -1 || code == c))
foundit = i;

global data, Predefined are PymMax, PvinMio. PvinSum

and PvinProduct. Users can define their own function.
data - TDointer to the starting address of an array of local values.

Ou return, the data array on the root will be overwritten

return O; with the result of the reduce nperation nver the group.
}i-nt count - Integer specifying the number of elements in data array.
probe(src, code) datatype - integer specifying the type of the entries in the data array.
{ megtag - integer message tag supplied by the user. msgtag should Te

int (*omatch) {}; >=10.

int cc; group ~ Character string group vame of an existing growp.

root - Integer instance number of group member whe gets the re-

omatch = pym_racvf{foo_match}; sult.

foundit = 0; info - Integer status code returned by the mutine. Values less

if ({cc = pvm_nrecv(src, code)) < 0) than zero indicate an ercor.

return <c;

pvm_recvf{omatch); Discussion

return foundit;
3 The soutine pvm_reduce () performs global operations such as max. min. and sum

over all the tasks in a group, All groap members call pvin_reduce() with their
Errors local data, and the result of the red uction aperation appears on the user specified
root task root. The root task is identified by its instance number ja the oo,
Noerror conditions are returned by pvmrecvet The pvm supplies the following predefined global functivns that can be specified

in func.

PrymMin
PvmMax
PymSum
PrmProduct

- 131 - - 132 -

PvinMax and PvinMin are implemented for all the datatypes listed below. Tor Errors
complex values the minimumn [maximum] is that complex pair with the minimum . .
[maximuwm] medulus. PyvnSum and PvmProduct are implemented for for all the The following error ¢conditioas can be returced by pym_reduce
datatypes listed helow with the exception of PYM _BYTE and BYTE]. Kame Possible cause
C and Tortran defined datatypes are: PvmBadlaram giving an invalid argument value.
PvnNolost Calling task is uot in the growp.
C datatypes FORTRAN datatypes PvmSysErr local pvimd is not responding.
PYM_BYTE BYTE1
PVM_SHORT INTEGER2
PYM_INT INTEGER4
PYM_FLOAT REAL4
PYM_CPLX COMPLEX8
PVM_DOUBLE REALE
PVYM_DCPLX COMPLEX 16
PYM_LONG

A user defined function may be used used in func.

SYNQDPSIS for fune

€ void func(int *datatype, void *x, void *y,
int *num, int *info)

Fortran call func(datatype, x, y, num, info)

func is the base function wsed for the reduction gperation. Both x and y are
arrays of type specified by datatype with num entries. The arguments datatype
and info are as specified above. The arguinents x and num carrespond to data
and cizant above. The argunent ¥ contains recelved values.

Nete: pyvmoreduce() does not block. if a task calls pvioreduce and then leaves
the gronp before the root has called pvinreduce an error may occur.

The current algoritho is very shiople and mobust. & future implementation may
make more efficient use nf the architecture to allow greater parallelism.

Exam ples

C:
info = pvm_reduce(Pvaax, myvals, 10, PVM_INT,
msgtag, "workers", roottid);
Fortran:
CALL PVMFREDUCE(PvmMax, MYVALS, CCUNT, INTEGER4,
MTAG, ’workers’, ROOT, INFO)

13 - 134 -

pvm_reg_hoster() dépro<2312> arche<ALPHA> ip<80a95c43:0b3£> miucd09s>

When finished. the hoster should send a SM_STHOSTACK message back 1o the ad-
Negister this task as responsible for adding new PVM hLosts.

dress of the sender (the master prmd). The format of the reply message is:

Synopsis {
C #include <pvmsdpro.h> int tid // of host, must match request
int info = pvmreg hoster() string status // result lire from slave or error code
} 0O // implied count
Parameters . . .
The THDs in the reply must match those in the request. They may be in a
info - integer status code returned by the routine. different order, however.

The result string should contain the entire reply (a single line) from each new

Discussion slave pvmd, or an error code if something went wrong. Legal error codes age the

The routine pvm reg hoster registers the calling task as a PVM slave pvmd literal names of the pvmn_erran eodes, for example *“PvmCantStart™. The default
stacter, When the master pvind receives a DM_ADD inessage. instead of starting PVM hoster can return PvmDSysErr or PyvinCantStart. and the slave pvind itself
the new slave pvind processes itself. it passes a message to the hoster. which does can return PvmDupHost.

the dirty work and sends a message back to the pvnd. The hoster task must use pvm_setopt(PvmResvTids, 1) to allow sending reserved
Nute: This function isn’t for beginpers. If you don't grok what it does. you messages. Messages inust be packed using data format PvmDataloo.

probably doa’t need it.

For & muce complete explanation of what's going or here. you should refer to
the PVM source cade and/or user guide section on implementation; this is just
a wan page. That said..

When the master pvind receives a DM.ADD message {request to add hosts to the
virtual machine}, it looks wp the new host I addresses, gets parameters from the
host file if it was started with one, and sets default parameters. Tt then ejther
attempts to start the processes (using rsh or rerect}) or. if a hoster has registered,
sends 1t a SM_STHOST message.

The format of the SM_STHOST message is:

int nhosts // number of hosts

{

int tid // of host

string options // from hostfile so= field

string login // in form '‘[username®]hostname.domain’’
string command // to run on remote host

} [nhosts]

The hoster should attempt to run each command vn each host and record the
result. A command wsually Inoks like:

$PVM_ROOT/Lib/pymd -8 -d8 -nhonk 1 B0a®ca85:0f5a 4096 3 80a95c43:0000

and a reply froum a slave pyind like:

- 13-

pvm_reg_rm()

- 136 -

Libpvm call Sched. messare Normal message
| " g

Register this task as PVM resource manager.

Synopsis

C #include <pvmsdpro.h>
int info = pvm.regrm(struct hestinfo *+hip)}
struct hostinfo{
int hi_tid;
char *hi, name;
char *hi_arch;
int hi_ speed;
} hip;

Parameters

hostp - paoiater tan array of structures which contain information
about each host including its pvmd task ID, same. archi-
tecture, and celative speed.

info - integer status code returued by the routine. Values less
than zero indicate an error.

Discussion

The rontlne pvm.reg.om() registers the calling task as a PVM task and slave
hiost scheduler. This means it intercepts certain Libpvm calls from other tasks
in order to have a say in scheduling policy. The scheduler will asyachroaously
receive messages from tasks contairing requests for service. as well as messages
fromy pymnds aotifying it of system failures.

