INTERNATIONAL ATOMIC ENERGY AGENCY | oy
UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION m

INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS |===
LCT.P, P.O. BOX 586, 34100 TRIESTE, ITALY, CABLE. CENTRATOM TRIESTE

o

&

H4.SMR/854-20

College on Computational Physics

15 May - 9 June 1995

Metropolis Monte Carlo

C. Umrigar

Cornell University
Ithaca, USA

Mux Buroine Saaa Corrman, [1 T 224011 Tamax 224163 Tam 460392 Aomianco Guest Houss Via Guonano, 9 Ta224241 Tameax 224531 Tmax 460449
Micnorrocessor Lan Via Bemer, 31 Ta. 22447 Tamax 224600 Tar 460192 Garnen Grwer Hover Via Bumr 7 Ta. 22401 Tarax 2240310 Tamx 460392



International Center for Theoretical Physics, Trieste
College on Computational Physics, 15% May - #* June 1995, Lecture Notes
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Introduction to quantum Monte Carlo and (generalized) Metropolis Monte Carlo

Cyrus J. Umrigar

Cornell Theory Center and Laboratory of Atomic and Solid State Physics,
Cornell University, lthaca, NY 14853,

I. INTRODUCTION

Why should one be interested in quantum Monte Carlo{QMC) methods? The number of systems for which exact
solutions are possible is very limited. Even approximate solutions, such as from perturbation theory are only possible
for a limited set of problems. Quantum Monte Carlo methods on the other hand are widely applicable to wide variety
of lattice and continuum systems. They have been used in condensed matter physics to study various lattice models
for strongly correlated systems and spin systems, various continuum systems such as liquid and solid helium, droplets,
and atomic clusters, and to perform electronic structure calculations of atoms, molecules and solids. They are used
in nuclear physics and in lattice gauge theory. Very often the bottleneck in QMC methods is computer time. Since
QMC methods can usually be easily parallelized they will become increasingly popular as the advent of masgively
parallel computers leads to increased computational power.

However, QMC is certainly not a panacea. First of all, non-trivial applications of Monte Carlo methods have a
statistical error. For some problems these errors can be made to be quite small, for others not. There are many
in-between cases where a naive application of existing QMC methods may lead to an unacceptably large error, but
where some thought invested in improved methods leads to sufficiently small statistical errors. Quite often knowledge
of an approximate solution can be used to reduce the statistical errors through a technique known as importance
sampling. (Although path-integral Monte Carlo is usually performed without using a trial wavefunction, there too
approximate trial wavefunctions can be used to reduce the statistical error in ground state calculations.)

Nor are statistical errors the only source of error. There are systematic errors as well, though in many cases these
can be made negligibly small. Some systematic errors, can be extrapolated away or alternatively overcome by using
a more sophisticated (and computationally expensive) method. For example, the time-step error in diffusion Monte

Carlo can be removed by either extrapolating to zero time-step or alternatively by using the domain Green function
Mote Carlo method.

Quite often in using QMC methods one is faced with a trade-off between the statistical error and systematic error.
Sometimes a happy compromise can be found, for example in dealing with the population control error. On the
other hand, in dealing with the infamous Fermion sign problem the increase in the statistical error that results from
attempts to design algerithms that have negligible systematic errors is sufficiently large that in practice one often
decides to live with the systematic “fixed node” errors. This is in spite of the fact that much effort has been expended

on trying to solve this problem and many ingenious algorithms have been proposed that work for relatively simple
problems.

In these lectures we will discuss four quantum Monte Carlo methods, a) Metropolis Monte Carlo, b) path integral
Monte Carlo, c) diffusion Monte Carlo and d) domain Green function Monte Carlo. Only the essence of the last three
will be given. The emphasis in these lectures will be on understanding the basics of the methods and especially on
the common threads of all the methods, rather than on specific applications. In addition to discussing the Monte
Carlo methods we will discuss the functional forms of many-body wavefunctions and the method used for optimizing



the free parameters in the wavefunctions. This is important because it is essential to have good trial wavefunctions
in order to keep the statistical error (and sometimes also the systematic error) at an acceptable level.

All the QMC methods, that we will discuss, can be viewed as being stochastic implementations of the power method
for calculating the dominant eigenvalue and eigenvector of a matrix, i.e., if we repeatedly multiply an arbitrary vector
with a matrix we will eventually project out the dominant eigenvector.

