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Modern methods of analyzing Monte Carlo
computer simulations

Robert H. Swendsen

Department of Physics. Carnegie-Metlon University, Pitishurgh, PA 15213, USA
arvd Weizinann Institate of Science, Electronics Depariment, Rebiovar 761K, sract

In the pust few years, acw approaches to Monte Carlo simulations have preduced
substantial improvements in the efficiency of both simulation techniques and data apalysis.
This paper will focus on the recent renewal of iterest i histogram methods and the new
developments in this field. This approach to data asalysis has proven very effective in
improving the efficiency and ultimate accuracy of Monte Curlo caleulations. The methods will
be described along with several new applications,

1. Introduction

In recent years it has been recogaized that the analysis of data from Monte
Carlo computer simulations can be greatly enhanced by the use of histograms.
Although the ttle of this paper refers to “modern methods™, the use of
histograms in this context actually has @ history poing back o at least 1959
[1-13]. Since this history has been discussed in detail elsewhere [14], T will
concentrate on the methods themselves and their recent applications.

The basic single-histogram method wili be reviewed briefly in section 2. The
multipic-histopram method will be presented in section 3 ajong with a discus-
sion of the essential assumptions and various alternatives that have been
suggested. Scction 4 will present applications of the histogram method, with
cmphasis on the use of Binder's cumulants [15,16]. Section 5 will discuss the
new analysis methods for identifying first-order transitions [17,18], along with
the closety related multicanonical simulation method [19].

2. The single-histogram method

Consider a Monte Carto simulation of a thermodynamic model. During the
simulatton cach configuration generated provides values for the energy, E,
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54 R Swendsen | Methods of analvzing Monte Carlo simulations

magnetization, M, and other quantitics of interest. We will restrict the discus-
sion of the equations tu histograms of the cnergy, since extensions to multiple
observabics arc straightforward. Although the most usual procedure has been
to simply record the averages of the quantitics and their squares, we could also
record a histogram, N(£), of the number of times cach value (or set of values)
was generated in a run of length n. (For a model with a continuous energy
spectrum it is convenient to discretize the value by setting up a large number of
bins.) The expectation values of the histogram, N(E), averaged over an infinite
number of runs, is just

NEY=nW(E)exp(-BE+ /). ()

where f= BF(B) gives the frec energy at the inverse temperature 8 = 1/k, T
where the simulation was performed. Solving this equation for W(E) shows
that the histogram N(E) provides a direct approximation for the density of
states up to the constant factor exp(— /). Given the density of states, it is then
straightforward to compuie the expectation value of any function of E at any
other temperature by the usual equations,

(E) =2 EW(EYesp(~BE)/ Z(B) . (2)
where the partition function is given by
Z(B) =2 W(E)exp(—BE). (3)
I3

Although these equations are quite old {1], the recent observation that they
provide the most accurate method for determining the location and height of
peaks in thermodynamic properties [13] added new interest to the application
of this approach to Monte Carlo studies of phase transitions. Another particu-
larly striking recent advance is that these equations allow the investigation of
complex values of the temperature, to which no real experiment has access
[6—12]. The locations of the zeros of the partition function can be determined
accurately, providing yet another tool for investigating phase transitions. These
two fcatures of the histogram approach have proven cxtremely valuable in
improving the casc and accuracy of the determination of critical properties with
remarkably little additional computational effort.

Naturally, the accuracy of the estimate for W(F) is limited by the accuracy
of the histogram. This will be taken up again in the next scction, but the basic
observation s that the squarc of the error in an entry in the histogram is
proportional to the cxpectation valuc of the catry. This may be approximated
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by N(£) so that the relative accuracy of W(E) is greatest where N(E) is
largest. When eq. (2) is used at a temperature far from where the simulation is
performed, the important values of W(E) come from the wings of the
histogram, which have few (or no) entries, and hence large crrors. Clearly, the
largest acceptable shift in temperature, AT, . corresponds to moving the peak
of the histogram (that is the peak of W(E) exp(—BE}) by an amount propor-
tional to the width of the distribution. The magnitude of AT, has been shown
to scale as L' at a sccond-order phase tramsition (where [ is the linear
dimension of the system), which just coincides with the finite-size scaling region
[13]. Away from a transition the width scales as L™~

Before introducing the multiple-histogram method, 1 would like to call
attention to the very interesting work by Rickman and Philipot [20], who
showed that away from the critical region certain systems show much better
results from two or three terms in @ Monte Carlo scrics expansion about the
simulation temperature than they do from the full histogram apalvsis. This
offers a simple and cffective way of covering lurge temperature ranges in which
the variation of thermodynamic variables is expected to be fairly smooth,

Y. The multiple-histogram method

Although the single-histogram method is sufficient for many useful applica-
tions, it was recognized long ago [4] that to cover a wide range of temperature
{or other parameters) it would be necessary to somehow combine the results of
scveral simulations. The first attempt to do this involved a simple matching of
the temperature-shifted histograms in the overlap region where neighboring
histograms both provide data {4]. Note from eq. (1) that the essential
information nceded is the difference in the free energies at the temperatures of
the two simulations. This method of patching together neighboring histograms
does indeed work, but a much more accurate method has been proposed by
Ferrenberg and Swendsen, which optimizes the combination of information
from an arbitrary number of Monte Carlo simulations [21).

From eq. (1) it is clear that we can form an estimate for the density of states
from a linear combination of the estimates from R histograms N,(E) measured
in simulations at inverse temperatures 3,

”

WL} = E PAE)N(EYn " exp(BE -1, (4)

=1

where the weights, p (£}, are normalized to one,
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2 pE)=1. )

A key feature of eq. (4) is that it allows the weights p,(E} to be optimized
separately for each value of £. This is extremely important, since the accuracy
of the information from each histogram depends strongly on E. Since the
individual simulations are independent, it is casy to compute the error in W(E)
if we know the error in the histograms and choose the weights p{E) to
minimize that error. Ferrenberg and Swendsen [21] chose to trcat the in-

dividual entries in a particular histogram as if they were independent of each
other and used

§N(Ey=gN(EY=gW(E)n,exp(—BE + ), (6)
where
g, =1+2r (7)

and 7, is the integrated correlation time [22].

In fact, the individual entries are not independent. There is a strong
correlation between neighboring entries that contributes significantly to the
error in expectation values of the energy and other thermodynamic variabies.
On the other hand, the actual error in an individual entry is smaller than that
given by egs. (6) and (7). This can be scen by considering that the probability

_N(E)
q,(E) - ZE' NI(E') (8)

of a given step in the ith Monte Carlo simuiation producing the particular
energy E is relatively small. Any particular value of E occurs at relatively long
time intervals, during which the correlations decay. Instead of the value of g; in
eqs. (6) and (7), the true factor would be of the order I +27,4,(£), which is
usually rather close to unity.

Therefore, the purpose of using eqgs. (6) and (7) is to compensate for the
neglect of correlations between the entries in the histograms by magnifying the
error attributed to the individual entries. For the calculation of the energy at
the temperature of the original simulation. it can be shown that this compensa-
tion is exact [22]. For other quantities it is clearly in approximation. A
comforting observation is that the final results of using egs. (6) and {7) arc
very weakly dependence on the specific values of g, used.

Using eq. (6), it is casy to find the weights, p,(£), and detive the optimized
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estimate for the density of states
g 'N

W(E) = : (E) :
Y1 &) n explf, - BE)

f

(9)

The f's, which give the free energies at the simulation temperatures, are
then found self-consistently from

exp(~f) = 2 W(E) exp(~ B,E) . (10)

The solution can be found simply by iteration, although in some cases it is
useful to apply acceleration techniques {23]. Since the cquations are invariant
on adding a constant to all of the £’s, only R — 1 independent constants need
be determined for the full set of histograms.

These equations are very closely related to those derived by Bennett in 1976
for a more restricted application {24]. Bennett was concerned with the question
of finding the optimal estimate of the free energy difference between two
temperatures given a Monte Carlo simulation at cach temperature. I eqs. (%)
and (10) are applied to this question (sctting g, = &), they reduce exactly to
Bennett’s result®’.

Ferrenberg and Swendsen also found a very simple expression for the
relative error in the density of states [21],

BW(E)_ R - i —1/2
_V_VF(E)—‘(,E g, N,(ﬁ)) . (11)

This result has two nice features. First, it demonstrates that the accuracy of
the method is atways improved by adding more data, which is not necessarily
true of other methods. Secondly, plotting this expression as a function of E
makes it very easy to plan a sequence of simulations to cover the entire energy
(and temperature) range with uniform accuracy. A peak in this plot shows
immediately where the next simulation should be performed, and the height of
the peak indicates in advance how long the simulation should be.

Once the approximate density of states has been calculated, everything that
can be done with a single histogram can also be done with multiple histograms.
The additional advantage is, of course, that information over a very wide range
of temperatures (or other parameters) can be obtained. In particular, this
provides an accurate way of caleulating the entropy, which has been a
traditional problem for Monte Carlo simulations. For an Ising model on a

P . . . .
The relationship between the muftiple-histogram equations and Bennett’s work was pointed
vut by Park [25].
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16 % 16 lattice, it has been shown that the entropy can be calculated over the
entire temperature range from zero to infinity from just eight simulations.
Using only a moderate amount of CPU time on a workstation, a four
significant digits accuracy was achieved, which was far more than sufficient to
see that the zero-temperature entropy does not vanish for this finite system,
but takes on the value {In 2)/256 since the ground state is two-fold degenerate
[21].

Two alternatives to eqs. {6) and (7) have becn suggested. Alves, Berg and
Villanova [26] have performed simulations using 64 replicas of their system at
each temperature to obtain a direct estimate of the error in N;(E). This does
indeed give the correct error for the individual entries (which is smaller than
that given in eqs. {6) and (7)), but it totally neglects the correlations between
entries in the histogram. Alves, Berg and Villanova also used a diffcrent
method for combining data from histograms that does not produce full
optimization and requires a separate, non-self-consistent determination of the
f;’s at each value of the energy, £ [26).

The second alternative was suggested by Huang, Moriarity, Myers and
Potvin [27]. who used the same g,’s as Ferrenberg and Swendsen {21] but used
N.E) to estimate the error instead of using the second part of eq. (6) to
combine information from all simulations. They had to treat the case N,(E) =0
separately, since their equations would imply that the error was zero. The
alternative equations are no simpler than the oncs presented below, and 1
believe that the use of the full information on the density of states is more
accurate than using only the information from a single histogram.

4. Applications

Since T do not have space to mention all studies involving histogram
methods, T will just use a few to illustrate the power of the approach.

The high accuracy achievable with histograms is clearly illustrated by the
recent calculations of Ferrenberg and Landau on the critical behavior of the
three-dimensional Ising model [28]. Using histograms to evaluate a wide
variety of quantities. especially Binder's fourth-order magnetization cumulant
[15,16] and the logarithmic derivatives of powers of the magnetization, they
were able to determine the critical temperature and the critical cxponents to an
accuracy matched only by the best series-expansion analyses and Monte Carlo
renormalization-group calculations. The key feature was the high accuracy
determination of the location of the peaks in the various quantities they
observed. However, it should be noted that they also found that the limited
range of validity of histogram extrapolations proved to be the most important
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restriction on the ultimate accuracy of the calculation. The peaks of differemt
quantitics lay at temperatures that were sufficiently ditferent to produce errors
in the locations at the sixth significant digit. Ferrenberg and Landau noted that
by using the information obtained on the location of the peaks, a new
calculation using cluster simulation methods might be able to produce a seven
signitficant digits accuracy.

The efficiency of the histogram approach was exploited in studies of two- and
three-dimensional antiferromagnetic Potts models by Wang, Kotecky and
Swendsen [29,30]. For this work they introduce a new cluster Monte Carlo
simulation method specifically designed for antiferromagnetic Potts models and
analyzed their results with the multiple-histogram method. They were able to
calculate ground-state entropies to four significant digits in both two and three
dimensions and confirmed the accuracy of their results in two dimensions by
comparison with exact results. They also used the histograms for the three-
dimensional model to do an accurate finite-size scaling study, which showed the
tramsition to be in the same universality class as the three-dimensional XY
model.

One of the most extensive applications of single- and multiple-histogram
methods has been performed by Deutsch and Binder [31,32] in their analyses
of polymer mixtures. Because of the increased amount of information obtained
from the histogram methods, they were able to investigate a wide range of
phase diagrams, including the locations of critical points, and the values of
cxponents and amplitudes within the context of a grand-canonical simulation.

A new arca of application of histogram methods is in the calculation of
properties of biological molecules. In this field it is often important to calculate
free-energy differences and “potentials of mean foree™ (the dependence of the
frec energy on a particular coordinate of interest). As an example of the
application of multiple histogram methods Kumar, Bouzida, Swendsen, Koli-
man and Rosenberg have calculated the potential of mean force associated
with the puckering of the sugar ring in adenosine {33].

5. First-order transitions

Onc of the first applications of the high efficicncy of the single histogram
method for determining the location and height of peaks used Binder’s reduced
cumulant [15,16]

Loy LB
UI.*1 3<El>1 (!2)
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model [13]. This cumulant takes on the value § away from the transition, but
goes 10 a non-trivial value exactly at the transition in the thermodynamic limit.
For finite systems this produces minima on a very fine temperature scale.
Because the peaks are so narrow (the full width of the peak for a 64 x 64
system is less than 0.2% of the transition temperature), they are weil suited for
accurate determination of the transition temperature, However, for the same
reason, it is very difficult to find the extremum with a series of independent
points. With the histogram analysis, one simulation proved sufficient to
determine the location of the peak for each lattice size to better than four
significant digits. Data from the same simulations were used to investigate the
finite-size scaling of the specific heat and were easily able to show the
exponentially small corrections to scaling.

Recently, Lee and Kosterlitz uscd histograms to make a significant advance
in the analysis of first-order transitions [17,18]. They considered the double-
peaked shape of the histogram itself at a transition and adjusted the tempera-
ture to make the two peaks of equal height. The ratio of the peak height to
that of the minimum represents a free-energy barrier that scales {asymp-
totically) as L“ ' at the transition. They then noted that even when the
asymptotic limit has not yet been reached, the qualitative behavior of the
free-energy barrier is sufficient to determine the order of the transition. They
provided a very convincing demonstration for the five-state Potts model in two
dimensions, for which the correlation length is greater than 1000 lattice
constants at the transition, which is weli beyand the range of current simula-
tions. Nevertheless, they were able to demonstrate clearly that the method was
able to see that the transition was indeed first order.

This development lcaves the question of how to determine the minimum in
the histogram at a first-order transition. This has recently been solved by Berg
and Neuhaus. who introduced a new simulation method, which they called a
“multicanonical ensemble™ [19].

Berg and Neuhaus noted that the low minimum in the histogram corresponds
to the infrequent transitions between the two states represented by the peaks.
By adding a term to an effective Hamiltonian that corresponds to the logarithm
of the probability distribution between the peaks, they were able to com-
pensate for the minimum; their simulations produce nearly flat histograms. The
increasced probability of being in the energy range hetween the peaks greatly
reduces the transition time for the system to switch between the two phases. In
their simulations, Berg and Neuhaus found speedups of one to two orders of
magnitude. Finaily, the cnormously improved statistics in the intermediate
region provides greatly improved estimates for the frec-energy barrier. For the
two-dimensional, ten-state Potts model, they found the interfacial free encrgy
per unit arca with an crror of less than 1%,
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6. Conclusions

Although the histogram methods discussed in this paper are somewhat more
complicated than traditional analysis methods for Monte Carlo simulations,
they are straightforward to code and require relatively insignificant amounts of
computer time to use. Once they have been programmed, they speed up the
analysis of the data and greatly increase the amount of information available
from the simulation. Since this information is available without sacriflicing any
other information desired, the histogram methods are rapidly becoming stan-
dard practice for all Monte Carlo simulations.
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We present a new method for optimizing the analysis of data from multiple Monte Carlo computer
simulations over wide ranges of paramecter values, Explicit error estimates allow objective planning of
the lengths of runs and the parameter values to be simulated. The method is applicable to simulations in
lattice gauge theories, chemistry, and biology, as well as statistical mechanics.

PACS numbers: 05.50.4q, 64.60.Fr, 75.10.Hk

Recently, we showed that histograms can be used to
greatly increase the amount of information obtained
from a singie computer simulation in the neighborhood
of a critical point.! In particular, we demonstrated that
the location and height of maxima and minima can be
determined with higher accuracy and much less comput-
er time than previously obtainable. We also noted that
the region of validity of the single histogram method
coincides with the finite-size scaling region, so that infor-
mation about the critical region does not deteriorate with
increasing system size.?

On the other hand, for more general problems it is
often desired to investigate the behavior of the system
over a wider range of parameter values. In this situa-
tion, it is necessary to perform simulations at more than
one value of the parameters of intercst.

This paper presents an optimized method for combin-
ing the data from an arbitrary number of simulations to
obtain information over a wide range of paramecter
values in the form of continuous functions. The method
goss beyond easlier methods? in that it provides an opti-
mized combination of data from different sources, and
can be applied to an arbitrary number of simulations.
Errors can be calculated and provide a clear aad sirnple
guide to optimizing the length and location of additional
simulations to provide maximum accuracy.

1t is possible to extend the temperature range io gen-
erate the free energy and entropy from zero to iniinite
temperature.

Finally, our method can be used with any simulation
method that provides data for a system in equilicrium,

and it requires a negligible amount of additional comput-
er time for its implementation. The method is therefore
applicable to simulations in latticc gauge theories,*
chemistry, and biology,*® as well as statistical mechan-
ics.
We will first describe the method and then demon-
strate its efficiency by calculating the properties of an
L =16, d =2 Ising model for the full range of tempera-
tures.
Consider the gencral Hamiltonian

H(c)=Ho)+KS(o),

where S(o) is an operator {(energy, magnetization, etc.)
defined on the spins {o;}, and factors of —1/ksT have
been absorbed. We are interested in the behavior of the
system as a function of K. For simplicity, we will consid-
¢r only one parameter K, but the generalization to an ar-
bitrary number of parameters is straightforward. The
partition function is given by

Z(K) =2 explH{a)] -g w(S)ksS],

where W(S) is the density of states.

Consider R Monte Carlo simulations, We perform the
nth simulation at K, and store the data as histograms,
{N,(S)], with total numbers of values {n.}. Errors are
given by

5INL(S) =g.N, (3,

where we have used a bar over an expression to indicate
the expectation value with respect to ail Monte Carlo
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(MC) simulations of length n,. If successive MC
configurations are independent, then g, =1, othcrwise

=l+2z,,

where 7, is the correlation time.