Before you start using this function. he warned that it's aot a trivial thiog, ie.
voucan’t just call it to turn off the default mund-robin task assignment. Rather.
it allows you to write your own schedider and hook it to PYM.

To understand what the fnllowing messages mean, you should refer to the PVM
suurce code and/or user guide section oo implementation; There's just too much
tn say about them.

When one of the following libpvm functivos is called in a task with resource
manager set, the given message tag Is sent to the scheduler.

pvinaddhosts() SM_ADDHOST TM_ADDHOST
pvinconfig() SM_CONTIG TM_CONTIG
prindelhosts() SMDELHOST TM DELHOST
pvm_notify() SM_KOTITY TMNOTITY
pvm_spawn(} SMSPAWN TMSPAWN
pvin_tasks() SM_TASK TM_TASK
pviniegsched() SM_SCHED TM SCHED

The resource mapager must in turn compose the following messages and send
them to the pvinds:

Sched. message Nocmal message

SM_EXEC DM _EXEC
SM_EXECACK DM.EXECACK
SM_ADD DM_ADD

SM.ADDACK DM_ADDACK
SM_HANDOTT (noae)

The following messages are sent asyuchronously to the tesource manager by the
system:

Sched. message Meaning
SM_TASRX notify of task exit /fall
SM_HOSTX antify of host delete /fail

The resnurce manager task must ase prinsetopt(PrmResvTids, 1) tar allow send-

ing reserved messages. Messages must he packed using data format PymDataloo.

S 137 - - 138 -

pvin_reg_tasker() int tid // of task

int status // the Unix exit status (from Iwait())
int u.sec // user time used by the task, seconds
int u_usec // microseconds

int s_sec // system time used by the task, seconds
int s_usec // microsecends

Register this task as respoasible for starting new PVM tasks.

Synopsis

¢ #include <pvmsdproc.h>

. . The tasker task must use pvin_setopt(PvimResvTids. 1) to allow sending reserved
int info = pvm_reg.tasker{) i

messages. Messages must be packed using data format PvmDataTen.

Parameters

info - integer status code returned by the routine.

Discussion

The reutine pvm_reg_tasker registers the calling task as a PVM task starter.
When a tasker is registered with a pvind, and the pvmd receives a DM_EXEC
message. instead of fork()ing and exec(}ing the task itself, it passes a message to
the tasker, which dues the dirty work and sends a message back to the pvind.

Note: If this doesa’t make sense. don't worry about it. This function is for
folks who are writing staff Lke debugger secvers and so on. For a more complete
explanation of what's going on here. you sheuld refer to the PVM source code
and/or user guide section on implementation; this is oaly a mae page. That
sald...

When the pvind receives a DM_EXEC message (request to exec new tasks), it
searches epath (the P'VM executable search path) for the file pame. If it finds the
file. it thea either attempts to start the processes (using fork() and exec(}} or. if
a tasker has registered. sends it a SM_STTASK message.

The format of the SM.STTASK message is:

int tid // of task

int flags // as passed to spawn()

string path // absolute path of the executable
int argc // number of args to process

string argvlarge] // args

int nenv // number of envars to pass to task
string env[nenv] // environment strings

The tasker must attempt to start the process when it gets one of these nessages.
The tasker doesn’t reply to the pvind if the task is successfully started; the task
will reconnect to the pvind on its own (using the identifier in envar PVMEPID).

The tasker must send a SM_TASKY message to the pvmd when any task that it

owns (has started) exits, or H it can't start a particular task. The format of the
SM_TASKX message is:

- 139 - - 1490 -

pvmfscatter(} pvm_scatter() The carrent algorith is very simple and robust. Tuture implementations will
make more efficient use of the architecture to allow greater paralielisni.

one group member sends a different portion of an array to each group member.

Examples
Synopsis C:
info = pvm_scatter(&getmyrow, &matrix, 10, PVM_INT,
C int info = pvm_scatter(void *result, void *data, msgtag, "werkers", rootginst);
int count, int datatype, int msgtag, Fortran:
char *group, int rootginst) CALL PVMFSCATTER{GETMYCOLUMN, MATRIX, COUNT, INTEGER4,
Fortran call pwmfscatter{result, data, count, datatype, MTAG, *workers’', ROOT, INFD)
msgtag, group, rootginst, info)
Errors
Parameters
result - Dulnter to the starting address of an array of length count These ecror conditings can be returned by pvm_scatter
of datatype Name Pussible cause
data - Ou the root this is a pointer to the stacting address of an PvinBadParain giving an invalid argument value,
array datatype of local values which are to be accumulated PvinNolast Calling task Is not in the group.
from the members of the graup. This array should be of PvmnSysErr local pvmd is ant respondicg.
length at least equal to the number of group members. times)
count, This argument is significant oaly oa the root,
count - Integer specifying the number of array elements to be sent
tn each member of the group from the root.
datatype -~ Integer specifying the type of the entries in the result and
data arrays. Tor a list of supported types see pvi_psend(}.
msgtag = luteger message tag supplied by the user. msgtag should he
>= 0.
group - Character string group name of an existing group.
rootginst - lnteger instance numher of group member who performs the
gather uf the messages from the members of the group.
infe - loteger status cude returned by the routice. Values less
than zery indicate an error.
Discussion

pvimscatter() performs a scatter of data from the specified root member of the
group to each of the members of the group, including itself. All group members
must call pyum scatter(), and each receives a partion of the data array from the
enot in their local Tesult array. pvm_scatter() is the inverse of pvm_gather().
The firzst couat eatries in the root data array are sent to group member 1, the
next couat eutries to group member 2, and so oo,

In using the scatter and gather routines. keep in mind that C stores multidimen-
sional arrays in row nrder, typically starting with an initial index of 0; whereas.
Turtran stores arrays in column vrder, typically starting with an index of 1.

S 141 -

pvmfsend() pvm_send()

sends the data jn the active message huffer.

Synopsis

C int info = pymsend{ int tid, int magtag)}
Fortran call pvmfsend(tid, msgtag, info)

Parameters
tid - integer task identifier of destination process.
msgtag - integer message tag supplied by the user. msgtag should be
>= 0.
info - integer status code returned by the routine. Values less
than zerw indicate an error.
Discussion

The rontine pvm_send sends a message stored in the active send buffer to the PVM
process identified by t1id. megtag is used tu label the content of the message. T
pracsend is successtul, info will be 0. If some error uccurs then info will be
< 0.