The Metropolis method is the simplest of the Monte Carlo methods and accordingly we will discuss it first. In spite
of its simplicity, we will see that some thought invested in an intelligent use of the method can result in very large
gain in the efficiency of the method.

II. (GENERALIZED) METROPOLIS MONTE CARLO

The Metropolis method (1] was originally used to sample the Boltzmann distribution and this is still in fact the
purpose for which it is most frequently used. However, it is in fact a very general method for sampling any known
distribution. (Later on we will discuss how to sample a distribution which is the solution of a differential equation
but for which one does not have an analytic expression.) Many simple distributions can be sampled directly (see
e.g. Ref. {4]). Direct sampling methods, where feasible, are preferable to the Metropolis method, since the points
generated by the latter arc serially correlated. llowever, most distributions of interest cannot be sampled directly
and the Metropolis method comes in very handy. It is one of the most frequently used methods in both classical and
quantum Monte Carlo and is a component of some of the more sophisticated forms of quantum Monte Carlo, e.g.
path integral Monte Carlo.

Why would one want to sample a distribution? Because by so doing, one can calculate expectation values, These
may be thermal experctation values or quantum mechanical expectation values. Suppose we want to calculate the
energy expectation value for some trial function ¥ (R}, where R denotes the the 3n particle coordinates. We can
write it in the following form

() = fdR ¥5(R)H¥1(R)
~ JdR{U(R)]
JdR (R HERE

¥r{R)
JAR[Ur(R)

_ < H¥1(R) >
Pr(R) /or(myp2

1 < Hep(Ry) 2
Y E ~———" with the R, led f Yr(R 1
Yo (R wi e R; sampled from |¥+(R)| (1)

Note that as ¥y approaches an eigenstate, the statistical error of the energy estimate tends to zero. In the limit that
it equals an cigenstate, just one Monte Carlo point is enough to give us the exact energy! So, if we already know the
answer, we can recover it with negligible work.

The notion of itmportance sampling is that one can evaluate an integral by writing the integrand as the product of
two terms. The first term is a distribution that can be sampled directly. A simple arithmetic average of the second
term, using points sampled from the first yields an estimate of the integral.

Jom iy = LA @
N

~ %Z f(Ri} with the R; sampled from p(R), (3}
t=1



where f(R) = %%}- JdR p(R). The idea is to put as much of the variations of the integrand as possible into the first

term p, so that the second term f fluctuates as little as possible, thereby yielding an estimate with a small statistical
error. Note that although we do not need to know the integral of p in order to sample it, we do need to know the
integral in order to define f and this in practice limits the available choices for p. The example in the previous
paragraph is an instance of importance sampling, but it ts more than that. As the quality of the wavefunction is
improved, not only is the statistical error reduced, but the expectation value itself is improved. Note that for an
operator which does not commute with the Hamiltonian, one does not achieve a zero-variance estimator in the limit
that ¥t is an eigenstate.

We consider a system, the states of which are described by a set of continuous and/or discrete variables. We will use
discrete notation, but most of what follows will be equally valid for continuum systems. We wish to sample the states
from a known distribution p({), where i stands for the collection of all the variables that characterize the system.
Starting from an initial state ¢ the final state f will be sampled from the elements of the i*® column of a stochastic
matrix M. This is a Markov process since the proposed move depends only on the current state i and not on the
prior history,

Definitions
¢ A stochastic matrix is one whose elements are non-negative and whose columnns sum to 1, i.e. Z_{ M(fliY = 1. 8o,

starting from any initial state, the systern must evolve to some state (including the initial state) with unit probability.
+ A reducible matrix is one that can be brought into block triangular form by permutations of rows and columns.

The matrix M must be such that if we start with the desired distribution p, the states obtained after one application
of M to p are also sampled from p. The necessary and sufficient condition for this is

> M(f1i) pliy = 3 M(ilf) p(f) for all states i (4)
f f

This says that the total flow from state { into all staies, must equal the total flow from all states into state i. In
practice, a more stringent condition is imposed. Detailed balance is a sufficient (but not necessary) condition:

M(fli) plé} = MLS) p(f) (5)

This expresses the condition that for any pair of states { and f the probability of being in a state { and making a
transition to a state f is equal to the probability of the reverse process. It is clear, that if one starts with the correct
distribution, detailed balance implies that we will continue to sample the correct distribution. What we now show
is that the stochastic property of M and detailed balance imply that any starting distribution will evolve into the
desired distribution p. The proof applies only to finite matrices,