We can approximate the behavior of the pariition
function by

z.{K) -}5“, N, (S)expl(k — K,)S]

which is related to the true partition function by
oK) = Z(K)/Z(Ky) .
The free energy is given by
F(K) ~ F(K,) =Inz,(K) ~Inn, .
The density of states is related to the histogram by
W(S) =N (Sn, 'explf, — K,S1,

where f, =F(K,) is a parameter equal to the free energy
at X,, and wiil be evaivated self-consistently. If we per-
form simulations on a set of values {K, | n=1,R}, we can
combine them to form a gencral expression which leads
to an improved estimate for #W(S). This gives us

R
W(S) = }_‘,i Py (SIN,(SIn, Vexplf, — K,S] (1)
with
R
El Pn(S)ym=i

iIf we insert the actual histograms in (1) and minimize
the error in the resultant estimate for W{(S),” we find

nagn ' explk,S — f,]
2R e A 1 exXplK S = f]
If we then define

P(S,K)=W{S)expikS],

Pa(S)= )

we obtain the essential multiple-histogram equations as

Y g INL(S)YexplkS)

P(S.Xim™ . (3)
’ 2= Mg eXPIK S — fin]
where
explf,] -gp(s,x,.) . (%)

The average value of any operator on § can then be
evalnated as a function of K using

(ASHEK) =T 4{SIP(S,K)/2(K),
s

where

z(K) -Z’;P(S.K) .
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The values of f, are found self-consistently by iterat-
ing (3} and (4). Efficient convergence is obtained by us-
ing the derivatives of the new values of £, as functions of
the old values in the iteration process. Note that from
the form of Eqgs. (3) and (4), an arbitrary constant can
be added to each f, without affecting the solution. This
constant can be determined by evaluating the free energy
at zero or infinite temperature, where it is known. Alter-
natively, it can be set to zero at some reference point,
which is useful when applying the method to the calcula-
tion of interfacial frec energies.

The statistical error in P(S,K) is given by

SP(S,K) = [Zg,."fv,.(s)] ~12p(s.K) €))

from which it is clear that this method always reduces
the statistical errors when additional MC simulations are
added to the analysis, This expression also provides a
clear guide for planning a series of simulations. The lo-
cations and heights of peaks in the relative error, plotted
as a function of S, give direct quantitative indications of
the optimum locations and lengths of additional MC
simuiations.

As a practical matter, it is useful to handle most of the
caiculations in terms of the logarithms of the various
quantities in these equations, Also, if there is insufficient
computer memory to save an entire two-dimensional his-
togram, the average of the magnetization and its square
can be stored as functions of S to determine the magnet-
ic susceptibility. It is sometimes preferable to store MC
data in terms of lists rather than histograms, with obvi-
ous modifications of the equations. This will be prefer-
able, for example, if gn, <79, where ¢ is the number of
operators and r is the number of values each operator
can assume,

If the method is restricted to two MC simulations, the
calculated difference in the free energies between the
simulated points

F(K])"‘"F(Kz)"fl —f2

is identical to that obtained by Bennett’s method.”®

We have tested this multiple-histogram method
against the exact solution of the d=2 Ising model with
L =16. The Hamilionian is given by

H=K ,
%)O'[O'j

where the spins take on the values +1 and — 1, and the
sum is over all nearest-neighbors pairs.

For temperatures close to the critical temperature, a
single simulation is sufficient for high accuracy. Howev-
er, for temperatures more than about 20% away from the
critical temperature, additional simulations are neces-
sary. To improve the accuracy away from K, we added
simulations at X =0.3 and 0.64 to the first simulation at
K. =0.4406868. Then, using plots of the relative error
from (S) as a guide, we studied the results of adding



VOLUME 63, NUMBER 12

PHYSICAL REVIEW LETTERS

18 SEPTEMBER 1989

simulations at X =0.0, 0.1, 0.2, 0.375, and 0.525 for a
total of ecight. We simulated the model using the
Swendsen-Wang algorithm,’ taking 2x10® MC sweeps
at each temperature, except for T, where we used 9.5
% 106 sweeps. The value of g, at T was estimated to be
6, with smaller values at other temperatures.

The difference between the calculated and exact values
of the specific heat over the full temperature range is less
than 0.3%, and would differ from the exact values'® by
less than the width of the line if we were to include a plot
with this paper.

The results for the entropy show dramatic improve-
ment as data from additional MC simulations are includ-
ed in the calculation. The entropy is given by the expres-
sion

&=Inz (K)— K, 1 {X) zs‘,sp(s,x)

so that entropy differences can be calculated directly. As
an example, consider the d =2 Ising model on an L by L
lattice, for which the total differences in the entropy per
site between zero and infinite temperature is (1
—L~"In2. For L=16, this has the valuc 0.69044.
When the data are restricted to a simulation at the criti-
cal temperature, the calculated entropy difference is
0.591, which is off by 15%. Adding data from the simu-
lations at X =0.3 and 0.64 gave a value of 0.6746, which
already reduced the error to 2.3%. Finally, using data
from all cight simulations, we obtained 0.69030 with a
remaining error of only 0.02%. This is an order of mag-
nitude better than would be necessary to see the L -2
term due to the twofold degeneracy at T =0.

Asnother application of the method, for which we al-
ready have preliminary results, is the calculation of the
free energy of a secam of bonds with coupling K'=aX.
‘The point @1 corresponds to the usual periodic bound-
ary conditions, ¢ =0 to {rec boundaries, and a= —1 to
antiperiodic boundary conditions. By taking two-dimen-
sional histograms for the seam energy and the total encr-
gy of the system, we can calculate the surface frec ener-
gy and the interface frec energy as functions of the tem-
perature and a. Taking MC data for just the two points
a=] and —1, the results are quite good for the smallest
lattices (L =4 and 6) as expected from the successes of
Bennett's method.” However, even here the weakest part
of the calculation is for seam energies near zero, and the
addition of data from a third simulation at & =0 provides
improvement. For system sizes up to L =3, four simula-
tions are sufficient to reproduce the interface free energy
with an error of 0.05% (and agreement with the exact re-
sult). The same data give the surface free energy with
an even smaller statistical error. By extrapolating the in-
terface freec energy as a function of L we can estimate
the interface free energy per unit length in the thermo-
dynamic limit as a function of temperature. We find

that even restricting ourselves to data between L =4, 6,
and 8, the interfacial free cnergy vanishes at a tempera-
ture within 0.2% of the exact value. This exteasion of
the calculation to temperatures other than thosc at which
the simulations were performed does not require addi-
tional parameters beyond the set {/,}, which were al-
ready determined.

Since this method is able to combine Monte Carlo
simulation data from different sources to increase the to-
tal accuracy of the results, it could even be used to com-
bine data from different groups working on large prob-
lems, such as those encountered in lattice gauge theories.
Because there are no limitations on the method of simu-
lation, we also expect this approach to be useful for
simulations in chemistry and biology.
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sions, and for calling our attention to the relationship be-
tween our results and thosc of Bennett. This work was
supported by the National Science Foundation Grant
No. DMR-8613218.
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Optimized Monte Carlo Data Analysis

—-—j Alan M. Ferrenberg and Robert H. Swendsen

physical systems was introduced by Metropolis ef al.!

over 35 years ago. Since that time, MC methods have
been used extensively in the study of phase transitions,’
lattice gauge theories,® and chemical and biological
systems.*® MC simulations yield estimates for the average
values of thermodynamic quantities at particular values of
external parameters such as the temperature, magnetic
field, and chemical potential. Since we arc usually
interested in studying the behavior of the system over
_ranges of the external parameters, it is necessary, using
standard MC methods, to perform many simulations for
cach desired value of the external parameters. The result
for each average is a set of discrete points that is usually
shown as a continuous line “drawn to guide the eye.”

For systems whose behavior depeads on more than
one external parameter, it is necessary to perform enough
simulations to cover a multidimensional region of param-
eter space. Using standard techniques, a multiparameter
scan is extremely time consuming for two parameters and
impractical for three or more.

The availability of averages at only particular values
of the external parameters is particularly limiting for
systems near first- and second-order phase transitions
where the system exhibits narrow peaks in various
thermodynamic functions. The positions and heights of
the peaks provide important information about the nature
of the transition but, because standard MC techniques
provide only a set of discrete points, the position of these
peaks can be determined only approximately.

An_additional problem in the study of phase
transitions is that the correlation time can become large if
the system is near the transition. This problem was
discussed by Harvey Gould and Jan Tobochnik in the
July/Aidgust 1989 issue of Computers in Physics.

The approach we discuss here is the use of histograms
to extract more information from a Monte Carlo
simulation. The idea is to use our knowledge of the
equilibrium probability distribution at one value of a
parameter to determine the probability distribution at
another value of the parameter. The application of this
idea to MC simulations dates back to 1959. Salsburg et al’
were the first to discuss how a single histogram of an ob-

Thc use of Monte Carlo (MC) methods to study

servable could be used to evaiuate any function of that
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quantity at a neighboring value of the corresponding
parameter. However, they used the histogram only at the
temperature of the original simulation and did not obtain
additional information. Chesnut and Salsburg® described
the use of histograms to obtain information over a range of
continuously varying parameters, but they also did not
implement this idea.

To the best of our knowledge, McDonald and Singer®
were the first workers to use a single histogram method to
evaluate thermodynamic functions over a continuous
range of temperatures. (They also introduced an alterna-
tive to the Metropolis importance sampling method. Their
sampling method involves making random changes of the
system configuration subject only to an upper limit on the
total energy of the system.) They recognized that the
range of temperatures for which a single histogram would
give reliable results was limited by the width of the
measured histogram, although they did not obtain this

 relationship. They also noticed that the range of tempera-

tures decreased as the system size was increased. From
these observations it was concluded, incorrectly as we
shall see, that a single histogram was not useful for the
study of phase transitions. :

In order to understand the single histogram method,
we consider a MC simulation of the Ising model. For
simplicity, we assume that the external magnetic field is
zero so that the only relevant external parameter is the
temperature T. Suppose that we do a standard MC run at
T = T, and measure the histogram H, (E), the number of
configurations that have energy £ during a run of N, MC
steps per spin. The probability P (B,) that the system has
energy E at B, = 1/kg T, is given by

Po(B,) = H,(EY/N, = W(EY e~ #5/Z(B) ], (1)
where W(KE) is the density of states at energy E. The parti-
tion function Z{B,) is given by

Z(B) =% e HE=3% W(E)e= &5, o))

] E

Since the histogram H,( E} is proportional to Pg.aMCes-
timate for W(FE) is given by

W(E) = a,H (E)E, (3

where a, is a proportionality constant. Since W(E) is
independent of 7, the probability that the system has
energy K at 8= 1/k, T takes the form

Po(B) = H(E)em P~

-1
x(z H.(E)e““’-""ﬁ) . (4)
E

LT
”
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Since £ is a continuous variable, we can estimate the
temperature dependence of the average value of any
function of E, e.g.,

{(A) =3 AEYP(B). (3)
£

The form of the histogram at T = 2/In(1 + J2) for a
16 X 16 square lattice is shown in Fig. 1.

In Ref. 10 we showed that the single histogram
method is much more eflicient for studying phase
transitions than had been previously believed. We were
abie to demonstrate that the range of validity of a single
histogram taken at the critical point scales in the same
way as the finite-size scaling region so that information
about the transition does not deteriorate with increasing
system size. Hence information about a phase transition
can usually be obtained with a single simulation without
the need for multistage sampling (described below). We
also demonstrated that histogram techniques provide the
most accurate method for determining the position and
height of peaks associated with a phase transition.

An effort to overcome the limitations of the single
histogram method and to use muliiple histograms was
made in 1972 by Valleau and Card.!' They introduced the
idea of multistage sarmupling in which supplemental or
bridging distributions are used to provide information in
the wings of the original distribution. They recognized
that the proportionality constant a, in (3) cannot be
obtained frém a run at a single temperature, but a second

" histogram can be generated at a different temperature 7.

If 7, and T, are not too different, the corresponding
histograms H,(E) and H,(E) will overlap over a range of
values of £ and the ratio a,/g, can be determined by
integrating over the overlap region. This procedure can be
repeated if additional runs are performed and determines
the entire set of g; values to within a multiplicative
constant. If enough bridging distributions are generated,
overlap with the histogram from an infinite temperature
sirnulation can be attained. In this limit the total number
of states available to the system can usually be found
exactly and the proportionality constant g, can be
determined. The determination of a, fixes all the other a,
values so that the partition function and the absolute free
energy can be obtained.

An mmportant contribution was made in 1976 by
Bennett,'” although the relevance of his work to the
problem of linking MC simulations for use in multistage
sampling was not immediately recognized. Bennett con-
sidered the problem of computing free-energy differences
between two different temperatures and derived equations
based on optimized contributions to the estimate of the
density of states from each simulation at eack value of the
energy. The result has the form of expectation values of
Fermi functions, with the free-energy difference playing
the role of the chemical potential.

In 1977, Torne and Valleau'? introduced the method
of “umbreila sampiing” in order to generate probability
distnbutions wider than the Boltzmann distribution. The
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F1G. 1. The energy dependence of the histogram H (£ ) for the Ising model
on a 16X 16 square lattice st T=2/In{14-42). A totsl of 83 10* Monte
Carlo steps per spin was used.

problem is that importance sampling typically generates a
narrow distribution centered about the average value.
Hence, in order to use multistage sampling, it is necessary
either to perform many runs, or to rely on the overlap of
the tails of the distributions where the statistics are poor.
Umbrella sampling was used" in a study of a Lennard-
Jones systermn by simulating only the repulsive part of the
interaction. Although the method led to an increased
width, the simulation became much less efficient and the
results using umbrella sampling showed little improve-
ment over those obtained with simple multistage sam-
pling.

An important application of histograms for the study
of phase transitions was made in 1982 by Falcioni and co-
workers' and in 1984 by Marinari.'® These workers used
the single histogram method, but extended it to complex
temperatures. In this way they were able to compute the
zeros of the partition function in the complex temperature
plane, and hence obtain additional information about the
critical behavior at phase transitions.'®

Bhanot and co-workers''® wrote a series of papers
in 1987 on the application of a combination of MC
methods. They used a multistage sampling approach,'’
including the method of matching overlap regions, and a
simple sampling method® with an upper bound on the
total energy. They also introduced a lower bound so that
each simulation covered only a narrow range of energies.
Karliner er al.*' developed a modification of this approach
and maintained a narrow energy range, but reintroduced
importance sampling within this range. The use of
importance sampling resulted in increased efficiency and
lower statistical errors.

Recently, we?? introduced a new method of opti-
mized multiple histogram data analysis that builds on the



multistage sampling method of Valleau and Card.!! Our
approach is similar to that adopted by Bennett*? for
calculating free-energy differences. Ia our multiple histo-
gram method, the data from each simulation are com-
bined to form an estimate for the density of states which 15
optimized for each value of the energy. For simplicity, we
will consider only a one-parameter Hamiltonian with T
the relevant external parameter. The main result of the
method is summarized in (13} and (14).

Suppose that we do R MC simulations. The ith
simulation, with N, MC updates, is performed at T = T,
and yields a histogram H, (E). The histogram provides an
estimate for the equilibrium probability distribution,
which we write in the form

P(E) = H,(E)/N, = W(Eye **7, (6)

where f; is a parameter related to the free energy at T, by
/, = B.F(B;). (The parameter f; is related to the unknown
values of a, in the multistage sampling method.’")
Ecuation (6) can be inverted to obtain an estimate for the
density of states:

W(E) = [H,(E)/N,1 1 (7

Of course, due to statistical errors, the estimate (7) from
one run will be reliable only over some range of E values.
Since each of the R simulations will yield a different
estimate for W{(E), an improved estimate for ¥ can be de-
termined as a weighted sum over each individual estimate
for the density of states: i

R
WE) = S, pAEYH,(E)N 7' (8)

i -]

This estimate for #( E) can be optimized for each value of
E, by choosing p,(£) so asto minimize the error in the es-
timate for W. The uncertainty in the histogram values is
given by

§H(E) =g H(E), (9)

where the bar indicates the expectation value with respect
to 21l MC simulations of duration N,. If the successive MC

configurations are independent, then g; = 1; otherwise, we
have®

g‘,=1+2fr-, (10)

where 7, is the correlation time.

{f we minimize the error in the resultant estimate for
W(E)}, we obtain

R —1
pi(E)=N;gfmle_ﬁ'E4L{2 N;gi_le_ﬁ's+ﬁ) -
(i1

-l

We define
PLES) = W(E)e FF (123

and write the essential muitipie histogram equations as

el

P(ES) = [(f.i. &~ ‘H.-(E)) e‘”"]

R — 1

where
e =3 PES). (14)
E

Equations (13) and (14) can be iterated to determine the
values of f; self-consistently. The convergence can be
accelerated by making use of derivatives of fvalues on one
iteration with respect to those of the previous iteration. If
we extend the histograms to sufficiently low or high T
where the free energy can be determined exactly, the
absolute free energies can be computed.

{ As with other Monte Carlo techniques for calculat-
ing free energies, (13) and (14) determine the free energy
to within an additive constant. For convenience, we can
set f; =0 and then determine the other f values with
respect to fy.)

The statistical error in P(EJ3) is given by

—- /2
5P{E,/3>=(zg,-'HIcE)) PES). . (9

From {15) we see that the method always reduces the sta-
tistical errors when additional MC simulations are added

.to the analysis. This expression also provides a clear guide

for planning a series of simulations. The positions and
heights of peaks in the relative error, plotted as a function
of E, give a direct quantitative indication of the optimum
locations and durations of additional MC simulations.

Once the values of f; are determined, (13) can be
used to calculate the average value of any function of £ as
a function of S, :

(4) =3 AEYPED (}: P(E.ﬁ)) e
£ £

In particular, the specific heat C is given by
VC(T) = (1/kg THKE?) — (ED)), (17N

where V is the volume of the system. The multiple
histogram method has already been applied to several MC
studies of phase transitions. For the d = 2 Ising model the
results obtained?? compared favorably to the exact
solution for finite lattices.* New results for the three-state
antiferromagnetic Potts model, including zero-tempera-
ture entropies, were recently obtained by Wang et al®
using the multiple histogram method. Other recent
applications include an SU(2) lattice gauge calculation
and calculations for several lattice dimer models.
Since the multiple histogram method is able to
combine MC simulation data from different sources to
increase the total accuracy of the results, it could be used
to combine data from different groups working on large
problems, such as those encountered in lattice gauge
theories. Because there are no limitations on the method
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of simulation, we also expect this method to be useful for
simulations in chemistry and biology.

Suggestions for Further Study

I. Use the single histogram method to show that the
{rec-energy difference can be expressed as

B F(3) — B F(fB)= —In EP(E)e““"‘I*"-’E'
E

(18)

where P(E) = H(E)/N,. (The unknown constant a, does
not appear in the free-energy difference.)

2. Write a program to simulate the d = 2 Ising model
on a L. X L square lattice at a temperature 7in a zero mag-
netic field. As a check on your program, compare your re-
sults for L =2 to the results obtained by an exact
enumeration of the 16 possible states. Then choose L =4
and compute H(£E) at the critical temperature of the
infinite system, 7, = 2/In(1 + 2) =2.269. Use the single
histogram method to. estimate Pg at varous T up to

T == 3.13. How do your predicted results for P, compare:-

to the results for P when measured directly? What is the
approximate range of applicability of the single histogram
method? Use the single histogram at 7 = T, to estimate C
in the critical region. How do your results for L =4
compare with the exact solution?** Is the temperature at
which C is a maximum above or below 7.7 Repeat the
above measurements of A(E) at T=7, for L =8 and
L = 16 and deiermine the L dependence of the maximum
of C and applicability of the single histogram method.
3. Consider the Gaussian probability distribution

PE?(]/U)(l/m)c_g—(sn’/za:' (19)

where o = (£7%) — (E)2. Assume that the histogram has
the Gaussian form (19) at 7 = T, and show that this form
implies that C(T) = T3/TC(T,).