Tle pvinsend roatine is asyachronous. Computation on the sending processor
resiues as sona as the message is safely on its way to the receiving processer,
This Is in contrast to synchroneus commnuuication, during which computation on
the sending processor halts until the matching recejve is executed by the receiving

PPINCERSSNL.

pvinsend first checks to see if the destination is vn the sane machine. I so
and this host s a multiprocessor then the vendor's underlying message passing
routines are used to move the data hetween processes.

Exainples

C:
info = pym_initsend(PvmDataDefault);
info = pvm_pkint(array, 10, 1):
magtag = 3 ;
info = pvm_send(tid, msgtag J;
Fortran:

CALL PVMFINITSEND(PVMRAW, INFO)
CALL PVMFPACK(REAL8, DATA, 100, 1, INFO)
CALL PVMFSEND(TID, 3, INFO)

Errors

112 -

These error conditions can be returned by pym_send

Name Possible canse

PvmBadParam giving an invalid tid or a msgtag.

PvmSysErr pvind sot respoading.

PvmNaoBuf oo active send buffer. Try calling pvindnitsend()

hefore sending.

- 143 -
pvinfsendsig() pvm_sendsig()
o
sends a signal to another PYM process
Synopsis
C int info = pvmsendsig(int tid, int signum)

Fortran call pvmfsendsig(tid, signum, info)

Parameters
tid - integer task identifier of PVM process to receive the signal.
signum - integer signal number.
infe - integer status code returaed by the routine. Values less
than zero indicate an error.
Discussion

The routine pvmsendsig sends the signal number signum to the PVM process
ideutified by tid. If pvm_sendsig is successful. info will he 0. If some error
veenrs then info will be < 0,

pvinsendsig should ouly be wsed by programmers with signal baadling experi-
ence. It is very easy in a parallel environment for interrupts to cause nonde-
tezministic hehavior, deadiocks, and even system crashes. Tor example, if au
interrupt is caught while a process Is inside a Unix kecnel call. then a graceful

reeovery may not he possible.

Examples
C:
tid = pvm_parent(};
info = pwm_sendsig{ tid, SIGKILL);
Fortran:
CALL PYMFBUFINFO({ BUFID, BYTES, TYPE, TID, INFO J;
CALL PVMFSENDSIG{ TID, SIGNUM, INFO)
Errors

These error conditiuns can be returned by pvm_sendsig

Name Pussible cause
PvmSysErr pvind not responrding.

PvmBadParam giving an invalid tid value.

11t -

pvmfsetopt() pvm _setopt()

Sets various ibpvm opticas

Synopsis

C int oldval = pvmsetopt(int what, int val }
Fortran call pvmfsetopt(what, val, oldval)

Parameters
what - Integer defining what is belng set. Qptions include:

Optice value MEANING

PvmRoute I ruuting poley

PvmDebugMask 2 debugmask

PvmAutoErr 3 auto error reporting

PvmOutputTid 1 stdeut device fur children

PvmOutputCode 3 output msglag

PvmTraceTid 6 trace device for children

PvaTraceCode 7 trace msgtag

PvmFragSize 8 message fragment size

PvmResvTids 9 Allow messages to reserved tags and TIDs
PvmBelflutputTid 10 Stdout destinatinn

PvmSelfCutputCode 11 OQutput message tag

PvmSelfTraceTid 12 Trace data destinatinn
PvmSelfTraceCode 13 Trace message tag

val - Integer specifying new setting of aption. Predefined route
values are:
Qption value MEANING
PvmDontRoute 1

PymAllowDirect 2
PvmRoutelirect 3

eldval - lnteger returning the previous setting of the nption.

Discussion

The routine pvmsetopt is a general purpuse function to allow the user to set
optiops in the PYM system. In PYM 3.2 pvm_setopt cau be used tn set several
optious including: automatic error message printing, debugging level. and com-
municatinn routing methied for all subsequent PVM calls. Py setopt returns
the previous value of set in cldval,

PvmRoute; In the case of communication routing, pvmsetiopt advises PYM oo
whether or not to et wp direct task-to-task links PymRouteDirect {using TCP)

S143 -

for all subsequent communication. Qace a link Is established it remalns until
the application finishes. [f a direct link can oot be established because nue of
the two tasks has requested PvmDontRoute or because no resources are availahle,
then the default route threugh the PYM daemoos is wsed. On multiprocessors
stick as Intel Paragon this option is igaored because the communication between
tasks un these machines always uses the native protocol for direct comnmunication.
pvuisetopt can be called multiple times to selectively establish direct links, but
1s typically set only once near the beginning of each task. PvmAllowDirect is the
default route setting. This setting on task A allows other tasks to set up direct
links to A. Once a direct link Is established hetween tasks both tasks will use it
fur sending messages.

PvinDebugMask: Tor this optivn val is the debugging level. When debugging is
turned oo, PYM will log detalled information about its operations and progress
i it's stderr stream, Default is no debug laformation.

PvmAutoErr: In the case of avtomatic error pristing. Any PVM routises that
return an ereor condition will automatically print the associated error message.
The argumeat val defines whether this reportiag is to be twrned on (1) or turced
off {0) for subsequent calls. A value of {2) will cause the program to exit after
printing the ercor message (Not implemented in 3.2). Default is reporting turned
LI

PvinOutputTid: Tor this eption val is the stdout device for childrer. Al the
standacd sudput from the calling task and any tasks it spawns will be redjrected
tu the specified device. Val is the tid of a PVM task or pvind. The Default val of
0 redicects stdout to master host. which writes to the Iog file /tmp/pvmlxxcr,
where xxxx is the uid of the user.

PrvmOutputCode: Oaly meaningful on task with PvmQutputTid set to itself.
This s the message tag value to he ksed in recelving messages containing standard
output from other tasks.

PvinTraceTid: Tor this option val is the task responsible for writing out trace
event for the calling task and all its children. Val is the tid of a PVM task or
pvmd. The Default val of 0 redirects trace tn master host

PvinTraceCode: Ouly meaningful un task with PvinTraceTid set to itself. This
is the message tag value to be used in recelving messages contalning trace output
fimn wther tasks.

PvmTragSize: Tor this option val specifies the message fragment size in bytes,
Default value varies with host acchitecture,

PvmResvTids: A val of 1 enables the task to send messages with reserved tags
and to non-task destinations. The default (0) results in a PvmBadParam error
instead.