Since M 1s stochastic, the vector with all elements equal to 1 is a left eigenvector of M with eigenvalue 1. Tt follows
from the Perron-Frobenium theorem that an irreducible matrix with non-negative elements which satisfies detailed
balance [5] must have a dominant eigenvalue that is positive and non-degenerate and the corresponding eigenvector
must have only non-negative components. For any matrix the left and right eigenvectors corresponding to different
eigenvalues are orthogonal. So, the components of all other eigenvectors cannot all have the same sign. Hence, the
dominant eigenvalue of M is 1. Now, using detailed balance and stochasticity of M we obtain

S Ml pli) = D ML o) = olf). (©)

So, pis a right ecigenvector of M with eigenvalue 1. Since it is the dominant right eigenvector, the distribution must
evolve into p.

We have shown that an acrhitrary distribution evolves into p when it is repeatedly acted upon by M. The rate at
which the initial distribution evolves to the desired distribution p and the autocorrelation time of estimates of various
observables is governed by the other cigenvalues. The ideal situation (never realized in practical applications) is that



all the other eigenvalues are zero. In that case the distribution evolves to p in a single Monte Carlo step and every
measurement is independent.

Note that both the Metropolis method and the projector Monte Carlo methods we will discuss later are stochastic
implementations of the power method for projecting out the dominant eigenvector of a matrix (or integral kernel). In
the Metropolis method one designs a matrix which projects out a known distribution, whereas in the projector Monte
Carlo methods one projects out the (unknown) solution to a differential equation. In the former case one has 2 great
deal of freedom in designing an efficient algorithm, since there are no restrictions on M other than that it should be
ergodic and satisfy detailed balance. In the latter case the available choices are much more limited. Unfortunately,
reseachers often opt for the simplest form of the Metropolis method and only rarely exploit fully the freedom in the
choice of M. Accordingly. we will discuss this in detail.

In order to proceed further, it is useful to write the elements of the Markov matrix M as the product of the elements
of a proposal (apriori transition) matrix 7" and an acceptance Matrix A, M(f|1) = A(fli) T(fli). M(f]i) and T(f)i)
are stochastic matcices, but A{f|1) is not. The detailed balance equation is now

A1) T(f1} p(2) = Al TGS p(f) (7)

or

AUl _ TGS o) _ (8)
AGLLY  T(f]5) pld)

There are an infinity of choices for the acceptance matrix that satisfy this equation. The optimal choice, which
maxirnizes the acceptance, is the one prescribed by Metropolis et al. 1]

ranny,

TUT) 20) (®)

A(f]f) = min {l,

In later work, other choices for A(f|i) have sometimes been made, e.g.

T(1f) p(f)
(Z1f) (S} + T(£l3) p()

A1) = (10)

However, it is clear that {for a given choice of the proposal matrix T') all choices other than that in Eq. 9 lead to a

slower evolution of the systent and consequently a less efficient algorithm. Despite this, [ have seen at least one paper

in the literature that attemnpts to study empirically whether the choice given in Eq. 9 or Eq. 10 is the more efficient
!

one!

Now we make several observations as regards the Metropolis method.

1. The distribution p to be sampled need not be normalized. The Metropolis method antomatically samples p/ {r
and can only be used to calculate expectation values of the form [ of/ [ p.

2. The rate of convergence to the desired distribution and the autocorrelation time of estimates of observables is
governed by the sub-dominant eigenvalues of M.

3. The autocorrelation time must be taken into account in estimating the statistical errors.

4. There is folklore that an optimal acceptance ratio is close to 1/2. However, I have found instances where the
optimal is as small as 0.2 or as large as 0.9, A much better criterion is to maximize the rate at which the system
diffuses through configuration space ((Rr — R;)?) ~ ADelta?, where A is the average acceptance and A 1s the
average size of the proposed moves. The real measure of goodness is of course to minimize the autocorrelation
titme for the observables of interest.



5. Using any admixture of different kinds of moves, such that each of them satisfies detailed balance and they are
collectively ergodic is legal.

6. The heat bath algorithm is a special case of {generalized) Metropolis. 7(f|{) o p{f) for only a small set of
accessible states in a domain D{7) in the neighborhood of i:

TUM:{gnQ}U)nﬂmﬂ

otherwise

Then

D(i)

_ 2

A1) = £ (1

> oli)

If the sum over the accessible states from i and f is the same, the acceptance is unity. The heat bath algorithm
is usually used for lattice systems, where the sum over a restricted set of final states can be easily performed.