4. Choose L =16 and compute H(E) at T=7T..
Would it be preferable to use a cluster-fip or single-flip al-
gorithm to obtain new configuraiions? How weil can this
histogram be fitted by a Gaussian function? Why would a
Gaussian yield a better fit away from 7.7

5. Use the muliiple histogram equations {13) and
{14) to combine the results from runs at different
temperatures. The correlation times can be computed as
discussed in the July/August issue of Computers in
Physics.

6. A systemn of particles interacting via the inferparti-
cle poteniial ¥(ry = ¢{o/r)"? can be characterized by a
singie dimensionless parameter 1 = S¥{r=a), where
4wna*/3 = 1 and nis the particie density. Since the energy
of the system is a continuous variable, how can the
histogram be computed? Use the multiple histogram
method to compute the mean energy and other thermody-
namic quantities for " in the range 0.1-300. Compare
your results with the MC results of Ref. 26. Can the
multiple histogram method be used to determine the
fluid—solid boundary? {Although computer time can be
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saved by considering only 32 particles, this problem is
computer intensive.)

7. Use the multistage sampling method'' to combine
the histograms of two simulations. Compare the results
with those obtained using the multiple histogram method.
Which method produces better results?

The success of this column depends on reader input.
Please send us your results, comments, and suggestions for
future columns. Regular columnists Gould and Toboch-
nik will be back next issue. Messages can be sent via email
to hgould@clarku or tobochnik%heyl.dnet @ gw.wmi-
ch.edu.
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We present a study of the three-state antiferromagnetic Potts model in two and three dimensions,
using a cluster-flip Monte Carlo simulation algorithm. The new approach enables us to perform
simulations with greatly improved efficiency. We have obtained results for the ground-state entropy
and critical exponeats in two and three dimensions. The low-temperature phase in three dimensions
is shown to have long-range order with a finite-size dependence of the magnetization and suscepti-

bility similar to that of the XY model.

1. INTRODUCTION

In this paper we give a detailed account of our study of
the three-state antiferromagnetic Potts model in two and
three dimensions, using a cluster-flip algorithm.}

Antiferromagnetic Potts models have been shown to
possess interesting and unusual properties. The ground-
state entropy is nonzero whenever the number of spin
states is ¢ > 2. The ¢ =3 model on a square lattice has a
critical point only at zero temperature.””® In three di-
mensions, the evidence indicates the existence of phase
transitions for ¢ =3, 4, and 5, although the nature of
these transitions has been uncertain.”” ¢ Notice that the
ground-state restrictions are too weak for large ¢ to
create an order at low temperatures, and the thermo-
dynamic disorder prevails up to the vanishing tempera-
ture. Indeed, using the Dobrushin uniqueness theorem,
one can prove'’ that there is no phase transition if
g > 3X29 where d denotes the dimension of the iattice.
Other studies have shown that the addition of second-
neighbor interaction,'* ™7 mixed anisotropic interac-
tions,'®!® or an external magnetic field”® can produce new
types of ordering and new phase transitions.

The highly degenerate ground states in the antiferro-
magnetic Potts models could lead to interesting conse-
Guences. Berker and Kadanoff®' suggested from a one-
parameter renormalization-group consideration that,
similarly to the XY model in two dimensions, a criticat
low-temperatitre phase may appear, with an aigebraic de-
cay of correlations. However, this conclusion was criti-
cized, suggesting that it is an artifact of the one-
parameter renormalization-group treatment,’”’ Banavar,
Grest, and Jasnow’ made the first study of the three-
dimensional Potts model for ¢ =3 and 4. From a field-
theoretic calculation, they conclude that the critical be-
havior of the three-state model belongs to the universality
class of the XY model in three dimensions and the four-
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state model belongs to the universality class of Heisen-
berg model, if the transitions are continuous. Their
Monte Carlo simulation indicates a continucus transi-
tion. They found that there is a nonzero magnetization,
also confirmed by Hoppe and Hirst,} and recently by
Ueno, Sun, and Ono,'? unlike the behavior suggested by
Berker and Kadanoff. On the other hand, Ono'? suggest-
ed that there is no spontaneous magnetization at low
temperatures and the low-temperature phase is of the
Kosterlitz-Thouless type.?

Our Monte Carlo simulation results in two dimensions
are consistent with a zero-temperature.transition. In
three dimensions we find that the critical exponents and
iow-temperature phase are similar to ttat of XY model,
as proposed in Ref. 7. Qur data are much more accurate
than previous work®™ %1912 due to a new’algorithm.! In
the next section we give a description of our algorithm.
Results of simulations for the two- and three-dimensional
Poits models are presented in the subsequent sections.
We summarize our results in the last section. In the Ap-
pendix a careful consideration of order parameters is
given.

1I. SIMULATION ALGORITHM

The difficulty encountered in the single-spin-flip aigo-
rithm?¥2* is the phenomenon of critical slowing down at
a second-order phase transition. The correlation time,
which is roughly the time needed to generate a statistical-
ly independent configuration, measured in Monte Carlo
steps, goes as 7« L% where L is the linear size of the sys-
tern and z is dynamic critical exponent (z=2 for order-
parameier nONCONServing dynamics®®~%"). This drastical-
ly reduces the accuracy of Monte Carlo data, since the
statistical error is inversely proportional to the square
root of the number of independent configurations. The
recently developed cluster-flip-type algorithms® ™ * have
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been shown to reduce z considerabiy.®* ¢ Thus much
better accuracy with less computational efforts can be
achieved,

We use' a generalization of the algorithm of Swendsen
and Wang?® (SW) to the antiferromagnetic Potts models.
This generalization is closely related to Wolff's embed-
ding of Ising reflection variables in O(n) models. 3?3738
To present the algorithm, let us consider the Potts model
defined by the Hamiltonian'®
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on a square or cubic lattice. K=JF/k;T is a dimension-
less coupling constant, and J <0 for antiferromagnetic in-

teractions {we set J /kp = —1). The partition function is
given by
Z=Se" M, 2)

Following Edwards and Sokal,®® our aigorithm for the
Potts antiferromagnetic model may be introduced as a
contraction of a joint probability distribution on the spin

H=-K 2 50,..01 s (1) configurations (¢}, 0,=1,2,3, and bond configurations
tig) fn;l, n;=0,1,2,3, where {i,j) runs over nearest-
where the Potts variable o, takes the value 1,2, ... +4,  neighbor pairs of the lattice sites. Namely, the joint
and the summation is over nearest-neighbor pairs of sites  probability
J
] 3
r";oim:zll H (I_P)Sn'j,0+ E Panu.a(l_‘sai,a} )“—80,.,(1)“——6.7},&) ’ 3)

{ij) a=1i

where p=[-¢ X

Such a joint-probability distribution yields the following marginal distributions:

}

For

configurations o it is just the distribution of the original Potts antiferromagnet; for configurations n it is the distribution

with the weights

It i—p

"1,':0 n.=1.23

{here N, is the number of a clusters, defined by the constancy of n; =a70); different « yield different clusters, and for
configurations 7 defined by Ay =0if n;=0and A;; =1 otherwise, the marginal distribution is defined by the weights

N
{1 0-p) I p3™
", =0 A.=1]

i i

{here the clusters are those just mentioned glued together).

Our aigorithm then is actually an alternate application of the following two conditional probabilities:

(
jsurely n; =0, whenever o, =0,

Pinig)=

[ whenever 0,5 ¢,

i o;#a, and oﬁ‘:a,

n; = with probability p and n;; =0 with probability i—p,

or, more accurately, the probability P(n !cr,nA( ) under the condition that together with ¢ is fixed a set A, of bonds

on which either n;; =0 or a with a fixed configuration on the complement A i) E AL, =n, #0,q),

{surely n; =0, whenever o, =0,

for every (i,j)E A¢, and P(o'in) defined as a random

distribution that assigns that distribution to each a clus-
ter with equal probability io those two configurations for
which cr,-ia}, o, Fa, and o, Fa.

For actual implementation the algorithm consists of
the following steps.

(1) One chooses a pair of Potts states among the g
different states at random.

{2) Bonds are formed between nearest-neighbor sites
occupica by those chasen states il the two sites are in
cifferent Potts siates, and a uniformiy distributed random
aumber in the interval 0 and i is less than p =1 —¢ 'K\,

] - e . g
|, =a with probability p and n,; =30 with probability 1—p, whenever o;%0,, 0,%#a, and o, #a,

(3) Clusters are identified. A cluster can be either a sin-
gle site or a set of sites connected through bonds. The
sites not in the chosen Potts states are not counted as
clusters; their Potts variables do not change.

(4} For each cluster, with equal probability, we either
keep its original Potts states, or interchange the chosen
Potts state on the sites in the cluster. We then go back to
step (1),

For ¢ =2, this algorithm reduces to the original §W al-
gorithm for aniiferromagnetic Ising models, using the
concept of antibonds between spins of opposite signs.
The aigorithm for g >2 updates a subset of the lattice
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sites, where the reduced Hamiltonian in one-step updat-
ing is that of a dilute antiferromagnet. Of course the re-
duced (effective) Hamiltonian changes in the next Monte
Carlo step, determined by the state of the system. If
g =4, two or more pairs of states can be updated simul-
taneously. The relation to Wolf's algorithm® is clear,
since a g-state Potis model can be thought of as an Q(#n)
model with 1 =g — 1 and with unit vectors taking only a
discrete sets of values. The reflection of a unit vecter
with respect to a certain plane is equivalent to the ex.
change of Potts states.

A key step in implementing this algorithm is a cluster-
labeling scheme, so that sites in the same cluster receive
the same labeling number, while sites that belong to
different clusters have distinct labels. This is done using
an auxiliary list of labels. The labeling algorithm is simi-
lar to the Hoshen-Kopelman algorithm*® used in the
cluster-counting problem in percolation. An integer ar-
ray A(I) is initialized to A{J}=1I, meaning site [ has la-
bel I. If A(I) <1, the label of site [ is the same as the la-
bel of the site I'= A(I). A proper label at any given mo-
ment has the property 4{I)=I1. As one goes through
each pair of nearest neighbors, if the cond:itien for having
a bond in step {2) is fulfilled, the current labels of the twe
sites are found iteratively: Site I has the label A{[); if the
label is equal to [, then [ is the current label; otherwise
site J has the same label as site 4(J/). One traces back
this list until 4 {J)=J; then J is the current label of site I.
The list is updated so that the labels of the two sites reset
to the current, smaller label. A final check is needed to
go through the list to ensure that each site has the proper
label. The operation needed is proportional to the total
number of sites. Thus the computational speed does not
slow down as system size increases. The memory require-
ment is twice the number of sites.

II1. DEFINITION OF ORDER PARAMETER
AND SUSCEPTIBILITY

Since the interactions are antiferromagnetic, we expect
some kind of staggered order that breaks the sublattice
symmetry.'"* We define

2 - N
m, = [2 8, .bea..p‘: , (4)
L ee ! (&b ‘ |

where it takes values 1,2, ..., ¢; L is the linear size of the
system; a and b are the two sublaitices such that the sites
on the sublattice ¢ have their nearest neighbors on the
sublattice b and the other way around. Fer the order pa-
rameter we may take

q
< (! ‘
- (‘m#} . (5
Our definition is the same as that introduced in Ref, 14
excent a constant factor (1),

The susceptibility is in the disordered phase given by

L3
Y==—73 (m}). 6)
7 .=

By noting that each cluster has freedom te choose, in-
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dependently of other clusters, two possible new states
(step 4), we can explicitly perform an average over all
possible assignments of the new configurations. Namely,
if N2 and N’ denote the number of sites in the cluster
on the ¢ and & sublattices, respectively, and
N,_,=N%+N! is the total number of sites in the cluster,
assuming that we are interchanging, say, the states | and
2, we get

m,L9/2=S n N4 —{1—n N? (7)
o

where n, = 1 if state 1 is on sublattice 2, and 0 otherwise.
Averaging over the random variables n, for which
{n.y=1land {n,n,")=1+18, ., we obtain

—d
x== f(zzvf,)+< [E(M’,—A’ﬂ)”)], g=3. &

T
I
q E (24 a

This formula has the advantage over (6} that the variance
of y is reduced, since it takes into account many
configurations.

Another choice of order parameters is given by consid-
ering the three Potts states as a unit vector taking three
directions 120° apart. Then we have a two-component
order parameter. It has been used by Nightingale and
Schick,” and by Ono.'® We show in the Appendix that
this latter definition is actually more appropriate. We use
this definition for the low-temperature susceptibility.

V. TWO-DIMENSIONAL RESULTS

A, Zero-temperature simulation

The efficiency of an algorithm is characterized bv a
correlation time, determined from the equilibrium time-
dependent correlation function, defined by
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FIG. 1. Log-log plot of the two-dimensional susceptibility y

vs linear size L at T =0. The straight line has a slope y /v=1.
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FIG. 2. Log-log plot of the two-dimensional magnetization
m vs linear size L at T=0. The straight line has a slope
B/v= f;

where m is the total instantaneous magnetization, defined
in Eq. {5), and the angular brackets denate an average
over a sequence of configuraiions generated in a Monte
Carlo simulation. The time dependence is, to a very
zood approximation, exponential, fif)ae¢ /7. The
coefficient r here is the characteristic correlation time.

For the two-dimensional three-state antiferromagnetic
Potts model at zero temperature, the standard Monte
Carlo gives a correlation time 7, ~0.32L7, with a dy-
namic critical exponent z=2.0. Our algorithm gives a
correlation time 7=7 for L =4-64, It means that critical
slowing down essentially disappears and much more ac-
curate results are obtained.

Figure 1 is a log-log plot of the susceptibility versus
size L, for L up to 256. A nearly straight line yields a
very accurate estimate of the exponents ratio
v /v=1.66610.002. Assuming scaling, this corresponds
to n=2—y/v=0.33410.002, which characterizes the
decay of pair-correlation function, gir)~p 91277
{d =2). Of course, the exponent y or v separately is not
uniquely defined due to a zero-temperature transition.
Park and Widom*' have recently found an exact value
y /v=1, confirming our numerical result.

Figure 2 is a log-log plot for the magnetization. It de-
creases with size as expected, with the exponents ratio
B/v=0.170+0.006 (exact value fi/v=2=L) The hyper-
scaling relation y /v+28/v=d is satisfied within statisti-
cal errors.

B, Finiie-temperature simulation

To calculate the entropy and other thermedynamic
guantities, we used the multiple-histogram method.®
The centrai idea of the histogram method™ is to coliect
distribution of quantities of 1aterest at one temperature;
the value at nearby temperacures is generated according
to Gibbs formula. The multiple-histozram method®
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combines simulation results at different temperatures,
and regenerates data as a function of parameter in the
model (typically temperature) in a continuous smooth
fashion. As a by-product, the free energy can also be ob-
tained.

In Figure 3 we plotted the magnetization as a function
of temperature for different sizes L =4, 8, 16, and 32. At
high temperatures m « L ~%/% is observed. At very low
temperatures the magnetization decreases with size as
L ™P/¥ as already discussed in Sec. IVA. Our Monte
Carlo data are consistent with no spontaneous magnetiza-
tion at all temperatures in the infinite-size limit. Earlier
results (Ref. 14, Fig. 1) might indicate a nonzero magneti-
zation or nonzero T,. This could just be a finite-size
effect.

Figure 4 is the reduced free energy per site, defined by
f=L"nZ, plotted as a function of temperature for
sizes L =4, 8, and 16. In the high-temperature limit f
approaches In3, while the zero-temperature limit is the
ground-state eniropy. Finite-size effect shows up at low
temperatures.

In two dimensions the ground-state entropy is known
to be s, =2in{ for an infinite system due to mapping
onto an ice model.* Finite-size correction is given by*!

s(L) =5 +L *In2.935779 65 . (10)
We obtamed s{(4}=0.5000, 5{8)=0.4484, and s(16)

0.8

FIG. 3. Muagnetization as a function of temperature in two
cimensions for size L =4, 8, 16, and 32. The smooth curves are
obtained using the muitiple-histogram method (Ref. 43). This
and following plots in two dimensions combine data from five

simulations cach for L =4 and 8, and nine simulations for
L =16
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FIG. 4. Reduced free energy f =L “InZ as a function of
temperature in two dimensions for size L =4, 8, and 16. The
value f approaches the ground-state entropy as temperature I
approaches zero.
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FIG. 5. Susceptibility as a function of coupling strength
K =1/T on a semilogarithmic piot for size L =4, &, 76, and 32
in two dimensions.
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FIG. 6. Scaling plot L "y vs £/L in logarithmic scale,
where &= ’, with Yy /v=1.6066, ¥=1.3, using the same set
of data as in Fig. 5.

=0.4359 from simulation. These values are in good
agreement with exact result in Eq. (10). ‘
In Fig. 5 the susceptibility is plotted against K =1/7T
on a semilogarithmic scale. A clear curvature is ob-
served, indicating that the susceptibility is growing with
K (in the large size limit) faster than a simple exponential.
Previous data® were analyzed in the form of
Y={T—=T,{7% and it was found T, =0 with y=5. Qur
susceptibility data are not compatible with this functional
form.

If we assume a finite-size scaling structure for the sus-
ceptibility

Y=LVRELY (1)

we have to assume that the correlation length takes a
form £=¢”". In the thermodynamic limit the suscepti-
bility then has an essential singularity, y<e®* . Figure 5
is a scaling plot with y /v+=1.666 and ¥=1.30. Devia-
tion from scaling is small even for L =4, The exponent ¥

is in agreement with a phenomenological renor-
malizalion-group calculation.?

V. THREE-DIMENSIONAL RESULTS

A. Correlation time

Correlation time is, for ouvr algorithm, also reduced at
the critical temperature in three dimensions. We fourd
that the correlation time is approximately given by
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7= 2L 0482004 (1 <32 while for the standard simulation
it is found to be Ty~ 1L P00 (1 < 16). Thus the clus-
ter algorithm becomes advantageous for size L > 5.

However, below the critical temperature, where the
correlation time is usuaily size independent, even our al-
gorithm shows a strong size dependence. At a tempera-
ture T'/T,=0.68, correlation-time data from system sizes
L =4, 8, and 16 are consistent with a dynamic critical ex-
ponent z ==2; it is the same as single-spin-flip dynamics at
criticality. This peculiar behavior can be interpreted as
that the low-temperature phase exhibits critical fiuctua-
iion as suggested by Ono.'® OQur susceptibility data sup-
port this interpretation.