PvinSelfOutputTid: Sets the Istdout destination for the task. Everything printed
on stdout is packed inte messages and seat to the destination. Note: this only
works for spawned tasks. because the pvind doesn’t get the cutput from tasks

- 146 -

started by other meaus. val is the TID of a PVM task. Setting PvmSelfOut-
putTid to 0 redirects stdowt to the master pvmd. which writes to the log file
ftmp/pvinl. ook, The defauit setting is inherited from the parent task, else is (.
Setting either PvinSelfOQutputTid or PvinSelfOutputCode also causes both Py-
mOutputTid and PvmOutputCode to take on the values of DvmSelfQutputTid
and PvmSelfOutputCade, respectively.

PvmSelfQutputCode Sets 1he message tag for standard output wessages.

PvmSelfTraceTid Sets the trace data message destinatioa for the task. Libpvm
trace data Is sent as messages to the destination. val is the TID of 2 PVM
task. Setting PvmSelfTraceTid to 0 discards trace data. The default setting
is inherited from the parent task, else is 0. Setting either PviSelfTraceTid or
PvmSelfTraceCode alsu causes botk PvmTraceTid and PvmTraceCode to take
on the values of PvmSelfTraceTid and PvmSelfTraceCide. respectively.

PvmSelfTraceCode Sets the message tag for trace data messages.

pvinsetopt returns the previous value of the option.

Examples

C:

oldval = pvm_setopt{ PvmRoute, PvmRouteDirect };
Fortran:

CALL PVMFSETOPT{ PVMAUTOERR, 1, OLDVAL)

Errors

These error conditions can be retucned by pvm_setopt

Name Possible cause

PvinBadParam giving an invalid arg.

pvinfsetrbuf() pvin_setrbuf()

switches the active receive buffer and saves the previous buffer.

Synopsis

C int oldbuf = pvm_setrbuf{ int bufid)
Fortran call pvmfsetrbuf(bufid, oldbuf)

Parameters
bufid - integer specifying the message buffer identifier for the aew
active receive buffer.
oldbuf - integer returning the message buffer identifier for the pre-
vious active receive buffer.
Discussion

The routine pvm_setrbuf switches the active receive buffer to bufid and saves
the previous active receive buffer oldbuf. If bufid is set to 0 then the present
active recejve huffer is saved and no active receive huffer exists.

A successful receive automatically creates a new active receive buffer. a previnus
receive has not been unpacked and ueeds to he saved fur later, then the previcus
hufid can be saved and reset later to the active buffer for unpacking.

The routine is required when managing multiple message huffers. Tor example
switching back and forth hetween twn buffers. One baffer could be used to send
information te a graphical interface while a second buffer could be used send data
tu other tasks in the application.

Examples

:

rbufl = pvm_setrbuf{ rbuf2);
Fortran:

CALL PVMFSETRBUF(NEWBUF, OLDBUF)

Errors

These error conditions can be returned by pym_setrbuf

Name Possible cause
PvmBadParam giving an iovalid bufid.

PvinNoSuchBuf switching to a nou-existent message huffer.

- 148 -
pvifsetsbuf() pvm_setsbuf()
switches the active send huffer.
Synopsis
C int oldbuf = pvm_setsbuf{ int bufid)

Fortran call pvmfsetsbuf(bufid, oldbuf)

Parameters
bufid - integer message buffer ideatifier fur the new active send
buffer. A value of 0 indicates the default receive huffer,
oldbuf - integer returniog the wessage buffer identifier for the pre-
vious active send huffer.
Diiscussion

The routine pvm_setsbuf switches the active send buffer t0 bufid and saves the
previous active send buffer oldbuf. If bufid is set to G then the present active
send buffer is saved and no active send buffer exists.

The routine is cequired when managing multiple message buffers. Tor example
switching back and forth between two buffers. Qae buffer conld be used 10 send
information to a graphical interface while a second buffer could he used sead data
to other tasks in the application.

Examples

C:

sbufl = pvm_setsbuf(sbuf2);
Fortran:

CALL PVMFSETSBUF(NEWBUF, OLDBUF)

Errors

These error conditions can be returned by pym_satabuf

Nawne Puossible cause
PvimBadParam giving aw iovalid bufic,

PvmNoSuchBuf switching to a non-existent message huffer.

pvimmfspawn()

S 149 -

pvm_spawn()

starts aew PVM processes.

Synopsis

€ int numt = pvm_gpawn{ char *task, char **argv,

Fortran

Parameters

task

argv

flag

int flag, char *where,
int ntask, int *tids)

call pymfapawn(task, flag, where,
ntask, tids, numt)

character string ecnntalolng the executable file name
uf the PVM process to be started. The executable
must already reside on the host on which it is to
he started. The default location PVM looks is
$HOME/pvm3/bin/$FVM_ARCH/filenama .

pointer to aw acray of arguments 1o the executable with the
end of the array specified by NULL. If the executable takes
an arguients, then the second arguwment to pvim.spawn is
NULL.

integer specifying spawn vptions.

In € £lag should be the sum of:

Option value MEANING
PvmTaskDefault {0 TVM can choose any machine to start task
PymTaskHost 1 where specifies a particular host
PvmTaskArch 2 where specifies a type of architecture
PvmTaskDebug 1 start up processes under debugger
PvmTaskTrace & processes will generate PVM trace data. *
PvmMppFront 16 Start precess oo MPP front-ead.

PymHostCompl 32 Use complement host set

- 130 -

where -~ character string specifying where to start the PVM process. De-
pending on the value of flag, where can be a host name such as
“ibml.epm.orol.gov” or a PVM architecture class such as “SUNA™.
If flag is 0. then where is igunred and PVM will select the most
appropriate host.

ntask - icteger specifying the number of copies of the executable to stact up.

tids

L

integer array of length at least ntask. Oun retwurn 1he array contains
the tids of the PYM processes started by this pvm.spawn call. If
there is a error starting a given task. then that location in the array
will contaln the assoclated ercor code.

numt — loteger returning the actual nwmber of tasks started. Values less
than zero indicate a system efror, A positive value less than ntask
indicates a partial fallure. In this case the user should check the tids
array for the error code(s).