Since the optimal choice of A for a given choice of T is obvious, we will discuss in the rest of the lecture what is
an efficient choice for T'. The original Metropolis method [1] employed a transition matrix 7T°(i{f) which is symmetric
in ¢ and f, in which case the factors of T in Eq. 9 cancel. Hence, we have called the method presented here, the
generalized Metropolis method. Unfortunately many present day applications also make this inefficient choice. The
first observation (to my knowledge) in the literature that T(i|f) need not be symmetric did not occur until 1970 [2],
although if one formulates the problem in the manner given above, it secems totally obvious. The ideas developed will
be illustrated by applying them to electronic structure problems. There one has two additional complications to deal
with. a) One has multiple length scales — the core electrons move on a length scale of 1/Z where Z is the nuclear
charge, whereas the valence electrons move on a length scale of unity. b} The distribution to be sampled | ¥t (R)|?
has non-analyticities which invalidate our analysis based on a Taylor expansion of the distribution. The method used
to construct an efficient proposal matrix that solves these problems is contained in Ref. [6] and therefore will not be
repeated in these notes.

[1] N. Metropolis et al., J. Chem. Phys. 21, 1087 (1953).

(2] W.K. Hastings, Biometrika 57, 97 (1970).

[3] D. Ceperley, G.V. Chester and M.H. Kalos, Phys. Rev. B 16, 3081 (1977).

[4] M.H. Kalos and P.A. Whitlock, Monte Carlo Metheds, Vol. 1, {Wiley, 1986).

[5] We include the detailed balance condition here to rule out cyclic matrices which have eigenvalues that are degenerate
in absolute magnitude. For example, the eigenvalues of an n'" order cyclic stochastic matrix {i.e.a matrix that can be
transformed into a matrix with one's on the superdiagonal and the bottom left corner by a permutation of rows and
columns and zero's elsewhere) are the o' roots of unity. Since a cyclic matrix cannot satisly detailed balance for any p they
are ruled out.

{6] C.J. Umrigar, Phys. Rev. Lett. 71, 408 (1993).
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Tt is shown that the freedom in the choice of the proposal matrix in the generalized Metropolis method
can be used to greatly enhance the cfficiency of the method. For example, the difficulties associated with
Fhe existence of multiple length scales in electronic structure calculations can be avoided by making an
intelligent choice. Results are presented for Ne, Ar. and Liy.

PACS numbers: 71.10.+x, 3{.15.+q

{ntroduciion.—In many branches of physics, simula-
tions of systems with multiple length scales are very time
consuming. Accelerated methods, that involve making
collective moves of the degrees of freedom, have been
developed for lattice problems [1-3). Here we present an
accelerated method generally applicable to continuum
probiems and demonstrate its efficiency by applying it to
calculations of the electronic energy of atoms and mole-
cules. In this case, much of the interesting physics or
chemistry is related to the valence electrons but the size
of the Mente Carle {MC) moves is restricted by the
much shorter length scale of the 15 core electrons [4). [t
is shown that an accelerated Metropolis aigorithm,
wherein each clectron attempts moves that are propor-
tional to its distance from the nearest nucleus, enhances
greatly the rate at which the system evoives,

The generalized Metropolis algorithm.—-The impor-
tance of the Metropolis method [5] in computational sci-
ence is due to the fact that it is a simple and powerful
method for sampling any known distribution f{R ), where
R labels the degrees of freedom of the system, which may
be continuous or discrete. We review here a generaliza-
tion [6,7} of the Metropolis algorithm which yields an
infinite family of algorithms depending on the choice of
the proposal matrix T(R/|R;). We show that the effi-
ciency of the method can be enhanced greatly by a suit-
able choice of T(R/|R,).