B. Low-temperature behavior

Figure 7 is a plot of magnetization as a function of
temperature in three dimensions for system sizes L =4, 8,
16, and 32 (for earlier data, see Ref. 7). Unlike the fer-
romagnetic Ising models, we found a strong dependence
of the order parameter on the size of the sysiem. The
magnetization approaches a nonzero value as 1 /L below
T.. Figure 8 is a plot of magnetization as a function of
inverse system size, 1/L, at a temperature 7 /T.=0.68.
The data linearly extrapolate to a nonzero finite-size limit
m{L=0)=0.491. Our result is in contrast to Ono's
conclusion’® that magnetization is zero with a massless
phase below T, but is in agreement with that of Banavar
et al.,” Hoppe and Hirst,> and Ueno ef al.'* As has

FiG. 7. Mugnetszadon as a function of temperature in three
dimensions for system sizes L =4, 8, 16, and 32,
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FIG. 8. Magnetization at T/7,=0.68 vs 1/L in three di-
mensions. The straight line is given by m =0.491 +0.256 /L.

been observed by Banavar et al.,’ the magnetization at
zero temperature, m{7T =0)=0.62, is close to, but less
than, %, the value yielded by maximal possible order.
The maximal order (breaking sublattice symmetry) is ob-
tained if one of the spin states is on sublattice @ and the
other two states are distributed randomly on sublattice b.

If the (truncated) correlation function decayed algebra-
ically, then the susceptibility, defined by the fluctuation
of the magnitude of a two-component vector order pa-
rameter,

(=LA (DD

{sec the Appendix for the definition of £, and &), would
diverge with system size. Figure 9 is a log-log plot of the
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FiG. Y. Susceptibility in three dimensions at T/T, =0.68 as
a funcrion of system size £ plotted in log-log scale. The siope of
tire siraight line is 1.
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susceptibility at 7/7,=0.68 against system size L. The
susceptibility linearly depends on system size. This be-
havior is fully consistent with that of the XY model in
three dimensions at low temperature. The 1/L depen-
dence of the finite-size magnetization is also analogous to
the XY model. A spin-wave calculation of the low-
temperature magnetization and susceptibility of the XY
model would give such a finite-size dependence.*?

The distribution of the two-component order parame-
ter yields some information about features of the low-
temperature phase. At very low temperatures (T =0.1,
for example), the order parameters take values close to
full order. We see sixfold-symmetry peaks for L =4 and
8. As system size increases, the peaks bécome sharper.
For L 2 16, oniy three peaks remain; they are rclated by
exchanging Potts states. The symmetry associated with
exchange of sublattices is appearantly broken. As the
temperature raises, the peaks becomes less sharp. For
temperature not very far from T., the distribution locks
moye rotationally symmetric, with a sixfold anisetropy
{or threefold for large system size}. Very close to T, the
distribution is nearly rotationally symmetric. It appears
that the effect in Qno’s simulation (Ref. 10, Figs. 3 and 6}
is due to a finite observation time. If one sitnulates time
long enough, or the dynamics are fast enough, one would
see an approximate circle instead of an arc in the locus of
the instantaneous order parameters.

The ground-state entropy is also calculated in three di-
mensions. Ailthough we have only the values of the resid-
ual entropy for L =4 and 8 [5(4)=0.3953 (10 histogram)
and s{8)=0.3708 (16 histograms}}, we note that they
agree with the equation s(L)=s_+L ~“n6é, which
would predict that 5 =0.3673. (Hoppe and Hirst® ob-
tained a higher value: 0.376.) This equation is also in
reasonable agreement with the exact number of states for
an L =2 lattice (113.3 versus 126). Borgs and Imbrie*
rigorously proved that for a class of models with well-
defined energetic barriers between phases, the similar
coefficient 1s the logarithm of the number of phases.
Even though their theory does not apply in our case, it
makes plausible the speculation that In6 should mean the
existence of six phases at low temperatures,

C. Critical behavior

We used a single histogram method*® to calculate the
specific heat, the susceptibility, and the fourth-order cu-
mulant, simulating at T =1.22549. The length of the
runs were more than 10° Monte Carlo steps except the
largest size, [ =64, which was 1.8X10° Monte Carlo
steps.

The peak of the specific heat grows as the system size
increases. Figure 10 is a plot of the peak of specific heat
versus size L in a log-log scale. The approach to the
asymptotic behavior seems to be rather slow. Assuming
that C .. @ [TV the effective exponent /v decreases
from 0.3 to 0.16, while if one assumes a cusp,
Cphex =C, Tal®”, the a/v value is negative in the
range —0.2-—0.1. The data may also be compatible
with a logarithmic divergence for L > 8. A precise esti-
mate for a/v is not possible. This difficulty is also
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FIG. 10. The peak of specific heat in three dimensions vs size
L in log-log scale.

reflected in the location of the peak, shown in Fig. 1.
We found that the peak first moves toward lower temper-
atures as L increases, and then rises back slightly for
larger systems, This makes it difficult to apply the stan-
dard finite-size scaling for the peak position,

T(L)=T,+bL "' (12)
A more accurate result is obtained for the critical tem-

perature from the fourth-order cumulant*’

1
glT,L)= 5

{m*)

Ty

1
l:g(lrwrclz,”‘*). (13)

v

In the scaling region close to T, a different choice of L
should have a unique intersection point at T =7_. Fig-
ure 12 is g(T,L) for L=16, 32, and 64, From this
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FIG. 11. The location of peak of specific heat in three dimen-
sions as a function of size L.
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.81 Q.81% 0.82

r£I1G. 12, Fourth-order cumulant g vs inverse temperature K
‘o7 system size L =16, 32, and 64 in three dimensions.

analysis we get an estimate for 7, ={.2259+0.0007. This
should be compared with the results of Gno'® (1.25),
Foppe and Hirst® (1.28+0.04), and Ueno er al.'2 (1.235).

The critical exponents ¥ and v are obtained from a
finite-size scaling plot for the susceptibility, shown in Fig.
3. We find y /v=1.99£0.03 and v=0.66+0.03, using
r.=1 2259 These exponents agree with those of the X7
model ~* within errors. Our results are in disagree-
ment with v=0.5800.01, ¥=1.10£0.02 obiained hy
Ueno et al, using an interface approach.™  The
discrepancy fnay be due to the smaller system sizes
(L =24} they have used and the location of the critical
temperature.
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FiG. i3, Scaling plot for the three-dimensional three-state
andiferromagneiic Potts model of the susceptibitity times £, 0
as o function of (T Tl usig T3, 2259, vAr O,

anag v=0006, for L8, 16, 32, and 64,

VI. CONCLUSION

We have made a high-precision Monte Carlo stmula-
tion of the three-state antiferromagnetic Potts model in
both two and three dimensions. This is only possible due
to a fast algorithm for equilibration. In two dimensions,
our results are consistent with previous conclusion that
the transition is at zero temperature. The numerical esti-
mates of the exponent 7 and the ground-state entropy are
in good agreement with the exact results. The suscepti-
bility is consistent with a form of an essential singularity.
In three dimensions, we give estimates of the critical tem-
perature and exponents. The exponents agree with XY
model value within statistical errors. At low tempera-
tures, the correlation time, magnetization, and suscepti-
bility data indicate that the correlation length is infinite;
but the system has a long-range order {(nonzero order pa-
rameter). The question remains open whether the anisot-
ropy at low temperatures is relevant to the critical behav-
ior. While Ueno et al. claimed a new universality, our
results are in favor of XY universality class for the model.
Clearly more theoretical understanding is needed to clari-
fy the issue.
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APPENDIX: ORDER PARAMETERS

Consider three atomic species 1, 2, and 3 {or Potts vari-
ables) to be placed on sublattice @ and b. We shall study
order parameters assuming that macroscopic states are
completely characterized by particie concentrations
ci,ed,ciand ¢l c3,ch. They are defined by

ol = d(zb ) (A1)
=¥}
where & is the Kronecker symbol, o,, u=1,2,3, and

{==q.b We use angular brackets to denote a thermo-
dynamic average.

Since cach site must be occupied by either 1, 2, or 3, we
fave a conservation law for the concentration:

ped=1 (A2a)

{A2b)
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Thus only four of the six parameters given are indepen-
dent. Choosing ¢9, ¢, ¢%, and ¢} as the independent
ones, we may characterize the ferromagnetic order by
(suitably rescaled) overall concentrations.

Q=i +ed)—4,

i (A3a)

O, =l +cd) -1, (A3b)
and the antiferromagnetic order by the difference of sub-

lattice concentrations

W, =ci—ct, {Ada)
¥,=ci—c). (A4b)
Now, for a paramagnetic phase we have

¢, =o,=¥,=W¥,=0, while a complete ferromagnetic or-
der,say o, =1, has & =1, &,=—1 ¥ =0, ¥;=0 and a
complete antiferromagnetic order, say with | and 2 on
sublattice ¢ and b, respectively, has ¥,=1, ¥,=—1,
D)=L, P,=4

The dependent variables @;, ¥, can be defined in a
similar fashion with the conservation law Eq. (A2) rewrit-
ten as

O, + @, + D, =0, {ASa)

¥, +, =0, (A5

Let us consider invariants of the symmetries of the
model (needed, e.g., when constructing a Lancau Hamil-
tonian). Taking into account the symmetries with respect
to arbitrary permutations of atomic species 1,2,3 and
with respect to the interchange of the sublattices ¢ and b,
we infer that invariants are symmetric functions in the
variables &, &, ¢, as well as ¥, W¥,, ¥,, and are sym-
metric with respect to the transformation ¥ — — W, The
second-order invariants are

DI+ DI+l (Aba)

Wi+wit (A6b)
The third-order term

®+ DI+ b3 (AT)

contains only ferromagnetic order parameters and, in the
Landau Hamiltonian, may be viewed as that one respon-
sible for a first-order phase transition in the ferromagnet-
¢ Potts mode! in three and higher dimensions., The
fourth-order terms are

(pi+di+oh)? {AS8a)
S TR Sha SH (A8b)

These are the only possible invariants up to the fourth or-
der.
Let us choose independent parameters (cf. Ref. 13) that

2473

diagonalize the quadratic invariant, say ©;—®,; @3,
¥, ~W, and ¥, Rescaling (with respect to shifting)
them slightly we get the Landau Hamiltonian

Hy=a+b{E+E)+c(E+E3), (A9)

H, =d+e(nj+n3)

[ﬂf |

+ l“;—n%ﬁg(nﬁni)", (A10)

with order parameters

A
§I=——2—3(c‘{ -y, (Alla)
E,= ey —ei—(c§—c], (Allb}
and

m=—lci+eh+l, (Alla)
— "/3 d h a b ~1
n= [{ef+ecd—(cf+eI)]. {A129)

These are the order parameters used by Ono'® and
have an illustrative interpretation when Potts spins ¢, are
viewed as unit vectors in three directions forming the an-
gles 27 /3. Taking into account that the concentrations
CL belong to the interval [0,1], the vector £=1{£,,&,) is ro-
stricted to fall within a uniform hexagon of diameter 1,
while 7=(7,7,) falls into a uniform triangle (cf. Ref.
10). In term of order parameters £ and %, the three possi-
ble states of perfect ferromagnetic order are described by
unit vectors 7 in the vertices of the triangle, while £=0.
The states of perfect antiferromagnetic order are
represented by unit vectors £ in the vertices of the hexa-
gon with vector % (of the length 1) in the centers of tae
sides of the triangle. For the three-state Potts antifer-
romagnet in three dimensions a broken-sublattice (BS) ot-
der s expected {0 occur at low temperatures. Namely,
the order with one sublattice is occupied by one of the
three states, while the other sublattice is occupied by the
remaining two states at random. The BS states are
represented by vectors £ of the length V'3/2 in the
centers of the sides of the hexagon with vector 5 of the
length £ in the vertices of a suitably rescaled triangle.

The state constructed under periodic boundary condi-
tions has all the symmetnes of the model. In particular,
all the concentrations cL are clearly equal to | and the
parameters < and ¥ are, strictly speaking, vanishing. n
Sec. 11E we are using (following Ref. 7) the order parame-
ter {m ) defined by formulas (4) and {5). This parameter
may be thought of as a sum of the parameter
WL+ Wy over all ordered states (existing at given
lemperatures).  Notice, however, that it cannot discern
antiferromagnetic and BS states,
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We present an alternative approach to efficient Monte Carlo simulations of biological molecules. By
relaxing the usual restriction to Markov processes, we are able to optimize performance while dealing
directly with the inhomogenecity and anisotropy inherent in these systems. This approach allows us to
sample configurational space more efficiently than with either standard Monte Carlo or molecular-

dynamics methods.

PACS number(s): 87.15. —v, 02.50.+s5, 31.15.+q

I. INTRODUCTION

In recent years, considerable effort and computational
resources have been devoted to simulating biological mol-
ecules. These molecules, which include polymers, pro-
teins, and nucleic acids, are of great importance in phys-
ics, chemistry, biology, and medicine [1,2]. The goal of
these computer simulations is to provide insights into the
structure-function relationships in biomoelecular interac-
tions and energetics [3] by supplying detaiied information
about the conformations and internal motions of biologi-
cally important molecules.

Due to the size and complexity of the task, these simu-
lations require enormous amounts of supercomputer
time. This has led us to investigate alternative methods
for improving efficiency with the goal of reducing the
burden on supercomputing resources, broadening the
scope of applications, and increasing the reliability of the
results.

Currently, most computer simulations of thermo-
dynamic systems use either molecular-dynamics (MD) or
Monte Carlo (MC) methods. Both methods involve the
generation of molecular conformations to represent
thermal fluctuations. Equilibrium properties are found
by computing appropriate averages over the resulting set
of conformations. The interactions between atoms in the
molecule are represented by an effective Hamiltonian that
has been constructed empirically from a vartety of experi-
mental information {4-8).

Molecular dynamics is a deterministic method that
computes classical trajectories by iterating a discretized
representation of Newton's equations. The total energy
of the system is conserved so that the generated
confizurations trace out a microcanonical ensemble (if the
system is ergodic). An advantage of the MD method is
the possibility of following an explicit classical trajectory
of the system.

Since it is ofien more convenient to analyze data ob-
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tained at constant temperature (and/or pressure), various
modifications of the MD method have been developed.
One possibility is to introduce terms representing noise
and dissipation into the equations, which leads to a
canonical ensemble (constant temperature) [9-11].
Another possibility is the rescaling of atomic velocities to
impose a fixed average temperature [11,12]. Nosé has in-
troduced particularly interesting modified equations of
motion that couple the system to a fictitious external de-
gree of freedom [13,14].

The main adjustable parameter that enters a
molecular-dynamics simulation is the size of the time
step. Increasing the time step moves the system through
phase space more rapidly, but it can introduce errors and
can even affect the stability of the algorithm. For either
Gear [151 or Verlet [16] algorithms, the maximum time
step for reasonable accuracy must be less than about & of
the shortest period of vibration. In the case of most bio-
iogical molecules, this corresponds to roughly 1 fs, which
is indeed commonly used in such work. It might also be
noted in passing that since the highest frequencies are as-
sociated with the smallest masses, one way to increase the
efficiency of the MD method without distorting the equi-
librium properties would be to set all masses equal [17}.

A Monte Carlo simulation is a stochastic Markov pro-
cess that generates a sequence of configurations
representing a canonical ensemble. Trial moves are gen-
erated from a random distribution and are either accept-
ed or rejected with a probability given by the Boltzmann
factor. The Markov property of the MC process means
that the probability of transition to a new state depends
only on the present state. A fundamental theorem of
Markov processes states that if the transition probabili-
ties satisfy detailed balance, and if any configuration can
be reached from any other configuration in a finite num-
ber of steps with nonzero probability (ergodicity), then
the simulation can correctly reproduce the equilibrium
behavior [18].

8394 @ 1992 The American Physical Society
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There are also mixtures of MC and MD methods
known as hybrid MC [19] and hybrid MD methods [20].
In these methods, larger time steps are used with a global
acceptance step to ensure thermal equilibrium.

In developing alternative methods, we must keep in
ruind the nature of the system and the types of questions
that are asked. Some of these questions concern the dy-
namics of short-time behavior {i.e., a few picoseconds),
and the only current option is the MD method. Howev-
er, most questions concern equilibrium properties. The
equilibrium configuration is of major importance in
determining biological function, and free-energy calcula-
tions are needed to predict and understand biochemical
reactions. Many calculations of relaxation times actually
require quasiequilibrium determination of free-energy
barriers.

Early work by Northrup and McCammon [21] indicat-
ed that the MD method was more efficient than the MC
method, even for equilibrium properties. This conclusion
was based on their observation that the MC method re-
quired much more computer time to carry out the updat-
ing process. However, the two methods actualiy require
about the same amount of computer time ner sweep.
When this is corrected for, their data, based on the rms
- deviations per sweep, indicate that the standard MC
method is more than the MD method. We have chosen
10 base our approach on the MC method partly for this
reason, but primarily because of the flexibility for intro-
ducing additional new moves in MC simulations to im-
prove the efficiency.

Both Monte Carlo and molecular-dynamics methods
were originally developed to simulate fluids. In setting
up a simulation, both methods require preliminary calcu-
tations to equilibrate the system and to determine the ap-
propriate simulation parameters (time step in the MD
method or maximum jump size in the MC method) and
o ensure stability in the case of the MD method. When
stmulating fluids, optimization of parameters is done on a
global basis, which is appropriate because these systems
are homogeneous and isotropic. However, the local
structure of molecules is inhomogeneous and highly an-
isotropic [1,2,21]. Thus it is necessary to optimize the pa-
rameters locally in order to increase the efficiency of the
simulation. Furthermore, both the inhomogeneity and
anisotropy change with time.

We have developed alternative MC methods to address
these problems. The essential feature of our approach is
the optimization of the Monte Carlo parameters from
data collected during the simulation. Because this
feature allows us to optimize local moves, we are able to
Geal explicitly with the inhomogeneity and the local an-
isotropy of biological molecules. Our approach aiso al-
tows for the optimization of a wide variety of global
moves without long preliminary studies. This turns out
to be extremely important in designing efficient algo-
rithms.

Sirce our methods use information gathered during the
simulation, they are no longer strictly Markovian, al-
though they are a/most or piecewise Markov Processes
22}, Detailed balance is satisfied and we have been abie
to demonstrate that our algorithms reproduce the correct
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equilibrium behavior while substantially improving speed
and efficiency. In this paper, we present a description of
our approach and illustrate its advantages by applying it
to a small molecule.

IL. ALMOST MARKOV SIMULATION METHODS

In this section, we derive two simulation methods from
an analysis of a simple harmonic oscillator (SHO). The
acceptance-ratio method (ARM) is an optimization tech-
nique that treats the inhomogeneity of biomolecules
efficiently. The second method, the dynamically opti-
mized Monte Carlo (DOMC) method, treats both the in-
homogeneity and the anisotropy. These methods are
then shown to retain their efficiency for the anharmonic
potentials found in biclogical molecules.

The potential energy of a d=1 SHO is given by
Vix)=Lkx %, The efficiency of a MC simulation is deter-
mined by the choice of maximum step size & from which
the MC trial moves are generated. If an optimum § is
known for some given k and f3, then the optimum & for
any other values of k and § is also known through the
scaling relation

1kBsi=F? (1

where 8=1/k;T. Thus, if we can determine the optimal
scale factor K for any SHO, we have solved the problem
for all such models.