Discussion

The routine pvm_spawn starts up ntask copies of the executable named task. Qu
systems that support envirenment, spawn passes exported variables in the parent
environment to children tasks. If set. the eavar PYM_EXPORT is passed and if
PVM_EXTORT coatains other names (separated by ") they will be passed too.
this is useful for eg.:

setenv DISPLAY myworkstation:0.0
setenv MYSTERYVAR 13
setanv PVM_EXPORT DISPLAY:MYSTERYVAR

The hosts on which the PVM processes are started is set by the flag and where
argiments. On retarn the array tids contains the PVM task identifiers for each
process started.

If pvm_spawn starts one or more tasks, numt will he the actual number of tasks
started. If a system error occurs then numt will be < 0, If numt is less than ntask
then some executables have failed to start and tle user should check the last
ntask - numt locations in the tids array which will contain the associated error
codes, see below for meaning. Meaning the first numt tids in the array are good,
which can be useful for functions such as pvm_ncast().

When flag is set to 0 and whera is set to NULL (or “+” in Tortran) a heurstic
is used to distribute the ntask prucesses across the virtual machine. Lnitially
the bewristic is round-robin assignment starting with the next host in the table.
Later PVM will use the metrics of machine load and rated performance {sp=) to
determire the most appropriate hosts.

If the PvmHostCompl flag is set. the resulting host sat gets complemented. Alse,
the TaskHost hostuame ™" is taken as localhost. This allows spawning tasks on

- 151 -

. to get the localhost or to spawn o - 1 things on TaskHost—HostCompl ™. to
get apy but the localhost.

T the special case where a multiprocessor is specified by where, pYm_spawn
will start all ntask copies nn this single machine using the vendor’s underlyivg
renttines,

If PvinTaskDehug is set. then the pvmd will start the task(s) in a dehugger. In

this case. irstead of executing pym3/bin/ ARCH/ task arge it executes pym3/1ib/debugger
pvm3/bin/ARCH/task args. Debugger is a shell script that the users can nod-

ify to their individual tastes. Presently the script starts an xterm with dbx or
comparahle debugger in it.

Exaimples

C:

numt = pvm_spawn("hest", 0, PvmTaskHost, “"aparky", 1, &tid[o]);

numt = pvm_spawn{ “host", ©, (PvaaskHost+PvaaskDebug),
"sparky", 1, &tid[0]);

numt = pvm_spawn("node”, 0, PvmTaskArch, "RIGS", 1, &tid[i]);

numt = pvm_spawn{ "FEMi", args, 0, ¢, 16, tids);

numt = pvm_spawn("pde", 0, PvmTaskHost, "paragon.ornl", 612, tids);

Fortran:

FLAG = PVMARCH + PVMDEBUG

CALL PVMFSPAWN(’'node’, FLAG, ’SUN4’, 1, TID(3), NUMT)

CALL PYMFSPAWN('FEM1’, PVMDEFAULT, ’+°, 16, TIDS, NUMT)

CALL PVMFSPAWN{ 'TEMD', PVMHOST, ‘em5.utk.edu’, 32, TIDS, NUMT)

Frrors

These ercor conditions can be returned by pvm_spawn either in numt or in the
tids array.

Naine Value Possible cause

PvmBadParam —2 giving an invalid argnment value.

PvimNoHost -G Specified host is not in the virtual machine.
PvmNuTile =7 Specified executable can not be found. The de-

fault location P¥M looks in */pvm3/bin/ARCH
where ARCH is PV¥M architecture name.
PvinNoMem -10 Malloc failed. Not ensugh memory on host.
PvmSysErr =11 pvind aot responding.
PymOutOfRtes —27 out of resorces.

pvinftasks()

pvm_tasks()

Returys information about the tasks running oa the virtual machice.

Synopsis
C

Fortran

Parameters

where

ntask

taskp -

tid -
ptid -

dtid
flag

agut -

info -

Discussion

int info = pvm_tasks(int where, int *ntask,
struct pvmtaskinfo #*#taskp)
struct pvmtaskinfod{
int ti_tid;
int ti_ptid;
int ti_host;
int ti_ flag;
char *ti_a_out;
int ti_pid;
} taskp;
call pvmftasks(whers, ntask, tid, ptid,
dtid, flag, aout,infoc)

integer specifying what tasks to return information aboot,
The optinas are the following:

0 for all the tasks on the virtual machine
pvind tid for all tasks on a given host
tid for a specific task

integer returning the pamber of tasks being repurted on.
pointer toan array of stenctures whick cogtain informatioa
about each task including its task ID. parent tid, pvind task
ID. status flag. the name of this task's execitable file, and
task {O/8 (]P;;Eﬂ(lﬂzlt) process id. The status flag values are
waiting for a message, waiting for the pvind, and sunning.
integer returning task ID of une task

integer returaing parent task ID

integer returning pvmd task ID of host task is on.

integer returning status of task

cLaracter string returning the name of spawned task. Man-
wally started tasks return hiank.

integer status code returned by the routine. Values less
than zero indicate an error.

The routice pym_tasks returns information about tasks running on the virtual
machige. The information returned is the same as that available foom the con-

- 153 -

sole command ps. The C function returns information about the entire virtual pvmftidtohost()
machine in oge call. The Fortran function returns information about one task

per call and cycles through all the tasks. Thus, if where = 0, and pvinftasks is
called ntask times, all tasks will be represented.

pvm_tidtohost()

returas the host ID an which the specified task is running.
B pvm_tasks is successful, info will be 0. If snne error occurs, info will he < 0.

Synopsis
Examples C int dtid = pvm.tidtohost(int tid }
C Fortran call pvmftidtohest(tid, dtid)
info = pvm_tasks(0, &ntask, ktaskp); Parameters
Fortran:
CALL PVMFTASKS(DTID, NTASK, INFC) tid - integer task identifier specified.
dtid — integer tid of the host’s pvind returned.
Errors
The following eccor conditions can be returned by pvm_taska. Discussion
Xame Possible Cause The routine pym_tidtohost returus the Lost ID dtid ou which the specified task
PvmBadParam invalid value for where argument. tidis fuaning.
PvmSysErr pvind ant responding,
- . S . Examples
PvinNoHost specified Lost pot in virtnal mnackice.
C:
host = pvm_tidtchoat(tid[0]);
Fortran:
CALL PYMFTIDTOHOST(TID, HOSTID}
Errors

These ercor conditions can be returned by pvm_tidtohost:

Namne Possible cause
PvinBadParam giving an invalid tid.