Let T(R/|R,) =S(R/IR;)/I(R,), where I(R;) = fdR,
x S(Rs{R,), be the probability for an attempted move
from R, to Ry and let A(R/{R,) be the probability for
the move to be accepted. Assuming ergodicity, the equi-
librium distribution is (R}, provided that the ratio of ac-
ceptance probabilities is chosen to satisfy detailed balance

A(Rflk;) _f(R!) T(R;|Rf)
A(Rth{) SRy} T(R_flkl)

_f(k[) S(Rflkf) I1(R,)
SR SRR 1(Ry) °

Note here that we have complete freedom (7] in the
choice of the attempt probabilities T. For a given choice
of T, the optimal choice for the acceptance probabilities,
is given by

(1)

408

S(R;) T(RIR))
S(R) T(RsIR) " |

A(R;IR;)-rnin{ (2

For this choice, A(R/{R,) is largest and therefore the
system evolves the fastest. Many applications of the
Metropolis method {and this is the form in which it was
originally formulated [5]), make the simple but inefficient
choice that T is symmetric, in which case the factorsof T
in Eq. (2) cancel.

The drawback of the Metropolis method is that the
points sampled are sequentially correlated, resulting in a
loss of computational efficiency. If it takes, on the aver-
age, T MC moves for an observabie to be decorrelated.
then the effective number of independent observations in
a MC run of length ¥ is only N/T . It is clearly ad-
vantageous to reduce the autocorrelation time T . This
can be done by either increasing the average size of the
proposed moves or by increasing the acceptance of the
moves. In order to prevent the acceptance from getting
too small, it is common practice to restrict the moves to
be in the neighborhood of R, by choosing S(R/|R;) to be
nonzero only within a domain D(R;) of volume Q(R,)
around R,. For a given functionat form of S{(R/|R,) the
acceptance decreases as 0)(R,) (and therefore the aver-
age size of the proposed moves) increases, so, there exists
an optimal R(R;} for which the system evolves the
fastest.

In this Letter we propose a S(R/|R,;) with both large
moves and large acceptance. S{R/R;) should be viewed
as being a function of R, which depends parametrically
on R;. Our task is to find a functional form for
S(R/IR;) such that [dR;S(R/|R,) is known, T(R/IR,)
can be sampled directly, the resulting proposed moves are
large and the acceptance in Eq. (2) is large on average.
It was observed in Ref, {7] that if J(R,) is independent of
R, then the choice S(R/AR)~f(R;) results in
AR/IR)/A(RIR;} == 1. However, the only way to
have I{R;) be independent of R, and S(R/|R,)~f(R;)
is to have S{R/|R,) be independent of R;. However, for
most f(R) of interest, it is not possible Lo find a Function
that approximates it sufficiently well over the entire
domain of F(R) and which can be sampled directly.
Hence, as mentioned before, S(R/|R,) is chosen to be
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nonzero only in some domain D{(R,} of volum; Q(R,-)
around R,, so that the proposed moves are within this
domain. [n that case /(R,;) = S(R/R;}1(R;) and Eq.

(1) becomes
AR/R) _ f(Ry) SRR/} SRIR) (R,
AR, f(R) SRR S(R/Rs) n(R,)

(3)

from which it is apparent that the choice
S(R;lR;)"gf(R[)/\/ ﬂ(Rf) (a)

yields ARARVARIR) =1, il g(Rp)~/f(R))
within D(R,) [8]. To be more precise, it can be shown
{91 by Taylor expansion that if the logarithmic deriva-
tives of g,(Ry) at R, equal those of +/f(R,) then the
average acceptance goes as | +O(A™), where A is the
linear dimension of D(R;). In general. ~t =2, but if
D(R,) is inversion symmetric with R; at :enter, then
m =13, This is a considerable improveme: _.ompared 10
using a symmetric S(R/|R,) or choosing S(R/IR,)
~ f{Ry) for cither of which the average acceptance goes
as 1 +@(A).

In the case of electronic structure calculations the
probability distribution f(R) is |¥(R)|?, where ¥{(R) is
a trial wave function and R specifies the 3n electron coor-
dinates. Hence Eq. (4) becomes :

S(R/IR) = | (RPI/a(R,) . ()

where ®(R;)~¥(R;) in D(R,) and has logarithmic
derivatives at R, that match those of ¥{R,}. We now
discuss the explicit forms of S(R/|R;} for which we
present results here. For the first two choices n(R,} is
constant, independent of R,.

Simple metropolis.—The simplest form is S(R/|R,)
equal to a constant when Ry is within a 3n-dimensional
hypercube (box) of linear dimension 2A centered at R,
and zero elsewhere. Then T(R/|R,)=(24)} ¥ within
the box and zero elsewhere. Aside from the question of
whether one or all particles are moved in a single MC up-
date, this i the original Metropolis method [S] and it is
the form in which it has most frequency been used.