An important quantity for understanding the efficiency
of MC simulations is the average acceptance ratio (P ),
which is defined as the ratio of accepted moves to trial
moves during a simulation. As shown in Fig. 1 (which

i I T |
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FIG. 1. Semilog plot for the average acceptance ratio (P ) as
a function of the maximum step size for d=1, 2, and 3 SHO
with #=1. The one-dimensional curve is exact, while in higher
dimensions, cach point is obtained by averaging over 10000 MC
steps ftom a simulation where the trial jumps are generated uni-
formiy in radius.
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also shows data for higher dimensions discussed “elow),
the acceptance ratio decreases monotonically as 2 func-
tion of step size 8. This is expected because small trial
step sizes corresponding to small energy changes will pro-
duce high acceptance ratios, while large moves have a
high probability of being rejected due to large energy
differences. The acceptance ratio decreases approximate-
ly exponentially as a function of & for the range of values
shown in Fig. 1. For larger 8, the acceptance ratio varies
inversely as 8.

To determine the optimal value of F, we first per-
formed a series of MC studies of a d =1 SHQ, V{x)}=x?
with = 1. In addition to the acceptance ratio, we moni-
tored the autocorrelation time » and two measures of the
displacements per MC step, ((Ax)*)'? and (lAx]),
where Ax represents the displacement during a MC move
and the angular brackets indicate the usual thermal aver-
age.

The simplest measures of efficiency are the rms [21]
and average absolute displacements. These quantities
should go to zero for small acceptance ratio {P) since
most moves are rejected, and for (P} near 1.0 since each
trial move is small. Therefore, we expect a maximum in
each curve, as seen in Fig. 2. The maximum rms dis-
placement  {{Ax)*}'?  occurs at (P)}=0.42
(6=F=2.62), while {|Ax|) has a maximum at the larger
value of {P}=0.56 (6=F=1.76). The optimal value of
F clearly depends on what is being calculated. However,
even if { P) differs from the optimal value by as much as
+0.15, the displacements are only reduced by 10%. This
leaves a fairly large region around (P)=0.5 (§=F=2)
for which both quantities are nearly optimized.
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FIG. 2. The rms and absolute displacements vs acceptance
ratio for d =1, 2, and 3 SHO with #=1. The one-dimensional
curve is exact, while in higher dimensions, each point is ob-

tained by averaging over 100000 MC steps from a simulation
where the trial jumps are generated uniformly in radius.
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The integrated correlation time r was determined from
the normalized time-dependent energy-energy correlation
function

(E(1a)E(ty+e))—{(E)?

(ty= (2)
d (E})—(E)?
by the usual expression

T= E f{t") ¥ (3)

i=1

where the sum is cut off when the fluctuations drive the
correlation function negative {23]. The statistical error is
proportional to V'1+27,

Figure 3 shows a plot of the correlation time 7 as a
function of the acceptance ratio {2 }. This plot shows a
minimum in the correlation time with 7, =1.4 MC
steps corresponding to a 50% acceptance ratio. This pro-
vides a justification for the comimon practice of tuning
the step size to accept about one-half of the trial moves.
In fact, using (P}=0.5 (§=F=2) to minimize 7 also
gives rms and average absolute displacements within
2.5% and 1.3% of their respective maxima.

In higher dimensions, the parameters that enter the op-
timization scheme are found to depend on how the jumps
are generated. Two possibilities are to generate them uni-
formly in either the radius or the volume of a sphere {uni-
formly in radius or area of a circle for 4 =2). Interesting-
ly, when the jumps are generated uniformly in radius, the
acceptance ratio, the rms displacement, and the absolute
cisplacement are nearly independent of the dimension as
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FIG. 3. Plot of the energy-energy autocorrelation time r as a
function of acceptance ratio (P) for d=1, 2, and 3 SHO with
B=1. The trial jumps are generated uniformly in radius, and
the dashed lines represent parabolic fits to the clirves.
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wwn in Figs. 1 and 2. The correlation time still has a
animum at {P)=0.5, but its value increases for higher
:mensions as shown in Fig. 3. The minimum correlation
me is 3.8 MC steps in two dimensions, and 6.1 MC steps
« three dimensions. Thus the optimal value of F when
1e jumps are generated uniformly in radius is still F=2
srresponding to a (P ) =0.5.

When the trial jumps are generated uniformly in
diume, the behavior is somewhat different. As shown in
ig. 4, the acceptance ratio decreases more rapidly as a
.nction of § than in the previous case, but is still a near-
" exponential function. The maximum rms and absolute
splacements are higher than in the previous case bat
-cur at lower acceptance ratios as shown in Fig. 5. The
Animum correlation time occurs at lower acceptance ra-
os for higher dimensions as shown in Fig. 6. The
inimum correlation time is 2.8 MC steps corresponding
» {22 =0.42 in two dimensions, and it is 4.4 MC steps
scurring at (P)=0.39 in three dimensions. The value
. & corresponding to the optimal correlation time de-
‘eases only slightly in higher dimensions, being about
9 for 4 =2, and about 1.8 for d =3 SHO.

Although most workers fix the step size for the dura-
on of the simulation, some efforts have been made to
>date it as new information is generated. Allen and
idesley suggested ratsing or lowering the global step
z¢ by 3% depending on whether the measured accep-
.ace ratio is above or below 509 [24]. Corana et ol. in-
oduced variations in maximum step sizes to maintain
« acceptance ratio at 50% in simulated annealing runs
T minimizing functions of continuous variables [25].
nice they were not concerned with equilibrium proper-
25, they did not discuss the non-Markovian nature of
«eir procedure,

Our first optimization procedure is an acceptance-ratio
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method to carry out equilibrium simulations with

difierent dynamically determined step sizes for each par-

ticle. We have used the approximately exponential

dependence of {P) on §

(P)=exp(~8/85), 4

where 8, is some constant. Let {P;) be the ideal or the

1 i‘ ; {
. ! i .

9 B ! e,
i ;"
! .
* i L.
R 4 / /
: . ;.
! '
7 - S -
7 H
, -
o .
t 2
5 - -
- .
-I' ’
. .I' ’I
40 -
I -y rl
=%
'
3 rad
k ¢’ dwl .
d=2 area o
2 - d=3 vol .
d=1 (fie) ---
. d=2 area (fit)- -

d=3 vol (fit)— -

i 02 0.4 0.6 08 1.0
<P

FIG. 6. Same as in Fig. 3, except the trial jumps are generat-
ed uriformly in volume (uniformly in area for d =32),

31



8898

desired acceptance probability corresponding to an ideal
maximum step size §;. Then, clearly

5, =5 B (5)
T m(py

A simulation is set up as a sequence of cycles. During
a given cycle characterized by a maximum step size &,
the acceptance ratio (P, for each particle is comput-
ed. An iteration procedure using Eq. (5) is set to update
new values of 5. However, this equation must be protect-
ed against overflow problems that occur whenever P is ei-

ther 0 or 1. Therefore, we have modified it to read

inla{P;)+b)
Min(a{PY+b)’

where g and b are real parameters chosen such that 8, is
either multiplied or divided by a convenient scale factor
{about 5 or 10) whenever Pis O or 1 [25].

The ARM is a robust optimization technique and is
especially useful at high temperatures for simulated an-
nealing experiments. An advantage of the method is that
each atom is treated separately, thus dealing with the in-
homogeneity of the system efficiently. A weakness is that
the accuracy of the optimization is limited by the discrete
estimates of the acceptance ratio from the finite length of
each simulation cycle. Ancther weakness is that the
ARM does not deal with the Jocal anisotropy of macro-
molecules, although it can be applied effectively to rota-
tions of part of the molecule or other global moves.
However, these problems can be dealt with using a
different method we call the dynamically optimized
Monte Carlo method.

We first discuss the one-dimensional DOMC equations
for a d =1 SHO. Square brackets denote a direct average

over all attempted moves regardless of whether they are
accepted or not. It is easy to show that

[AE]=1lk([(Ax)*], (7

sncw =

(6)

where AE represents the energy change corresponding to
the jump size Ax. Combining this with Eq. {1} and elim-
inating k, we obtain the DOMC estimate for the op-
timum value of § from the simulation data

axp |
BlAE]

or, more generally

=F [(AX }In +23
BIAE(Ax "]

§=F , {8)

12
, n=0,1,2, ... . 9

This is the fundamental DOMC equation for =1 sys-
temns. As discussed above, the scale factor F for the SHO
is about 2 for optimum efficiency. The extension of the
DOMC method to anisotropic systems in two and three
dimensions is described in the Appendix. Trial moves are
made within an ellipsoid (an ellipse for d =2) that reflects
the local anisotropy. The advantage of choosing moves
from an ellipsoid was suggested by Northrup and
McCammon [21} in 1580, although they had not
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developed a method for implementing it.

During each simulation cycle, the averages {{Ax:
and [AF ] are computed locally for each variable, anc
new value of the maximum step size is obtained for ¢
next cycle [26). This procedure is cone only once eve
cycle, and takes a negligible amount of computer time-
about 3% for the adenosine simulations discussed belo
and even less for larger molecules.

Because both the ARM and the DOMC method use
formation from past configurations in determining t
transition probabilities, they are not strictly Markovia
which raises the possibility that systematic errors mig
be generated. To test for systematic errors, we have us:
the DOMC method to calculate the energy of a SHO v
ing very short cvcles. In the extreme case of only 1 M
step/cycle, we do find a large systematic error of 42¢
However, with even 2 MC steps/cycle the error drops
6%, and for 3 MC steps/cycle it is about 195. No sy
temaiic error was measurable for 4 or more M
steps/cycle. To obtain small statistical errors in the es
mates of &, at least 10 MC steps/cycle are needed £
one-dimensional moves, and 50 to 100 MC steps/cyc
for three-dimensional moves. Consequently, we conclw
that the systematic errors are negligible for practical a
plications.

We found DOMC to be extremely effective for a wie
range of anharmonic systems including both symmetr
and asymmetric double-well potentials. The results we
qualitatively similar to those for the SHO, although t!
optimal values of F tended to be higher—about 3 or 4.
was also interesting to note that the average displac
ments showed a broader maximum when piotted again
F than when plotied against 8§, which implies that t}
precise value of F is even less critical for strongly anha
monic systems. Comparisons between the results
DOMC and direct numerical integrations aga!
confirmed the absence of any measurable systematic err¢
for a cycle length of more than 4 MC steps. Furthe
more, DOMC easily achieves optimal efficiency for tw:
and three-dimensional models, with anisotropies of 10C
in the ratio of the coupling constants. Tests on two- an
three-dimensional potentials with anharmonicity ar
even double minima have demonstrated that the DOM:
equations remain remarkably efficient.

In practice, it is possible for the straight averages usc
in Eq. (9) to take either very large or negative value
This may arise, for example, when a trial move puts a
atom very close to another, Generally, this is rather rar
at normal or low temperatures. However, to account fc
such cases, the stability of the program is protected b
providing a branch to an alternate updating of the ste
size based on the ARM for the particular cycle that he
run into a problem. The program reverts to the DOM(
equations on the following cycle.

Although the ARM and the DOMC method have beer
derived and discussed in terms of single-particle moves
this is not a real restriction. In fact, collective moves tha
are important in biomolecules may be easily optimize
using this approach. A particularly important class o
such moves involves global rotations of a group of atom

with respect to the rest of the molecule [27-29]. Thes
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oves are described by angles of rotation, and the only
odiiication needed is to restrict the maximum trial
ove to the range [ —w,7]. The DOMC method can be
pecially useful when the rotations are highly correlated.
Ticient MC moves involving groups of two or three ro-
tions can be optimized with the equations derived in
2 Appendix.

Y. APPLICATIONS

As a simple example, we have applied these simulation
cthods to adenosine, one of the building biocks of
NA, using the united-atom force field developed by
oliman and co-workers [8]. The potentai energy is
ven by

E= 3 Kb—b )+ T Ky6-6,)

bonds angles
Ve
+ 3 —[l+coslng—y)]
dihedral 2
A; B lc, Dby |
+ 3 e’ S —" N ¥ [
nonkonds Rl_],'z R:? H bonds Ri}iz R;‘qu ]
q:4;
+ 3 24 (10)
.j'j. ER""
r<j

ac first two terms represent the bond-length and bond-
1gle strain energies. The dihedral energy is represented
7 & cosine function, where @ is the dihedral angle, n
:notes the symmetry of the torsional barrier, V. s the
srce constant, and ¥ is the phase angle. The last three
rms describe the “nonbonded™ interactions between
airs of atoms that do not belong to the same bond or an-
2. A hydrogen bond is represented by a 10-12 potential,
ad a Lennard-Jones potential is used for the other non-
onded pair interactions. The last term is intended to
:present both the direct electrostatic interaction and the
creening effects of solvent. This term is not well deter-
iined for typical separations of a few angsiroms, but we
ave followed the common practice of taking the dielec-
J¢ “constant” to be e(R,)=R, [30].

In performing the simulations, trial MC moves includ-
i nine global rotations along with single-particle jumps.
he possibility of inciuding such global moves to ac-
zlerate the simulation i1s a great advantage of the Monte
“arlo approach.

One measure of the DOMC efficiency is the energy-
2ergy correlation time, which is 8.6 sweeps, indicating a
1pid sampling of phase space. However, this quantity is
oi easily compared with the results of other methods for
zasons that will become clear below. Therefore, we have
sed the time dependence of the approach of the average
ras displacement ((Ar)2)'? to its equilibrium value as a
ieasure of efficiency {21]. This quantity is defined as

N
\’mrP)“’:H:E krr<r,>;3>”3, (11
=

snere Vs ifhie number of atoms and r, and (r, 7 are the
asition and the average position of atom /, respectively.
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It was computed by superposing all the stored structures
to the initial equilibrated structure. The superposition
was done following the procedure introduced by Kabsch
[31] with a2 modification that assures that the matching of
structures is done through a rotation and not an inver-
sion [32].

We have performed conventional MC, MD, and
DOMC simulations at room temperature (298 K) using
the same amount of computer time to account for the
fact that the full DOMC simulation took a factor of 3
more computer time per sweep due to the global rota-
tions, The DOMC simulation consisted of 1800 cycles
with 100 sweeps each. Every single-particle move and ro-
tation was performed once each sweep. Snapshots of the
molecule are taken every 10 sweeps. The computed aver-
age position of each atom {r;) after superposition is up-
dated after each snapshot. The rms is found to converge
to about 1 A.

In the MD simulation, a Verlet leap-frog algorithm
was used with a time step of 1071 s, starting from the
same equilibrated initial configuration as the DOMC
simulation. We used the average potential energy from
the DOMC simulation to initialize the veiocities of the
atoms. Velocities were initially generated from a
Maxwellian distribution and a global adjustment was
made to set the total Jinear and angular momenta to zero.
The velocities were then rescaled to make the initial ki-
netic energy equal to the difference between the previous-
ty calculated total energy and the configuration’s poten-
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FIG. 7. The rms displacements for simulations of adenosine
obtained from MC, MD, and DOMC simulations corresponding
to the same amount of computer time. On a DEC 3100
workstation, the CPU times are 0.12 s/sweep for the DOMC
simulation, and 0.04 s/sweep for the MC and MD simulations.
For the DOMC simulation, snapshots are taken every 10
sweeps, while snapshots are taken every 30 sweeps for the MC
and MD simulations. In this figure, the rms obtained during the
first 1000 snapshots is shown.

33



8900

pe b

rms (A} A e T
05 pi

0.4 |
03 By i

a2

no — - b B
o] 000 LLLY 150N} 18,03}
Snapshots

FIG. 8. Same as in Fig. 7, except that the length of the runs
are longer. The DOMC simulation is 180000 sweeps, while the
MC and MD simulations are 540000 sweeps long.

tial energy.

The standard MC simulation was done with a global
optimizaton. Single atom moves were generated uniform-
ly in volume from spherical neighborhoods with a radius
of 0.08 A, corresponding to the maximum rms displace-
ment for this method. The overall global acceptance ra-
tio was 31%.

Plots of rms displacements obtained for each of the
three methods starting from the same well-equilibrated
structure corresponding to the same amount of computer
time are shown in Fig. 7 and 8. Figure 7 shows the
“short-time” behavior of the rms fluctuations, while a
lengthier run is shown in Fig. 8. From the short run, the
rms fluctuations obtained from the DOMC simulation
exceed the MD fluctuations, and approach the asymptot-
ic value rapidly.

The plot of the DOMC rms fluctuations also shows
some kinks (or zigzags). These represent energy-barrier
crossings when the molecule changes conformation
states. These kinks are also seen in the MD data in Fig.
8; however, they occur on much longer (and unpredict-
able) time scales.

The rms fluctuations obtained from MD depend
strongly on the initial conditions—both on the initial
configuration and the initial random Maxwellian veloci-
ties. They do not usually rise as fast as shown in Fig. 7.
Our work indicates that for any initial configuration, the
DOMC simulation converges much faster than either
standard MC or MD simulation.

IV. CONCLUSION

In this paper, we have introduced two methods for car-
rying out optimized Monte Carlo simulations of thermo-
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dynamic systems with strong inhomogeneity and locz!
anisotropy. This approach is particularly intended for
simulations of macromolecules, although we expect it to
be useful in other situations. These methods make essen-
tial use of information gathered during the course of the
stmulation, which requires a slight relaxation of the usual
restriction of Monte Carlo simulations to Markov pro-
cesses. Qur calculations have shown that under normal
conditions, all systematic errors introduced by the non-
Markovian nature of the simulation are negligible.

An important advantage of the current approach is the
automatic optimization of any kind of MC move that
would be useful in accelerating the convergence of the
simulations. Large-scale collective motions can be em-
phasized, simulations can be carried out in either internal
coordinate space or Cartesian space, or a mixture of
both. This has far-reaching implications, especially in
the calculation of free-energy differences by free-energy
perturbation, multistage sampling, or umbrella sampling
techniques, where lack of proper convergence can make
the simulations very long and time consuming [33].

By providing for each incorporation of NOQE and/or
crystallographic constraints, the ARM and the DOMC
method can be used for efficient structure refinement us-
ing simulated annealing techniques in either NMR or
crystallographic studies. Such applications of the ARM
and the DOMC method are already in progress.