- 136 -

p\’mftl‘ecv() me..tI'ECV() CGucee pvmn_trecy returns. the data in the message can be unpacked into the user’s
memory using the wnpack routines.

receive with tlinecut.

Examples
Synuopsis C:
struct timeval tmout;
C int bufid = pvm_trecv(int tid, int msgtag, struct timsval *tmout)
Fortran call pvmftrecv{ tid, megtag, sec, usec, bufid) tid = pvm_parent();
msgtag = 4 ;
Parameters if {(butid = pvm_trecv{ tid, magtag, &tmout)) »0) {
tid ~ lateger to match task identifier of sending process. pvm_upkint(tid_array, 10, 1);
msgtag — [Integer to match message tag; should be ;= 0. pvm_upkint(problem_size, I, 1 J;
tmout - Time to wait hefore returning without a message, }pvm_upkfloat(input_array, 100, 1);
sec, usec -~ Integers defining Time to wait before returning without a Fortran:
HEssage. CALL PVMFRECV(-1, 4, 60, ©, BUFID)
bufid - lnteger retures the value of the pew active receive huffer IF (BUFID .GT. 0) THEN
identifier. Values less thau zero indicate aa error. CALL PVMFUNPACK(INTEGER4, TIDS, 25, 1, INFG)
CALL PVMFUNPACK(REALS, MATRIX, 100, 100, INFO)
Discussion ENDIF
The routine pym_trecy blocks the process until a message with label msgtag has
arrived from tid. pvmitrecy then places the inessage i0 a new acltive receive Errors
huffer. also clearing the correat receive huffer. If no matching nessage arrives These error conditings can be returned
within the specified waiting thwe, pvm_trecy returns without a Inessage. ') o '
. . Name Possible cause
A -1 in magtag or tid matches anything. This allows the user the followling - .“‘.M}F e -
. . . . i PvmBadParam giving an invalid tid value. or msgtag < -1,
uptins, If tid = —1 and msgtag is defined by the user, thea pvm_recv will accept CT) S
a message from any process which has a matching msgtag, If msgtag = —1 and PvmSysErr pvind not respouding,
tid Is defined by the user. then pvin_recv will accept any message that is sent
froum process tid. T tid = —1 and msglag = —1, then pvm.recy will accept any

nessape frum alay process.

In C. the tmout fields tv.sec and tv_usec specify how long pvm_trecy will wait
without returning a matchlog message. In Tortran. two separate parameters, sec
and usec are passed. With hoth set to zero, pvim_trecy hehaves the same as
pymenrecy(). which is to probe for messages and return immediately even if zone
are inatched. In C. passing a null pointer ia tinout makes printrecy act like
pvmrecv(), that is. it will wait indefinitely. [n Tortran, setting sec to -1 has the
saine effect.

The PVM model grarantees the following about message order, If task 1 sends
message A to task 2. then task 1 sends message B to task 2. message A will acrive
at task 2 hefore wessage B. Moreover, if both messages arrive before task 2 does
a receive, thew a wildcard receive will always return message A.

If pvm_trecy is successful, bufid will be the value of the new active receive hufler
identifier. If some error occurs then bufid will be < 0.

pvmfunpack()

pvim_upkx*()

unpack the active

Synopsis

C
int
int
int
int
int
int
int
int
int
int

Fortr

info
info
infe
infe
info
info
info
info
info
infe

an

message buffer into arrays of prescribed data type.

= pvm_unpackf(const char *fmt, ...)

= pvm_upkbyte(char *xp, int nitem, int stride
= pvm_upkcplx{ float *cp, int nitem, int stride
= pvm_upkdcplx(double *zp, int nitem, int stride
= pvm_upkdoubla(double *dp, int nitem, int stride
= pvm_upkfloat(float =*fp, int nitem, int stride
= pvm_upkint(int *ip, int nitem, int stride
= pvm_upklong(long *ip, int nitem, int stride
= pvm_upkshort{ short *jp, int nitem, int stride
= pym_upkstr(char #sp)

D N O N W

call pvmfunpack{ what, xp, nitem, stride, info)

Parameter

Imt

nitem

strid

Xp

cp
zp
dp
fp
ip
ip
sp

5

a -

Printf-like format expression specifying what to pack. (See discus-
slon }

The total unmber of itemsto be unpacked (not the number of bytes).
The stride to be used when packing the items. Tor example, if
stride= 2 in pvmoupkeplx, then every other complex number will
be unpacked.

pointer to the beginning of a block of bytes. Can be any data type.
hut mnust match the corresponding pack data type.

cemplex array at least nitem*stride itemns long.

double precision complex array at least nitem*stride items loog,
double precision real array at least nitem*stride items loog.

real array at least nitem*stride items long.

integer array at least nitem*stride items long.

iuteger*2 array at least nitem*stride items long.

puinter ta a null terminated character string.

- 138 -

what - integer specifying the type of data heing unpacked.
what opticas
STRING 0 REAL4 1
BYTE1 1 CCMPLEXS 3
INTEGER2Z 2 REALS 1]
INTEGER4 1 COMPLEX 16 T

info - iateger status code returned by the routine. Values less than zern
indicate an error.

Discussion

Eack of the pvm_upk# routines unpacks an array of the given data type from the
active receive buffer. The arguments for each of the routines are a pointer to the
array to be uapacked into. nitem which is the total nwmber of items to unpack.
and stride which is the stride to use whea unpacking.

Ag exception is pvm_upkstr{) which by definition sopacks a NULL terminated
character string and thus does not need nitem ur stride arguments. The Tortran
routine pvmfunpack{ STRING, ...} expects nitem t¢ be the number of characters
in the string and stride to be 1.

H the unpacking is successful, infe will be 0. If sime error necurs then info will
he < 0.

A single variable (not an array) can be wnpacked hy setticg nitem= 1 and
stride= 1.

The routine pvurwnpackf(} uses a printf-like format expression to specify what
and how to unpack data from the receive huffer. All variables are passed as
addresses. A BNT-like descripting nf the forinat syntax is:

format : null | init | format fmt

init : null | 'Y%* *+7

fmt : *%’ count stride modifiers fchar
fchar : ¢’ | ’d* | *f* | *x’ | 's*
count : null | [0~9]+ | ?x?

stride : null | *.> ¢ [0-9]+ | *+°)
medifiers : null | modifiers mchar
mchar : *h’ | ’1' | 'u’

Formats:

means initsend - must match an int (how) in the param list.
pack/unpack bytes

integer

float

complex flcat

string

LI W =TI I 3

- 109 -

Modifiers:
h short (int)
1 1leng (int, float, complex float)
u unsigned (int)

*#' count or stride must match an int in the param list.