We have demonstrated the efficiency of these methods
by applying them to a small molecule that exhibits many
of the characteristics that make simulations of larger
molecules difficult. However, the structure of proteins
presents certain problems that require specialized tech-
niques beyond the scope of the present paper. Simula-
tions of larger molecules, including progress on simulated
annealing to find protein conformations, are planned to
be discussed elsewhere.
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APPENDIX: 4 =2 AND d =3 DOMC METHOD

To extend DOMC eguations to higher dimensions, we
first consider an effective anisotropic simple harmonic os-
cillator of the form

Ff = I -
H=1 3 kxx,
i
where k,; represents the spring constants. We use a

transformation matrix D to generate moves {7, ] in an e}-
lipsoid (or an ellipse for d =2) given by

3
= 2 Drjgj '

i=1
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[£;] is a random vector chosen from a unit sphere (unit
circle for d==2). The Optimum jump size scales as the
contours of constant energy and is determined by a di-
mensionless parameter ¥ given by

Fi=1D'kD,

where D' is the transpose of the transformation matrix D
and B=1/kyT. Fis a scale factor chosen to optimize the
efficiency of the simulation. The matrix k is determined
from the simulation using

[AEnn, =13 kilmmmm, 1 -
)

In this linear system of equations, AE denotes the change
of energy for an attempted move {n;] and the square
brackets indicate an average over all attempted moves,
whether or not they were accepted [26]. The matrix D is
then obtained from

1/2
178

inr

2
Bln

Din =F

where A, is an eigenvalue of k and V is the corresponding
normalized eigenvector. D is then updated every cycle to
adapt to the changing local environment of each atom.,
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A Simulated Annealing Approach
for Probing Biomolecular Structures
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Abstract We present new Monte Carlo meth-
ods for finding global energy minima for biological
molecules using simulated annealing. The new meth-
ods are designed to compensaté for the inhomogenetty
and local anisotropy of biolofcal molecules. A wide
variety of Monte Carlo moves have been implemented,
and full optimization of every move individually main-
tained. Using these new simulated annealing methods,
we have investigated the low-energy configurations of
a commonly used model of small biological molecules.

1 Introduction
The prediction of the three-dimensional structure

of a protein from the sequence of its residues is one of -

the most important open problems in molecular biol-
ogy. According to the “thermedynamic hypothesis”,
proteins in an aqueous environment and under nor-
mal conditions generally fold into conformations with
the least free energy {1, 2]. Hence, in principle, we
need only minimize the free energy to find the bio-
logically active structure. Unfortunately, finding the
lowest-energy state turns out.to be an extremely dif-
ficult computational problem, so that the thermody-
namic hypothesis has not really been tested by com-
putational methods.

The problem of finding a global minimum of a func-
tion having many local minima belongs to the class of
large-scale combinatorial optimization problems which
can be solved only approximately on present state-
of-the-art computers. Many approaches for solving
problems of this sort are available. One can do an ex-
haustive search of the entire energy surface, but this
is feasible only for small peptides comptising a sma!
number of residues. The search will undoubtedly yield
a globally optimal solution, but requires a prohibitive
amount of computer time for large system sizes. A scc-
ond approach is to follow the gradients of the potential
function lo the energy minimum. This energy mini-
mization approach is fundamentally correct but suffers
from not sampling far enough from a local minimum.
A more feasible approach is to use an approximation
algorithm ylelding approximate nearly optimal solu-
tions in an acceptable amount of computer time.

The most popular generat approach is simulated an-
nealing [3]. Simulated annealing is a stochastic com-
putationa: approach for finding near-optimal solutions
to large non-linear optimization problems (3, 4]. As

0-8186-1060-3425/93 $03.00 © 1993 IEEE

the temperature of a system is lowered, the particles
will rearrange themselves into lower energy states. To
obtain the lowest-energy state, the annealing has to
be.carried out very slowly, so that the system reaches
cquilibrium at a sequence of decreasing temperatures.

The solutions obtained by simulated annealing do
not, in principle, depend on the initial configuration,
and the algorithm has been proven to have a polyno-
mial upper bound for its implementation [5, 6]. Fur-
thermore, it is relatively simple to implement and is
igherently massively parallel {7].

The main problem with simulated annealing is that
it requires highly efficient simulation methods to be
successful. There are two broad classes of computa-
tional methods that are potentially in use when study-
ing thermodynamic systems: deterministic methods
such as Molecular Dynamics (MD) and stochastic
methods such as Monte Carlo (MC). Both classes of
methods can be used to carry the system from one
state to the next in phase space, and thus gener-
ate molecular conformations representing the system’s

- thermal fluctuations. The main diflerence between the
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two methods resides in the mannper in which the con- -

formations are generated. .

In the deterministic methods such as molecular dy-
namice, the time dynamic behavior of the propagation
of the system is determined by intégrating the classi-
cal Newtonian equations of motion. The momenta of
the different particles will carry the system from one
state in phase space to another. Thus, given the ini-
tial state sg of the system, a trajectory of the system
in phase space is traced. The set of all the produced
conformations along the given trajectory form a mi-
crocanonical ensemble (constant total energy). In the
stochastic methods such as Monte Carlo, the confor-
mations are generated {rom a Markov process, and are
either accepted or rejected with a probability given by
the Boltzmann distribution. This idea of importance
samptling for drawing sample conformations from “im-
portant” regions in puase space was first iniroduced
by Metropolis et al. (8].

In contrast to the original applications of simulated
annealing 13}, which made use of the Metropolis algo-
nihm, modified molecular dynamics (at constant tem-
peratur‘e) has been used Lo simulate the structures —
the main reason being the belief that the direct appli-
cation of the Metropolis algorithm to macromolecules
is inefficient {9]. It is interesting to note, however, that
this melliciency is due mainly to the inhomogeneous
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and anisotropic properties inherent in these systems,
and the fact that only single atom moves (and thus
local moves) have been implemented.

In a previous paper, we have discussed new MC
methods for efficient equilibrium simulations [10] that
allow us to individually optimize any MC move that
might be effective in establishing equilibrium. These
methods are not resiricted to single atom moves. In
fact, collective moves involving many atoms may be
easily optimized using this approach. Global rotations
of a group of atoms with respect to the rest of the
motecule are especially important. These moves are
described by angles of rotation, and the only modifi-
cation needed is to restrict the maximum trial move to
the range [—m, 7). The new methods can be especially
uscful when the rotations are highly correlated. In
our simulations, we used both global rotations around
chosen flexible bonds and single atom moves.

In this paper, we will describe an cxtension of these
methods to non-equilibrium simulated annealing with
new procedures for driving the system to lower min-
ima. We present applications, and discuss the results
and implications for {uture work.

2 Methods

For a fully successful simulated annealing calcula-
tion on a physical system, we need an accurate mode!
energy function {force field), a concise deseription of
the state of the system, an eflicient method for gen-

erating system configurations, and a good annealing
schedule.

Force Field The energy function is usually a me-
chanical molecular model [11] with parameters deter-
mined empirically from comparison with experimental

data, and from ab initio quantum miechanical caleu- .

lations. 1In this work, the parameters are obtained
from the AMBER force field of Koliman and cowork-
ers [12]. As often done in previous molecular simu-
lations, a distance-dependent dielectric “constant” is
used Lo simulate screcning due to soivent. This choice
1s not without problems, as discussed below.

States of the System The states of a many-
particle system are the set of coordinates and mo-
menta

s={zy, 29, Tnipr P2 Pl {n

where n is the number of degrees of freedon of the
system. The set of all the states constitutes the phase
space volume. It should be noted that the velocities
are autormatically integrated out when doing a Monte

. . ; i .
Carlo simulation, and only the position coordinates
are used.

Simulation Methods We have developed two new
MC methods to simulate the thermal fluctuations of
the system at a given temperature during the anneal-
ing LIO]. The essence of the new methods stems from
the fact that the maximum step size for each atom is
not fixed for the duration of the simulation. Instead,
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it is updated from cycle to cycle according to the in-
formation gathered from recent configurations.

The Acceptance Ratio Method (ARM), which can
be particularly useful at high temperatures, is based
on the acceptance ratio of the different MC moves.
The almost exponential dependence of the acceptance
ratio on the maximum step size is used to optimize
the local jumps of each atom inside a sphere {10]. The
ARM method treals ecach atom separately, and thus
deals with the inhomogeneity of the system efliciently.

The Dynamically Optimized Monte Carlo (DOMC)
metihod was developed to treat both the anisotropy
and the inhomogeneity of biclogical molecules by mak-
ing use of correlations computed during the simula-
tion {10]. The resulting MC moves are generated from
ellipsoids instead of spheres to take the anisotropy of
the local environment into account.

To efficientiy “sample the vast phase phase space
available to biological meolecules, collective moves such
as global rotations and translations involving whole
groups of atoms, 1n addition to the single atom jumps
which are needed to insure ergodiaty, are zlso opti-
mized using these methods.

At high temperatures, the peptide bonds assume
random conformations. A peptide rotation corre-
sponds to a global rotation around the peptide bond of
all the atoms on one side of it with respect to the other
atoms. As the annealing proceeds, the peptide rota-
tions wili drive the peptide bonds to the single energy
minimum available to them. As we will see below,
this low energy state corresponds to the trans con-
formation. In addition to the peptide rotations, soft
rotations around the Ramachandran angles [13], that
we denote {¢,1) rotations, and side-chain rotations
are also implemented and optimized in our annealing
calculations.

a ) aé —

Single atom move Translational move

Figure 1: Usefulness of translational moves

The uselulness of the translational moves can be
seen by considering a simple example of three bonded
atoms {ab,c}, as shown in Figure 1. Lel's assume
that the bond lengths are not equal to their equilib-
rium values, and we want to devise moves that will
drive the triplet of atoms into equilibrium. A stan-
dard MC move of atom b would involve the distortion
of both bonds ab and be. This corresponds to the pic-
ture on the left where bond ab is elongated while bond
be is compressed, thus driving the system into another
less probable conformation. On the other hand, if we
move atem b by dragging atom a with i¢, the system
wiil equilibrate faster. We denote this second kind of
moves a transiational move, which is especially useful
at the beginning of the annealing run when the ini-
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tial configuration of the protein is set up as randomly
placed atoms along a long straight chain.

Annealing Schedule We begin the simulated an-

necaling procedure at a high temperature and then de-

crease the temperature exponentially (i.e. by a con-
stant ratio) [14 :

Tivi =77 where Q< v <1, (2)

such that the algorithm runs at each temperature long
enough to allow all chosen moves to take place some
specified number of times, The factor 7 is easily de-
termined from the initial temperature 7; and the final
temperature Ty as

y = (GLym, (3)

where Nc is the number of different temperatures {or
cycles) at which annealing is performed.

Initially, the simulated annealing explores random
configurations at a high temperature. Each lowering of
the temperature then restrains state exploration fur-
ther until a low-energy state is reached. This low-
energy state 15 not guaranteed to be the ground state
of the system, as a finite probability of reaching a lo-
cal minimum exists. This is not a serious problem
for a single degree of freedom, since the probability
for finding the correct state can be quite high. How-
ever, to fold a molecule correctly, many degrees of free-
dom must have the correct values and the probability
of them all being right. drops exponentially with the
number of variables,

We have solved one aspect of the problem by intro-
ducing biased moves at the end of each cycle. To push
the system in the direction of the global minimum,
we keep track of the energy change AFE associated
with every move during each temperature cycle of the
annealing run. At the end of the cycle, 2 move to
the value of each variable corresponding to the lowest

“relative energy for that variable is attemptied, and ac-
cepted only if the total energy is lowered. This method
ensures that if a variable has been in a low-energy well
at any time during the entire simulation, it will end
up in that low-energy well.

To illustrate the method, let’s consider an angular
potential of the form

Vi) = Asing + cos 29, {4)

where A is a positive constant and ¢ can take any
value between [0, 360°). This represents a double-well
potential with minima at $0° and 270° as shown in
Figure 2. The value of A controls the relative depths
of the two wells. When A is zero, the wells have equa!
depths, and the ground state of the system is degener-
ate. A simulated annealing run will have 2 50% chance
of ending in any of the two wells. However, as A is
increased, the well on the left moves upwards, wiile
the other well shifts downwards. The degeneracy is
then lifted, and the ground state of the system is at
¢ = 270°. The probability of ending up in either well

is given by the Boltzmann distribution. Thus, if N
simulated annealing runs are carried out, a large frac-
tion of them will end up in the low-energy well, while
a smaller fraction will end up in the other well.

1.5 A=02
1.0
0.5

0.0

V 05

-20

254- S ﬁ,f' J
300l | 1 Tl $

0 100 200 300 360 ¢
Figure 2: Double-well potentials.

Cur objective is to anneal to the global mintmum.
To push the system in that direction, we keep track
of each move Ap and energy change AE during each
temperature cycle of the annealing run. The angle
Pmin corresponding to the lowest energy F.,;, during
the cycle is found and stored. At the end of the cycle,

;Given An;zealing Cycle at T

A(Pma‘n = 0,

Deyum = O

;Repeat uniil equilibrium -
v —9+ Ay
AE — E(p )}~ E(p);
Metrop_Accept(); '
If ¢ accepted e

then update(w, Apmin, Apium);

[Preferential Dias Move

(Pf — @+ (éﬁosnin - A‘Psum)?
AL — E(g ) — E(p);

Accept and update g only if AE < 0;

Iigure 3. Pseudo-code for a simulated anncaling cycle
at T including preferential bias moves.

a move to wmin 15 accepled only if the energy differ-
ence is negative. A pseudo-code for this procedure at
a given temperature T and inital state y is shown in
Figure I, where Metrop_Accept is the metropolis ac-
ceptance test for whicthoves are accepted with prob-
ME H AE
ability min(}, exp(—1257)).

’




3 Application . ..

In carrying out annealing experiments on a protein
using the AMBER force field [12], we also had to deal
explicitly with problems concerning the chirality of the
different residues and the conformation of the peptide
bonds. : .

We handled the chirality problem by modifying the
appropriate term in the Hamiltonian in order to raise
the energy of the D-chirality states. For arrangements
with the proper chirality, there was no change in the
potential.

For the peptide bouds, we wanted to maintain the
usual trans planar conformation. We modified the
value of V; in the corresponding dihedral energy term

E{p) = _Vi’a [1+4 cose] + % [1—cos(2p})].  (5)

to strongly penalize the cis conformations by changing
the cis local minimum into a maximum (V) = 4V, =
20 kcal/mole).

Pnergy (107 K)

7 T T 1 ‘Fﬂ
2.4 - .
22 -

16— -1

° H// -
-0.2
[—l ! | L ‘—j T K}
300 500 1000 2000 5000

Figure 4: Average energy at each anncaling temper-
ature during the second st.a%e 15000/ ,298 K] of the
simulated annealing run on glucagon.

With these changes, we carried out simulated an-
nealing experiments using the ARM method on the
glucagon pancreatic hormone. We have chosen this
29.residue protein for its simplicity and the fact that
its crystal structure is known fairly well. The exper-
liments were set up in three stages differing in tem-
perature range and in the kinds of moves that were
included. The first stage consisted of an annealing
at high temperatures [10°K «+ 5000K] starting with
random atomic positions along a linear chain of the
glucagon sequence residues. These initial conditions
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Figure 5. Average energies {rom three simulated an-
nealing runs, one starting from the equilibrated X-ray
structure at 298K and the other two from the annealed
configurations.

were used because we wanted to establish that thés
method could efficiently assemble the residues and find
the correct chirality. For future simulations, it would

be more efficient to use our knowledge of the basic

structure of the peptide chain. - :

In addition to the single atom moves, and the rota-
tions around flexible bonds within the side-chains, we
also used translational moves and peptide rotations as
described above. During the second stage, the tem-
perature range was between [5000K — 298K], and
the trial moves used in this stage included the sin-
gle alom moves, rotations around the Ramachandran
¢ and ¥ angles, the peptide rotations, and the side-
chain rotations. The final stage consisted of lowering
the temperature from 298K to 1K with the same trial
moves as the ones used during the second stage.

The average energy at each temperature {5000K «—
298K] of the second stage of the simulated anneal-
ing experiment is shown in Figure 4. Each point on
the graph corresponds Lo an equilibrium average for
one annealing temperature. The horizontal axis is a
logarithmic sca.e of temperatures. This plot shows
a fast relaxation of the system to equilibrium. The
average anpealing energy obtained at 298K is found
to be ~ 20kcal/mole smaller than the corresponding




Figure 6 Stereo views of the three final annealed

structures of glucagon at 1K. (top)
(middle)} Final structure {rom Anne
Final structure from Annealing il

X-ray structure.
aling 1. (bottom}
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average energy of the equilibrated X-ray structure.

In the third stage [298 K « 1K] of the annealing ex-
periment, we had available two initial configurations:
the final configuration from stage 2 and the DOMC
equilibrated ‘X-ray structure at 208K. As in. previ-
ous stages, the ARM method is used with an ideal
acceptance ratio set equal to 35% and all (local and
global) trial moves are generated uniformly 1n volume
of spherical neighborhoods in their respective spaces.
Since glucagon is composed of 29 residues, the global
moves include 29 groups of (¢, ¥) rotations, 28 peptide
rotations, and 128 chosen rotations in the side-chains.
During the simulation, the step size ranges and step
angle ranges are changed using ARM according to the
acceptance ratio obtained.

The Helmholtz frec energy F of the protein is given
by

F=E-TS, (6)

where £ is the average internal energy and S is the
entropy available to it. At very low temperatures, the
free energy is equal Lo the total energy since the en-
tropic eflects are negligible. The average energy as a
function of the anncaling ternperatures is plotted in
Figure 5. The annealing {rom the equilibrated X-ray
structure at 208K actually reaches a state of higher
free energy, which is not consistent with the thermo-
dynamic hypothesis. To prove that the resuit is re-
producible, we have carried out another three-stage
shinulated annealing experiment starting from a dif-
ferent, initial random configuration. For cOMPpArison,
the average energy obtained during the third stage
of this run is also shown in Figure 3. Both anneal-
ing runs starting from annealed configurations yield
a lower {ree-energy state than the run whose initial
configuration is the equilibrated X-ray structure, al-
though they did not find the same low energy stata,

Sé [JI}&F re

AE ~ 35 keal/mole” NAE ~ 40 keal/moe

rom.s ~ 10.1A rm.s ~ 11.5A

Annealing ] e o
AL ~ 5 kcal/mole
rm.s ~ 6.6A

Annealing {1

Figure 7: r.om.s and energy differences between the
annealed structures.

In Figure 6, we show stereo views of the final
structures of glucagon obtained at 1K. The X-ray an-
nealed structure is shown on top, while the two other
structures are shown below. The energy differences
between the three different annealed structures are
schematically shown in Figure 7. As much as 35 and
40 kcal/mole energy differences are found between the
anneated structures and the X-ray structure at 1.

In addition to the energy differences, the r.m.s differ-
ences are also shown,
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4 Interpretation of the

Annealing Results

The annealed configurations ate quite distinct {rom
the X-ray structure; they are rather globular instead of
Lelical. The most striking feature is that many of the
polar (hydrophilic) side-chains are found in close con-
tact on Lhe inside of the molecule, instead of pointing
outward as in the X-ray structure. This behavior di-
rectly contradicts some of our most fundamental ideas
about folding, since the hydrophilic residues should be
attracted to the outside of the molecule where they
could be close to water. Something is clearly wrong.

The source of the problem is easy to find. The
charged and polar residues experience a strong mu-
(ual attraction from the electrostatic interacilon in
the model we used, even with the effective dielectric
“constant” taken to be e(Ri;) = Rij. The strong in-
teraction makes it natural (within the modell) for
opposite charges to attract and pack closely inside the
molecule. However, this simply means that the form of
the “effective” electrostatic interaction is qualitatively
incorrect, since it fails to incorporate the distinction
between hydrophilic and hydrophobic residues!