Future extensions to the what acgument will include 61 bit types when XD
erceding of these types is available. Meanwhile users should be aware that preci-
sion can be lost when passing data from a 61 bit machine Lke a Cray to a 32 hit
machine like a SPATCstation. As a mnemonic the what argument name includes
the wumber of bytes of precision to expect. By setting encoding to PVMRAW
(ser pvinfinitsend) data can be transferred hetween twn 64 bit machines with full
precision even if the PVM configuration is heterogeneons.

Messages should be uapacked exactly like they were packed to insure data in-
tegrity. Packing Integers and wapacking them as floats will often fail because a
type encodivg will have necurred transferring the data hetween heterogenecus
Losts. Packing 10 integers and 100 floats then trying to unpack only 3 integers
and the 106 fluats will also fail.

Examples
C:
info = pvm.recv{ tid, msgtag);
info = pvm_upkstr(string);
info = pvm_upkint{ &size, 1, 1 J;
infe = pvm_upkint{ array, size, 1 J:
info = pvm_upkdcuble(matrix, size*size, 1);
Fortran:
CALL PVMFRECV(TID, MSGTAG);
CALL PVMFUNPACK(INTEGER4, NSIZE, 1, 1, INFO)
CALL PVMFUNPACK(STRING, STEPNAME, 8, 1, INFO
CALL PVMFUNPACK(REAL4, A(S5,1), NSIZE, NSIZE , INFO)
Errors
Name Possible cause

PvimNoData Reading beyond the end of the receive buffer.
Must Likely cause is trying to nopack more items
than were originally packed into the buffer.

PvinBadMsg The received message can not he decoded. Most
likely because the hosts are heterngenecus and
the user specified an incompatible encoding. Try
setting the encnding to PvmDataDefault (see
pvin_mkbuf).

PvmNoBuf There is no active recetve huffer to unpack.

Fortran Interface

include *fpvm3.h’

Process Control

call

pvmfmytid(tid)

Sending

call pvmfpack(type, xp, nitem, stride, info)

Pack/unpack and Reduce type options

call pvmfexit(info)
call pvmfkill(tid, info)
call pvmfaddhost(hest, info)
call pvmfdelhost(host, info)
call pvmfnotify(about, msgtag, ntask, tids, info)
call pvmfspawn(task, flag, where,
ntask, tids, numt }

Information

call pvmiparent(tid)

call pvmfperror(msg, info)

call pvmftidtohest(tid, dtid)

call pvmfconfig{ nhost, narch, dtid, host,
arch, speed, info)

call pvmftasks{ which, ntask, tid, ptid, dtid,
flag, task, info}

call pymfgetopt(what, val)

call pvmfsetopt(what, val, cldval)

Group Operations

call pvmfjoingroup{ group, inum)

call pvmflvgroup{ group, info)

call pymfgsize(group, size)

call pvmfgettid(group, inum, tid }

call pvymfgetinst{ group, tid, inum)

call pvmfbarrier(group, count, info)

call pvmfbcast(group, msgtag, info)

call pvmfreduce({ op, xp, nitem, type, tag,
group, root, infe)

op options
PvmMax E PymMin ; PymSum [PymProduct

Message Buffers

call pvmfmkbuf(encoding, bufid)
call pvmffreebuf(bufid, info)

call pvmfgetsbuf{ bufid)

call pvmfgetrbuf{ bufid)

call pymfsetsbuf{ bufid, oldbuf)
call pvmfsetrbuf{ bufid, cldbuf)
call pvmfinitsend(encoding, bufid)

Encoding options MEANING
PymDataDefault 0O XDR
PvmDataRaw no encoding
PvmPatalnplace 2 data left in place

—

call pvmfmcast(
call pymfpsend(

Receiving

call pvmfrecy(
call pvmfprobe(
call pvmfnrecv(
call pvmftrecv(
call pvmfprecv(

Declarations

tid,
tid,
tid,
tid,
tid,

STRING 0 REAL4 4
BYTE1 1 COMPLEX8 5
INTEGER2 2 REALS 6
INTEGERd 3 COMPLEX16 7
call pvmfsend{ tid, msgtag, info)

ntask, tids, msgtag, info)
tid, msgtag, xp, nitem, type, info }

msgtag, bufid)
msgtag, bufid)
msgtag, bufid)
msgtag, sec, usec, bufid)
msgtag, xp, nitem, type,
rtid, rtag, ritem, info)
call pvmfbufinfo(bufid, bytes, msgtag, tid, info)

call pvmfunpack(type, xp, nitem, stride, info)

INTEGER about, bufid, count, dtid, enceding
INTEGER flag, info, inurm, msgtag, mstat
INTEGER nazch, nhost, nitem, ntask, numt
INTEGER oldbuf, oldset, oldval, pstat, ptid
INTEGER titem, root, rtag, rtid, sec, set
INTEGER signum, epeed, stride, tid
INTEGER tids{ntask), type, usec, which

Parallel
Virtual
Machine

CHARACTER arch, group, host, msg, task, where
"type’ xp(ritem™stride)
ERRCR CODE MEANING

FvmCk 0 okay

PvmBadParam -2 bad parameter
PvmMismatch -3 barrier count mismatch
PvmNoData -5 1e¢ad past end of buffer
FvmNoHost -6 no such host

PvmNoFile -7 no such executable
PvmNoMem -10 can’t get memeory
PvmmBadMag -12 can’t decode received msg
PvmSysErr -14 pvmd net respending
PvmNoBui 15 no current buffer
PvmNoSuchBuf 16 bad message id
PvinNullGroup 17 null greup name is illegal
PvmDupGreup -18 already in group
PvmNoGroup -18 no group with that name
PvmNotInGroup -20 not in group

PvmNolnst -21 ne such instance in group
PvmHostFail -22 hest falled

FvmNoParent -23 no parent task
FvmNotImpl -24 function net implemented
PvmDSysErr -28 pvmd system error
PvmBadVersion -26 pvmd-pvmd protocel mismatch
PvmOutOfRes -27 out of Tesources
PvmDupHost -28 host already configured
FvmCantStart -29 failed to exec new slave pvimnd
PvmAlready -30 already deing operation
PvmNoTask -3 no such task
PvmNoEntry -32 no such {group,instance)
FvmDupEntry -33 {group,instance} already exists

Quick Reference Guide
Release 3.3

March 21, 1994

University of Tennessee
Oak Ridge National Laboratory

Emory University

Obtaining PVM

ftp: netlib2.cs.utk.edu directory pvim3/
email: netlib@ornl.gov with the message
send index from pvm3 .