1t should be noted that this qualitative failure of the
Hamiltonian is in addition to the well-known quantita-
tive errors in the strength of the effective electrostatic
inieraction; the low-temperature configurations of the
model will not unfold until the temperature is raised
by a few thousand degrees, while the actual molecuies
denature when the temperature is raised a few tens of
degrees.

The conclusion is that the Hamiltonian we used i3
not a suitable representation of the true interactions
of a biclogical molecule in water. The difficulties we
found would not be nearly as obvious in an “equilib-
rium” simulation starting from a “known” configura-
tion, since the standard representation of the electro-
static interaction is so strong that the model’s low-
energy states would never be found. However, such
“cquilibrium” simulations might still suffer from large
systematic errors. : .

For equilibrium simulations, these problems could
presurnably be avoided by performing the simulations
with explicit water molecules. However, that would
greatly increase the necessary computer time for an-
nealing calculations because of the surpression of large
rotational moves.  We therefore conclude that fur-
ther progress in the energy minimization problem with
this approach will depend on finding a qualitatively
and quantitatively satisfactory representation of the
screcned elecirostatic interaction at short distances.

Simulated

5 Summary

In this paper, we lave introduced new computer
simulation methods for the annealing of models of bi-
ological molecules. These new methods are very ef-
ficient m finding low-energy configurations. By the
objective criterion of how much computer time is nec-
essary to lower the energy, the new methods are much
faster than either molecular dynamics or standard
MC. In fact, contrary to expectations, we found en-
ergy states that were lower than the relaxed crystatlo-

raphic state, while MD runs with the same amount of
PU time were not able to come within 480 keal/mole
(240,000}() above the energy of the cs:ystallggrap}_uc
state. A corresponding standard MC simulation with
single atom moves gave even higher energies. ‘The fiex-
ibility of our approach, and the ability to optimize any
kind of MC move are great advantages for future work.
On the other hand, application of our methods to
the study of glucagon has shown that the most stan-
dard Hamiltonians ( “force fields”) are deficient in their
representation of the effect of water on the electro-
latic interaction at short distances. The common
form of the potential that we used s not only much
too strong, but our calculations show that the lack of a
proper distinction between hydrophilic and hydropho-
bic interactions between residues leads to low-energy
configurations that do not represent the true behavior
of the molecules. _
From the point of view that the task of a simulation
method is to expose the propertics ol the model be-
ing investigated, we have been quite successful. Even
though the amiltonian contained many very decp
local minima, we were able to find very low-energy
configurations efficiently. The prospects for success-
fu} sitnulations of an improved model with a better
representation of the clecirostatic interaction are very

bright.
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The Weighted Histogram Analysis Method (WHAM), an extension of Ferrenberg and Swendsen’s Multiple
Histogram Technique, has been applied for the first time on complex biomaolecular Hamiltonians. The
method is presented here as an extension of the Umbrella Sampling method for free-energy and Potential of
Mean Force calculations. This algorithm possesses the following advantages over methods that are cur-
rently employed: (1) It provides a built-in estimate of sampling errors thereby yielding objective estimates
of the optimal location and length of additional simulations needed to achieve a desired level of precision;
(2)it yields the “‘best’’ value of free energies by taking into account all the simulations so as to minimize the
statistical errors; (3) in addition to optimizing the links between simulations, it also allows multiple overlaps
of probability distributions for obtaining better estimates of the free-energy differences. By recasting the
Ferrenberg-Swendsen Multiple Histogram equations in a form suitable for molecular mechanics type Hamil-
tonians, we have demonstrated the feasibility and robustness of this method by applying it to a test problem
of the generation of the Potential of Mean Force profile of the pseudorotation phase angle of the sugar ring

in deoxyadenosine. © 1992 by John Witey & Sons, Inc.

INTRODUCTION

Several methods have been used to calculate the
changes in the free energies between interacting
molecules and to investigate relative stabilities of
the different conformational states of a given mol-
ecule with respect to a conformation coordinate of
interest. Such calculations are especially impor-
tant in providing valuable insight into the role of
structure-function relationships in biomolecular
interactions and in providing a rational basis for
the design and modeling of new drugs. However,
free-energy calculations for large molecules are
computationally demanding, because the entropy
that depends on the extent of the phase space of
the molecular system cannot generaliy be ex-
tracted from a simple ensemble average of some
property of the given system. Hence, new methods
for fast, efficient, and accurate determination of
free-energy differences are needed. An increase in
efficiency can be achieved in two ways: (1) by im-
proving the efficiency of the simulational method

*Author tn whom all correspondence should be addressed.

itself and (2) by maximizing the amount of infor-
mation obtained from either Monte Carlo (MC) or
Molecular Dynamics (MD) simulations. This article
deals with (1) the Single Histogram (SH) method
and (2) the Extended Ferrenberg-Swendsen
(WHAM) algorithm, which belong to the latter cat-
egory; the WHHAM equations developed here are
extensions of the Multiple Histogram equations de-
veloped by Ferrenberg and Swendsen.!””> The
SH and WHAM methods are applicable for both
(constant temperature) MD and MC simulations.
Methods for increasing the efficiency of the
simulational protocol have been discussed else-
where.*°

We will first describe the nature of the problems
that can be treated by these methods. This will be
followed by a brief description of the SH and
WIAM equations that can be used for biomolecu-
lar systems. An outline of the derivation of the
WHAM cquations will be given in the Appendix.
Finally, we will apply these methods to generate
the Potential of Mean Force (PMF) profile of the
pseudorotation phase angle of the sugar ring in
deoxyadenosine with the objective being to
demonstrate the feasibility and robustness of the
WHAM algorithm when applied to biomolecular
systems.

Journal of Computational Cheristry, Vol 13, No. 8, 1G11-1021 {7992}
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1

BASIC STRUCTURE OF THE PROBLEM

The problem of calculating free encrgies can be
broadly divided into two classes for computational
purposes: {1) those involving the generation of a
PMF profile along a coordinate and (2) those in-
volving the computation of free-energy differ-
ences as a given moiecular system is modified from
a standard initial state to a final state. The jatter
are special cases of the former class. The ap-
proaches that have been commonly used so far in
the solution of these problems are Free Encrgy
Perturbaiion (FEP), and Umbreila Sampling meth-
ods.”"'"* Tn both the Umbrella Sampling and the
FEP methods the Ilamiltonian 7,(r) is replaced by
a modified potential, ];'m, of the form

i I8
Hoy(w) = Hyx) + 2 0 Viie = DINViE) ()

i—1 f =1
with Ay = 1 and T;'”(:r) defined as being identical to
1]’.,_ Circumflexes over the symbols denote fune-
tions.+ Here the coonrdinates of the atoms of the
moiecuie are represented by r; the L functions,
Vilx), ‘I:’z(.r), .., Vi), are restraining potentiais.
The restraining potentials are functions of the mo-
lecutar coordinates x. The A, are coupling parame-
ters. The symbol in braces, {2}, denotes the set of
values A;, Ay, Aa, ..., AL Thus {0} indicates that all
the A, (i = 1,2, ..., L) have been set to Zero;
unless stated otherwise A, always takes on the
value of unity. The restraining potentials are cho-
sen in such a manner that the sampling distribution
is shifted along a coordinate of interest such as a
reaction coordinate. Multiple restraining poten-
tials are useful for sampling “‘long’" reaction path-
wiays where separate simulations with different
coupling parameters {A} are carried out to sample
different regions of the reaction path. The reaction
coordinate (termed £ here) will be a function of .
By adjusting the values of X; in eq. (1) any region of
interest along the coordinate ¢ can be preferen-
tially sampled. Free energies (or PMF values) can
then be obtained after corrections for the re-
straining potential; relative free cnergies can

*Weare following terminology currently in use in the field of
biomolecular simulations when we refer to methods deseribed
here as “Umbrella Sampling. " These same methods are some-
times referred to as **Multistage Sampiing”’ beeause of historical
distinctions between the ariginal Umbrella Sampling and Multi
stage Sampling methods.

TThus V,ir) denates the funetion and Voo partienlar value the
function takes; circumflexes wiil be used oniy where anl
{ies might arise.

Vil
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also be obtained as a function of the coupling
parameters.i

In the problem discussed here, £ is the Pseudoro-
tation Phase Angle'” ' of the sugar ring in the nu-
cleic acid base deoxyadenosine. The Hamiltonian is
written as

3
() = Hyx) + N 2 [1.0 + cos(v; — a; + )]

i=0
{2)

The »; in eq. (2) refer to the usual sugar torsion
angles and are restrained to the values o, Here,
ay = 36.14°, a; = 337.6°, ay = 0.0°, and a, =
22.34°; H{x) is the AMBER all-atom force field of
Kollman and coworkers.?®2! The Hamiltonian
() of eq. (2) has only one restraining potential
with

3
Vz) = D1 (1.0 + cos(y; — a; + 7))

=1

(3)

The o, in eqs. (2) and (3} have been chosen so as to
bias the sampling toward the cnergetically unfa-
vorable region in the vicinity of the O,~exo confor-
mation. The restraint is on the torsion angles that
determine the pseudorotation phase angle and is
chosen {o enhance sampling in the neighborhood
of £ = 270°. The pseudorotation phase angle is not
a simple function of the coordinates, thus requir-
ing a comptlicated restraining potential. Simula-
tions can be carried out with the coupling parame-
ter A set at various values so as to minimize
statistical errors,

The Umbrella Sampling and FEP equations for
simulations carried out with multiple restraining
potentials as given in eq. (1) are given below pri-
marily to explain the notations used here,

The probability density P .5(§) obtained from a
simulation with the Hamiltonian Hyylasineq. (3)]
can be written as

Pins(8) = expl=BWpys(D] = (BlE ~ E2d )
(4)
The angular brackets denote ensemble averages

and the subscripts refer to the values of the coup-
ling parameters A, and to the parameter g given by

iA recent method for calculating PMFs along internal coor-
dinates’ of interest is due to Tobias and Brooks.' In this
method a holonomic constraint is used to fix the coordinate
(analogous to the SHAKE algorithm) at a series of values at
which the relative free enrergies (or PMFs) are calculated, This
method is well suited to simple reaction coordinates such as a
hydrogen bording distance. However, it is not clear how to ap-
Ply ihis method to sivsations where the eoordinate of interest is
a complicated funetion of internal coordinates as in the case of
fhe pseudarotation phase angle that is discussed heré; applying
constraling tamany internad coordinates conld lead to improper
sampiing of conformational space.
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B8 = VkygT where ky is the Boltzmann constant and
7' is the temperature, Wy, [£) is the PMF associ-
ated with £ when the simulation is carried out with
the coupling parameters {A} al temperature 7.

If Py 4(€) is the probability density obtained
from an unbiased sampling, i.e., with all the A, {(ex-
cept Ay which is equal to one) set Lo zero, then

P[u},a(g) = (‘XP[_BW{U;.d(E)] (5)
or

Z
Py (&) = Z:::::

L
X <5[E -t 1 exp[ﬁ&ﬁ(l‘)l%j | (6}

(=1

where Zis the partition function. If we restrict the
resiraining potential V. {x) Lo be functions of the
coordinate £ only—that is if

Vi(z) = Vi[5
then Py, 4(€) will be related to Py, 4(£) by

(7)

I & s
&M@>=mmmemﬂnmg—Lkmmmi
L k=1
(8)
and Wy, 4 s related to Wy ; by™?
Lo
Wi el8) = = 20 NVAE) + Wiy s(8) + CUNY, B)
Jj=1

(9)

where the functions D{{A}, §) and C({\}, B) are
given by

Z(()},ﬂ

D({r}, B} = 7
{r}.8
C LA =8"1InD

H]

(10)

The equations given above can be extended to
situations where the parameter 8 is also varied.
Equation (9} is the form that has been used most
often in estimating free-energy differences and
generating PMF profiles by using the Umbreila
Sampling method. The method can also be used to
calculate free-energy differences as a function of
any coupling parameter A,. The Umbreila Sampling
method, for instance, can be used to estimate the
free energy of binding between receptor and lig-
and molecules, when the binding takes place along
a suitable path of approach (or a reaction coordi-
nate). By choosing a different set of A; for cach
simulation such that successive simulations sample
overlapping regions along £, the function C({A}, 8)
ineq. (9) can be determined so as to make Wi sl8)
agree in the regions of overlap 1214

The standard FEP equations can be readily gen-

9
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eralized to the case of multiple restraining poten-
tials as follows:

(Vible = E@ g
BlF — ED e

The FEP methods are generally used in situations
where the Hamiltonian is changed in small steps so
that a given molecule can be “‘mutated’” to a de-
sired end state gradually. By calculating the free-
energy changes that occur at each step and by fi-
nally summing these free-energy changes, the total
free-energy change can be obtained. As a typical
example, consider a Hamiltonian of the form

oA

- (Vk){).f,d (11)

Hy=(1 = NH + N\, = H + NH, - H) (12)

where f, and &, could be the Hamiltorian for a
“wild-type'” and mutated biomolecule; here, Ais a
coupling parameter and by varying A slowly from 0
to 1 the system can be taken from its initial state to
its desired end state. Equation (12} is a specia! case
of eq. {1). Tor the special case of eq. (12) the dis-
cretized forms of the FEP equations for the free
enerdy A are

BlAN = 1) — A{x = 0)]

— > Intexp(—BIH,,,, — H\)h  (13)

i=1

and
&y foH

AN =1} = A =0y = 3, <—i> AN
A={) ah A
A

=1
>3 (H, — Hidy AN (14)
A=0

nin eq. {13) is the number of intervals between
A =0 and X = 1 over which the summation is
carried out. Equations {13) and {14) are the basic
FEP equations. Sometimes the implementation of
eq. (13) has been referred to as the “Windowing"’
method and that of eq. {14) as the “‘Integration”
method in the literature. The FEP equations do not
have an in-buill estimate of errors which makes it
difficult for estimating statistical errors in the
results. The WHAM algorithm does provide for ob-
Jective estimation of statistical errors [see eq. (22)].

To summarize: PMF profiles and free-energy dif-
ferences have been calculated thus far generally
by using Umbrella Sampling techniques that use
eqgs. (7), (8), and (9) and by using FEP methods that
utilize eqgs. (12), {13), and (14).

Normal Mode analyses™ 22 have also been used in
the investigation of the relative stabilities of dif-
ferent conformational states of a motecule.® How-
ever, conformational states of a biomolecule are
characterized by transitions across severa! energy
minima and therefore Normal Maode methods can-
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not give a reasonable estimate of the entropy of
the biomolecule.

The basic problem then is this: What happens to
the free energy as some parameter {or set of pa-
rameters) is varied? We present below the Single
Histogram and Muitiple Histogram equations,
which we can use to study the behavior of the free
energy as some parameter—either a “‘coupling’’
parameter A or the temperature T—is changed. The
WHAM equations presented here are essentially
those of Ferrenberg and Swendsen,'™ but have
been extended to the case of molecuiar mechanics
potentials that characterize biomolecules and can
readily be applied to situations where free cnergics
and PMFs are needed as a function of the coupling
parameter(s) A; and/or the temperature 7.

We have tested the SH and WHAM equations on
the problem of generating the PMF profile of the
pseudorotation phase angle of the sugar ring in de-
oxyadenosine, the main purpose of this study be-
ing to test the feasibility and robustness of the his-
togram equations when applied (o molecuiar
mechanics type potentiais that characterize bio-
molecules. Although the AMBER “All-Atom™
force-field of Kollman and cowarkers was used in
this study the efficiency of the methed should not
depend upon the particular Hamiltonian that is be-
ing used. Applications of these methods to larger
systems arc in progress.*

SINGLE AND MULTIPLE
HISTOGRAM METHODS

The partition function Z;, ; of a system whose
Hamiltonian is given by eq. (1) is

I8
Zpnys = 2, WV ) [ e v (15)

iVie i=0
where Q({V}, £) is a generalized density of states
given by

- L
(v, o = | dr ot - ot [] otV - Vica))
=
(16)

H{V}, &) is independent of {A} and 8. The SIi and
WHAM methods can be applied when the partition
function is of the form given in eqs. (15) and (16).

An outline of the derivation of the SH and
WHAM equations is given in the Appendix. In this
section, we will first describe how to obtain PVMFs
and probability densities from a single simuiation
using SH equations belore generalizing to the case
of muitiple simulations.

"For an interesting acenunt of the history of Histogram iech
niques see Ferrenberg’s thesis

KUMAR ET AlL.

Single Histogram Equations

The first description of the SH equations dates
back to 1959 and is due to Salsburg, Jacobsen,
Fickett, and Wood.* We will present the ‘‘opera-
tional” form of the SH equations as applied to
biomolecular systems here, Using these equations,
the objective generally is to generate the PMF pro-
fite of the coordinate £ from a single simulation
(and hence the term ‘“'Single Histogram''}. Let us
suppose that a simulation was carried out at tem-
perature T, = 1/kz8, with A; set to one and with
the restraining potentials appropriately weighted
by the coupling parameters A;, As, . . ., A, (to en-
hance sampling in high energy regions). The quan-
tity of interest is then the probability ﬁag(«f) that
the coordinate § would take if a simulation were
done with Ay, = 1 and all the other coupling param-
cters set to zero at a temperature T, = 1k,
Generaity, T, > T, so as to enhance conforma-
tional sampling in high energy regions along £. By
taking the logarithm of the probabilitics PMF pro-
files can be generated. The data is put into “‘bins’’
Lo generate histograms and the “operational’’ form
of the Sli equations becomoes

15;;.‘._{5 € (Emv Em + l)}

n(?_ﬂ%) i o .’,1 ~ TL
>, (txpi(ﬁ. — BVE x,a,v!,.j?;)i
=] i=1 -
T CoTT !_ T R (17)
D2 exp | (B = BV + DN BV
k=1j=1 i=1

where the expression now gives the probability
that £ has the value between £, and £, . 1—the mth
bin—at the temperature T,. Vﬁ",) is the valuc that
the restraining potential V; takes at the jth snap-
shot of the kth bin. 5{k) is the total number of data
points that the simulation yielded in the kth bin; it
is just the value taken on by the histogram at the
bin numbered k. B is the total number of bins that
the data has heen divided into.

Equation (17) can also be expressed in terms of
NpsadiV}h E) where Ny, (V) £) is the value
taken by the histogram at {V} and { during the
simulation at temperature T, = 1/kgG, and with
the coupling parameters set to {A}. Again, I"{,_,(é)
refers to the probability of occurrence of the coor-
dinate £ during a sitnulation performed at tempera-
ture Ty with no restraints. In terms of Ny, 5 {({V},
£) we havet

TSmmmalion over £V as in eq. (18} denotes summation over
the possible values of ¥,V . Ve Similar remarks apply 1o
summation over (Al
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Psl8) =

2 Npya{V}, &) exp {(ﬁl
Vi

o

——d

L
~ BVo + D NBV

i=1

L
- BV + Z NSV
(1

2 Npga({V}, &Y exp

{vhe

| IV |

oc

)

WHAM Equations

The WHAM equations are a natural generalization
of the SH equations. Simulations are carried out
with various sets of coupling parameters to en-
hance conformational sampling. PMFs are then cal-
culated for the case when a simulation is done with
the desired set of coupling parameters at a speci-
fied temperature. We will state the main results
first and an outline of the derivation of the WHAM
equations will be presented in the next section.
Consider R simulations with the {th simulation
being carried out at temperature T; = 1/kp3,; with
the coupling parameters in eq. (1} set to {A};*; also,
let the number of snapshots taken from the ith
simulation be n;. Then the (unnormalized) proba-
bility histogram Py, o({V}, £) is given by’ 3+
)

L
(5
Jj=0

L
(fm - er Z )\J',m VJ)
j=u

(19)

R
DNV, B) exp
P{.\},B({V}s £ = kjel

Z Ty €XP

m=1

and

exp(—f;) = 2, Puya({V}, ©) (20)
ivig

where N,({V}, £) is the value taken by the histo-
gram at {V'} and £ during the ¢th simulation, and f;
is the (dimensionless) free energy of the system
described by the Hamiltonian of eq. (1) with coup-
ling parameters {\};; f; = 8;A; where 4, is identical
to the (Helmholtz) free energy of the system during
the jth simulation. Equations (19) and (20) were
derived by minimizing the errors (see Appendix) in
the overlapping probability distributions.!" By it-

*{A}x refers to the value of the coupling parameters during
the kth simulation, that is, {A}, denotes the set {A, g, ..., Mt
which is identical to {h g, Ao g, - . ., ALk}

tIn the original furmulation by Ferrenberg and Swendsen the
equations for the probability distributions contained factors, '
that depended upon the integrated correlation times of a simu-
lation; these have been omitted here in eq. (19). For biomolecu-
lar systems thesce factors are approximately equal for each simu-
lation and thercfore cancel out of eq. (19} In fact, for
bicmolecular systems, we have ascertained that these factors
make negligible difference to the results even if they differed
by factors of & or 10, The g,, however, should not be neglected
when phase transitions are involved (see the Appendix and next
section).
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erating eqs. (19) and (20) the f; and, therefore, the
free energies, can be determined self-consistently.
For the case of a single simulation the WHAM
equations reduce to the SH equations except for a
normalization factor.

We can compute the f; directly from the data (to
reduce computational errors) by using the follow-
ing expression:

exp(—fi) =

. 1.
exp {—B; > N.iV}f‘z’}
I = '

B 1
fmtest Z T €XP | fin — B Z )\j,mvjﬁ!]}

m=1 L =0

(21)

1

In this expression V{}is the value that the restrain-
ing potential V; takes at the {th snapshot of the Ith
simulation.

One can start with an arbitrary (but not too un-
reasonable) set of values for the f;; a good starting
point would be to set all the f; to zero initially.
Convergence was generally very fast for the prob-
lem discussed here with the number of iterations
being less than 10 and no special care was needed
for the initial assignment of values for the f; to
accelerate convergence. However, it is quite possi-
ble that free-energy calculations for some systems
could benefit from acceleration techniques; the
interested reader is referred to Ferrenberg's
thesis.'

The relative error, {V}, £)/Q({V}, £), (see Ap-
pendix) can be shown to be!™

sovy, 8 _ f
2({v}, &)

R T2
g7 DNV §)

L f=] J
Thus, by knowing where the §2/Q are high more
simulations can be done with the appropriate
value of the coupling parameters thus reducing the
error by increasing the statistics obtained from the
simulations. An overall factor g, withg = 1 + 27
where 7 is an integrated correlation time?® for the
simulations has been included in the equation;
since only the relative magnitudes of the quantity
sQU{ VY, £VQ({V}, £) are of interest the quantity g
may safely be omitted.

(22)

APPLICATION OF THE
HISTOGRAM EQUATIONS

We will now demonstrate the use of Single and
Multipie Histogram eguations by applying them to
estimate the PMF of the Pseudorotation Phase An-
gle of the sugar ring in deoxyadenosine. While this
system is small its Homiltonian contains most of
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Figure I. Stereoview of deoxyadenasine.

the complexity of larger molecular systems and
thus presents a good test case for the WHAM
method.

The system (Fig. 1) consists of 31 atoms; its Ham-
iitonian is given in eq. {2) with H,(x) being the AM-
BER ““All-Atom" force-field. The restraining po-
tential Vi {x) is necessary, for without it very poor
statistics are obtained for the pseudorotation
phase angle around the O,-exo region (£ = 270°%)
(Fig. 2). Figure 3 shows the corresponding histo-
gram from a simulation carried out at 298 K with
A = 1.4; the sampling in the O,-exo region is seen
to be better than when there was no restraining
potential.

Data from different, MD simulations were taken.
One simulation was carried out at 250 K; the rest
were done at either 298 or 350 K. To eliminate the
high frequency bond vibrations, bond lengths were
constrained to the values in the AMBER?" database

3500 | ! i 1 | i 1
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using SHAKE.?® All the simulations were done
with the restraint given in eq. (2) but with a differ-
ent value of the coupling parameter ) [see eq. (1)].
The starting coordinates of the molecule were ob-
lained from the AMBER database. Prior to the MD
phase of each simulation, the molecular structure
was relaxed using the method of Conjugate Gradi-
ents?”** to0 an energy gradient of the order of 102
keal/ A% mol. The MD updates were done with the
AMBER program using the leap-frog algorithm?”;
temperature was maintained constant by coupling
the system to a heat bath as proposed by Berend-
sen et al.’® A distance-dependent dielectric func-
tion*! was used in this study. The details of the MD
runs are summarized in Tabie I.

RESULTS AND DISCUSSION

The first test of the WHAM equations was to sce
whether or not the calculated free energies were
independent of the arbitrarily assigned initiai val-
ues for the f,. Since the correlation times were
about the same in all the MD runs each g, (see sec-
ond footnote on p. 1015 and the Appendix) was set
equal to one. Convergence was very fast and was
achieved in less than 20 iterations irrespective of
the initial values of f;. The free energies obtained
from different starting values of f, are identical. It
can be seen that the “‘All-Atom” force field of
Kollman and coworkers gives a barrier of about
2.5 kcal/moi for a Ce-endo (£ = 144°) to Cy-endo
(¢ = 36°) transition via the Q,-exo (¢ = 270°) re-
gion; about 0.5 kcal/mol for the Cy-endo — C,-endo
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Figure 3. Histogram of the pscudorotation phase angle with A = 1.4,

transition via the Og-endo (¢ = 90°) region; and
almost no barrier for the C;-endo — Cy-endo tran-
sition via the O4-endo region (see Fig. 4).

Due to the difficulty in measuring correlation
times accuralely it is important that the free-en-
ergy differences do not depend strongly on the rel-
ative magnitudes of g,. The values of g; were now
varied over a wide range (from 1-10) (keeping the
initial values of f; equal to zero) to ascertain that
the calculated free energies would not differ
greatly from the values determined with the g, set
to one. In spite of the wide variation in the ratios
of the g;, we found that the discrepancies in the
free energies were negligible. For example, when
the WHAM calculations were carried out on simu-
lation 2-7 with {g, = 3.6, 9, = 1.8, 9, = 1.0, ¢y, =
1.0, g5 = 1.0, g; = 1.0} and with {g, = 10.0, g, =
1.8, gs = 1.0, g5 = 1.0, yy = 1.0, g7 = 1.0} the
maximum discrepancy in the relative values of the
free energies f; was less than 2% . Therefore, differ-

Table I.  Summary of the simulations.

Simulation

no. n A Ay T(K) i
12 20,000 1.00 0.00 298 4.0
2 20,000 1.00 0.20 298 4.0
3 20,000 1.00 0.40 298 1.7
4 20,500 1.00 0.50 298 1.1
5 45,000 1.0¢ 1.00 200 1.0
6 48,750 1.00 1.20 350 1.0
7 52,500 1.00 1.40 248 1.1
8 45,000 1.0 1.40 250 1.5
34 50,000 1.0 04.00 208 1.7

10 60,000 1.0 0.50 208 1.7

“The difference in the correlation times between runs
1 and ¢ is due to the difference in the time step used in
the Verlet algorithm™ and to the difference in the archi-
vul rates of the snapshots.

5L

ences in the PMF profiles were also negligible. This
aspecet of the method makes it particularly suitable
for free-energy calculations using the Hamiltonian
of eq. (1) even if the correlation times tend to vary
with the coupling parameter A; correlation times
can be easily determined to within a factor of 2 or
3 (and certainly to within a factor of 10.0). The g,
reflect the weights assigned to each of the histo-
grams,; under conditions of biomolecular simula-
tions where phase transitions do not occur, the ra-
tio of the g, should not differ significantly from
one. The last column of Table I gives the approxi-
mate correlation time g; for the simulations.
Qualitative behavior of systems under investiga-
tion can also be obtained from histogram tech-
nigues. We have used the WHAM equations to ob-
tain the PMF of the pseudorotation phase angle at
temperatures 350 and 250 K (Fig. 5); these PMFs
were calculated for the case when A is zero. It can
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Figure 4. PMEF of £ at 208 K from all simulations.
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be seen that the PMF varies much more with tem-
perature between § 18 and & = 144° than
around ¢ = —90° (the O,-exo region). This sug-
gests that entropy contributes more to the PMF in
the former region than the latter. That is expected
since the energetics of the Qg-exo {§ = -90°) con-
formation is dominated by steric clash between the
Cs hydrogen atoms and the base.!” Kollman and
coworkers®? found by encrgy minimization that
the difference in energy between the Cg-endo and
Cz-endo region to be 0.6 kecal/mol. The differ-
ence in the PMF values obtained in this work is
seen to tend toward this value as the temperature
is lowered (Fig. 5). Kollman et al. also report an
energy barrier of about 3.7 kecal/mol for the C,-
endo to Cy-endo transition via the O4-exo region.
While the results of Kollman and coworkers are
from energy minimizations keeping the sugar
puckering amplitude'™ ! fixed, the resuits ob-
tained here include entropic effects also. This is
the main cause for the apparent discrepancies bo-
tween the two results.

The PMF profile of the pseudorotation phase an-
gle £ depends on the size, nature, ete. of the mole-
cule comprising the sugar ring. For instance, the
Cy-endo — Cy-endo transition via the O4-exo re-
gion for sugar rings in the dodecamer CGCGAAT-
TCGCG is greater than the barrier reported here by
about 2 kcal/mol.™ These will be reported in a fu-
ture communication. Comparative studies be-
tween the WHAM, FEP, and Umbrella Sampling
methods will also be reported in a future communi-
cation.

Initially only four simulations (1-4 in Table D)
were carried cut. However, to decrease the rela-
tive errors 60/Q [see eq. (22)] in the Voutlying™ bins
(& 2707y of the histograms six more simulations
(5-10 in Table I) were carried out with increased
vilues for the coupling constant A, The error pron-
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agation from individual bins to the final PMF is not
straightforward; however, one can look for errors
by breaking all or some of the simulation runs into
multipie runs and carrying out the WHAM calcula-
tions. We carried out a variety of such calculations
and the resulting PMF of & was always found to be
in agreement with Figure 4.

GENERAL COMPARISONS

As stated in the previous section we will report
quantitative comparisons between the FEP, Um-
brella Sampling, and WHAM techniques, neverthe-
less, with the experience to date on the WHAM
method certain general comparisons between the
methods can be made and will be outlined in this
section, '
The WHAM method is an extension of the Um-
brella Sampling method but it has a number of ad-
vantages over the conventional Umbrella Sampling
method. The WHAM method, in addition to opti-
mizing the links between simulations, also allows
multiple overlaps of probability distributions for
obtaining better estimates of the frec-energy dif-
ferences. The older method of obtaining a single
distribution function by requiring that the proba-
bility distributions agree at some point in the over-
lap region will fail to yield unique free-energies if
three or more distributions are involved in the
overlap region.? This algorithm provides a huilt-in
estimate of errors that give investigators objective
estimates of the optimal location and length of ad-
ditional simulations to improve the accuracy of
their results. With only two simulations, the
WHAM method is stiil better than the conventional
Umbrella Sampling, and actually reduces to Ben-
nett's optimal solution for this special case.™
Umbrella Sampling methods that rely on eq. (9)
cannot use the most general form of the restraining
potential (and it is this special form with all but one
of the A, set to zero that has generally been used so
far by researchers). The WHAM method, however,
can be used with the most general form of the re-
straining potential given in eq. (1); it lends itself
particularly well to situations where the potential
energy and/or the restraining potentials cannot be
expressed as a direct function of the parameter(s)
of interest. One of the limitations of the Umbrella
Sampling method is in the determination of the
value that the function C{{A}, 8) so as to make
W, 2(¢) agree in the regions of overlap'“" "%, the
accuracy of C{{\}, ) is limited by the statistical
errors in the distributions that are ‘‘stitched” to-
gether. To achieve the same level of accuracy con-
ventional Umbrella Sampling would require much
longer simulations than the WHAM method pre-
sented here. The WIHHAM method overcomes this



Vi

of
he
1al

(9
ng
ne
S0
er,
re-
welf
Lialk
be

(s
Hla
the
ake
the
ieal
LO-
on-
uch
pre-
this

WEIGHTED HISTOGRAM ANALYSIS METHOD

difficulty by taking into account all the simulations
that produce overlapping distributions.

The calculation of free energies and the PMF of
reaction or conformation coordinates using the
FEP or the conventiona! Umbrella Sampling meth-
ods are computationally expensive. This is a conse-
quence of the convergence problem associated
with these computational techniques where many
simulations have to be carried out as the Hamilto-
nian is gradually changed to propel the system
along a certain coordinate, When using the FEP
method Axin eq. (14) or (A\;,, — A} ineq. (13) has
to be made small to assure convergence and to con-
trol the errors of discretization; moreover, errors
propagate when connecting distributions at each
step. The WHAM method is not a discretization. It
uses multiple overlaps that do not have to be as
close together as they have to be if the FEP
method is used. The WHAM method links the dif-
ferent simulations through the overlapping histo-
grams in an optimal manner. The FEP equations do
not have a built-in estimate of errors, which makes
it difficult for estimating statistical errors in the
results, while the WHAM algerithm does provide
for objective estimation of statistical errors [see
eq. (22)}.

The WHAM equations can also be readily used to
generate PMFs and free energies as a function of
the coupling parameter(s) A; and/or the tempera-
ture. This is useful as simulations ¢an be carried
out at a range of temperatures to improve confor-
mational sampling and the results extrapolated {(or
interpolated) to the desired temperature.
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sion of Advanced Scientific Computing of the National
Science Foundation {ASC-90156310), and the Pittsburgh
Supercomputing Center (DMB 90026P). The authors
thank Yong Duan of the University of Pittsburgh for
helpful suggestions and discussions.

APPENDIX: DERIVATION OF THE
WHAM EQUATIONS

Consider R constant temperature simulations with
the 7th simulation being carried out at tempera-
ture T; and with coupling parameters {A},. Let the
number of snapshots of the system taken from the
ith simulation be n;. The objective of the WHAM
equations is then to obtain the best estimates of
the probability density Py, 5({V}, £) at some {i}
and 3. The WHAM equations also yield the R free
energies—A,, A, . . ., Ap—of the system associ-
ated with the R simulations.

An estimation of the generalized density of
states from the kth simulation, Q,({V}, £), can he
written as

54
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L
Q({V}, £ = N({V}, §) exp [(Z 5k)\i,kvi) _fk}

i=0

(k=1,2,...,R) (23)

where Npg,s({V}, £) has been shortened to
NV}, £) and fy, = Brds. There will be R such
estimates. The best value for the density of states,
QUVY, £) is written as a weighted sum of the R

estimates Q,({V}, £) ({ = 1,2,..., R), that is
R
ALVY, 8 = D a{VhR(V] ) (24)
J=1

subject to the condition

K

3wV =1 (25)

=i

The set of w; that yield the best estimate of Q({ ¥},
£) is derived by minimizing the statistical error,
S2Q({V}, £), in the best estimate of Q({V}, £). If the
restraining potentials V; are functions of the coor-
dinate £, then the weights «; will depend on £
through the restraining potentials. Now, the error,
52Q({ V), ), arises out of the errors, 8*Qi{{V}, £),
BV}, ), 820V}, ), ..., 8°8p({V}, ), in the
R estimates Q,({V}, &), ({V}, &), Qa{{V}, E), . . .,
0.0/ VY, £}, which in turn depend upon the errors
in the histograms, & N,({V}, &), §°N,({V}, §),
SENS({ VY, £), ..., 6°NR({V], £). Equations (26) and
(27) summarize this:

R

FO({V}, £) = 2, wi({VHe({V}, &) (26)

J=1

and

: L
8*0({V}, £) = 7% exp {(2 Z ﬁkxi,kVi) - 2fkj|
. i=D
X asz({V}r E) (k = }-v 2, EREI )R) (27)

Following Ferrenberg and Swendsen,!™ the error
in N{{V}, &) is written as

8NV, &) = o NV §)
(i=12 ..., R (28)

where the bar indicates the expectation value with
respect, to all simulations of lengthn,and g, = 1 +
2r; where 7; is the integrated correlation time of
the ¢th simulation.?” It should be noted that for
biomolecular systems the ¢, (i = 1,2, ..., R)are
roughly equal to cach other and hence cancel each
other out of the WHAM equations.

We now make an estimate of the N{{V}, &} as
foliows:

L
NUVE &) = n,2{V}, §) exp (fa - 8 Z >\j,iVj>
j=0
t=12...,R) (29
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From eqgs. {268}, (27), (28), and (29) we can obtain an
expression for &Q({V}, £). The error is then mini-
mized by setting the partial derivatives a[6°Q({V},
£))/ow, (1 = 1,2, ..., R)egual to zero subject to eq.
{25). From the resulting expression the WHAM
eguations

Puys({V} 8
Z ge'\N({ VY, B exp (—5 2 w,-)

_ LZ Lj:n (30)
Z nmgr;] exp < m 6)» Z )\j.m V;)
m=1 =0
and
exp(—f)) = 2, Poy,s{V} B (31

AN

can be derived. The density of state Q{{V}, £} can
also be determined by setting 3[6°Q{{V}, £)]/0w; to
zero and is given by

.
> g N{VE B
Q{VE, E) = — -

L
Z nmg;r] exp (.fm - Sm Z )\j,m V,)
M=l i=0
(32)
By inserting the expression for @{{V}, £) into the

expression for 8*Q({ V}, £) the relative error in 60/Q
can be determined to be

w_[. d s l—}ﬂ:
0. TN

When the restraining potential is a funetion of the
coordinate £ only the dimensionatity of the hisio-
grams reduces from L + 2 to 2 and egs. (30} and
(31) simplify to

P{A}_g(Vn‘ £ =

R
W

i "NV, E) exp

(33)

I
—BAaVe — 8 2, Ajf‘/,,‘(sﬂ

|
j=1 |

W [

k=1
i‘ ) L 1
- Bl 3
Y gt €Xp | fr — BahaVe — B 2 Nim VA8 |
m=1l I J=1 |
(34)
and

exp(—f) = 25 Piy,s(Vo, &)

Vi £

(35)

The WHAM equations can easily be generalized
to situations where the objective is to generate
muitidimensional PMT profiies of muliiple reaction
coordinates.
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