C Interface

Message Buffers

¥include “pvm3.h" int bufid = pvm_.mkbuf(int encoding) GI‘Ollp Operatlons
int info = pvm_freebuf{int bufid) int inum = pvm_joingroup{char *group)
Process Control int bufid = pvm_getsbuf(void) int info = pvm_lvgroup{ char *group)
int tid = pym_mytid(void) int bufid = pvm_getrbuf(void) int size = pvm_gsize(char *group) o
int info = pvm_exit{ void) int oldbuf = pym_setsbuf(int bufid) int tid = pvm_gettid(char #group, int 11?'-““)
int info = pym_kill(int tid) int oldbuf = pvm_setrbuf(int bufid) int inum = P‘"“-Seti'_‘“(char *group, int tid)
int info = pvm_addhosts(char #+hosts, int nhost, int bufid = pym_initsend(int encoding) int info = pvm_barrier{ char *group, }nt count)
int *infos) int info = pvm_bcast(char #*group, int msgtag)
int info = pvym_delhosts(char #**hosts, int nhost, Encoding options MEANING int info = pvm_reduce(void *op, void #vp, int cnt,
int *infos) PvmDataDefault O XDR int type, int msgtag, char #group, int root)
int numt = pvm_spasn(char *task, char xkargv, PvmDataRaw 1 no encoding .)
int flag, char *where, PvmDataInPlace 2 data left in place op options vp type options
int ntask, int *tids) PvmMax PYN_BYTE PVM_FLOAT
Sending PvmMin PYM_SHORT PVM_DOUBLE
Spawn flag options MEANING int info = pvm_packf(printf-like format...) FymSum PVN_INT PYN_CPLK
PvmTaskDefault G don't care where int info = pvm_pkbyte{ char *cp, int cnt, int std) PvmProduct | PYM.LOBG FYH_DCPLX
FvmTaskHost 1 “where” contains host int infe = pvm_pkcplx{ float #*xp, int cnt, int std) .
PvmTaskirch 2 “where” contains arch int info = ivm_ikdzplx(dauble *zg, int ent, int std) Startmg PVM
PymTaskDebug 4 start tasks with debug on int info = pvm_pkdouble{double *dp, int cnt, int std)
PymTazkTrace 8 start tasks with trace on int info = pvm_pkfloat{ float +fp, int cnt, int std } pvmd [-nhostname] [-d<debugmask>] [hostfile]
PvmHostCompl 32 use complement host set int info = pwvm_pkint(int *np, int cnt, int std) pvm [hostfile] {starts console)
. int info = pvm_pklong{ long *np, int cnt, int std)
Information int info = pvm_pkshart(short #mp, int cnt, int std) PVM Console Commands
int tid = pvm_parent{void} int info = pwvm_pkstr(char scp) help [command] - get information about commands
int dtid = pvm_tidtohost(int tid) conf - lists hosts in virtual machine
int info = pvm_perror{char *msg) int info = pvym_send(int tid, int msgtag) add host (s} - add host(s) to virtual machine
int info = pvm.config{int *nhost, int *narch, int info = pvm_mcast{ int *tids, int ntask, int msgtag) delaete host(s) — delete host(s)
struct hostinfo **hostp) int info = pvm_psend{ int tid, int msgtag, spain [ept] file - spawn process
int info = pvm_tasks(int shich, int *ntask, void #*vp, int cnt, int type) -<count> - number of tasks to spawn
struct taskinfo **taskp) Receiving ~<host> - host to spawn on
int val = pvm_getopt{(int what) mpvm_recv(int tid, int msgtag) -> - redirect task output to console
int oldval = pvm_setopt{int what, int val) int bufid = pvm_prebe(int tid, int msgtag) —>file - redirect task output to file
. o . int bufid = pvm_nrecv(int tid, int msgtag) <>>file - append task cutput to file
what option SETS/GETS This int bufid = pvm_precv(int tid, int msgtag, ps [-al - lists processes on virtual machine
PvmRoute 1 routing policy : PvmRouteDirect void #vp, int ont, int type alias — define /list corumand aliases
PvmDebugMask 2 debuglevel | PvmAllowDirect int *rtid, int srtag, int *rlen) unalias - undefine command alias
PvmAutoErr 3 auto error reporting int bufid = pvm_trecv(int tid, int msgtag, setenv ~ set/show environment variables
PymDutputTid 4 stdout device for children struct timeval #tmout) acho - echo arguments
FvmOutputCode 5 output msgtag int info = pym_bufinfe(int bufid, int sbytes, version - print libpvm version
PvmTraceTid 6 trace device {or children int *msgtag, int *tid) id - print console tid
PvmTraceCode 7 trace msgtag sig num tid - send signal num to process
PvmFragSize 8 message fragment size int info = pvm_unpackf(printf-like format... } kill tid - terminate a process
A , int info = pvm_upkbyte{ <char #cp, int cnt, int std) reset - kill all processes and reset PVM
Slgnalllng int info = pvm_upkcplx{ float #xp, int cnt, int std) quit - exit console (PVM continues)
int info = pvm_sendsig(int tid, int signum) int info = pvm_upkdcplx(double *zp, int cnt, int std) halt — kill all pvmds and console
int info = pvm_notify{int about, int msgtag, int info = pvm_upkdoubla(deuble *dp, int cnt, int std) .
int ntask, int *tids) int info = pvm_upkfloat(float #*fp, int cnt, int std) Complllng PVM Applications
int infeo = pvm_upkint(int *np, int cnt, int std) c¢ -o task myprog.c libpvm3.a
About options MEANING int info = pvm_upkleng(leng #np, int cnt, int std) f77 -o task myprog.f libfpvm3.a libpvm3.a
PvmTaskExit 1 notify if task exit int info = pvm_upkshert(short #np, int cnt, int std) For groups add 1ibgpvm3.a before libpvm3.a
PymHostDelete 2 notify if deletion int infe = pvm_upkstr{ char #c¢p)

PvmHostAdd 3 notify if addition