Cartesian coordinate directed Metropolis.— According
to Eq. (5), an improved form of S is S{(R/|R/)
=|w,(R;)| within the box. The simplest choice of
®,(Ry) is a linear approximation {in each of the 3a
Cartesian coordinate directions) to ¥(R;) at R,.

Two features of the wave function restrict the size of
the attempted moves. First, probable eiectron configura-
tions have two core electrons at a distance of O{1/Z)
Bohr radii from each nucleus, whereas valence electrons
are typically a distance @(1) from the nearest nucleus
{10]. Hence, if the same value of A is used for all the
electrons, as is usually the case, then the core electrons
set the length scale for all the electrons, else a large frac-
tion of the proposed moves are rejected. Second, ¥(R)

has a derivative discontinuity when an electron is at a nu-
cleus, which renders any Taylor seties approximation, in
Cartesian coordinates, of ¥(R), very inaccurate. {There
is also a derivative discontinuity when two electrons over-
lap. but this is less problematic since electrons repel each
other.) A natural solution to both these problems is pro-
vided by the use of spherical polar rather than Cartesian
coordinates in proposing the Monte Carlo moves,
Spherical polar coordinate directed Metropolis.— We
now describe a choice for S(R/|R,) which allows each
electron to make a move appropriate to its length scale
and which avoids the derivative discontinuity in w(R).
Each electron moves in a volume which is the intersection
of a cone which subtends an angle 28, at the closest nu-
cleus and a concentric spherical annulus. Let re be the
initial distance of the kth electron from the nucleus
closest to it. The proposed move will use spherical polar
coordinates centered at that nucleus. The radial moves
are made in the interval (ry ,/A,.ry ;A,). Hence the size
of the radial moves is proportional to ry ;. For atoms. this
ensures that if a move is possible, then the reverse mave is
also possible. We will discuss the necessary changes for
molecules and solids later. The advantages of moving in
this volume are that the size of the valence electron
moves is not restricted by the core electrons and that
Taylor expansions of the wave function are valid in the
region of interest since ¥(R) does not have derivative
discontinuities in spherical polar coordinates at nuclei.
Since

n(Rf)-tl:Il (2x/3) (1 —cos8y HA? = 1/80)7 ;.

according to Eq. (5), S(R/R;) = |®;(R)}/TTf~ 7} In
order to simplify the sampling, ®;(R;) is chosen to have
the form

”
°f(Rf) -*I_I' Wl('l,flat_f.rg_f)yg(OAJII'J,_[)U,(“J) .

For each electron X, the radial coordinate ¢ / is sampled
from [Uire ) ray. then 8., is sampled from
IV.,(OngrgJ)]IsinOg_; conditionai upon ry s and finally
¢v.s is sampled from [W;(x /18s 1,71 4| conditional on
rey and 8y, The precise choice of the functions
W, V., U, is described elsewhere 9],

It is possible to make further improvements by making
O a function ry s and ry ;. The reason it is advantageous
to do so is that most trial functions have a finite discon-
tinuity of magnitude Z in the local energy when two elec-
trons approach a nucleus [11], Z being the nuclear
charge. In this limit the local energy is Z hartrees higher
when the two eclectrons and the nucleus lic along a
straight line with the electrons on opposite sides of the
nucleus than with the electrons on the same side. It is
desirable to average over this discontinuity as rapidly as
possible by making large angular moves when r,, € 1/Z,
where £, ™ (ry;+ri.r)/2. Hence cosBy is chosen to be

409
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1 +cosé,,
1+(Zr, 0"

where 8, is fixed. which has the limiting behaviors
By =804 when r,, > 1/Z and 8y =r when ro®1/Z. In
spite of the fact that when an electron is close to a nu-
cleus. the angular move is made over the entire surface of
a sphere, the acceptance of these moves is close to one
[9]. On the other hand when moves are made in Carte-
sian coordinates, the acceptance for the electrons close to
the nucleus is very low (9],

Finally we note that although each of the above algo-
rithms assumes that all the electrons are moved during
each Monte Carlo update, it is trivial to modify the algo-
rithms to move only one eiectron at each MC step or in
fact any number in between,

Generalization to molecules and solids.— The addi-
tional complication for molecules and solids is that the
closest nuclei to each of the n electrons at R, need not be
the closest nuclei to the corresponding electrons at R,
For some fraction of these the reverse move from R/ to
R, is not possible. i.e., S(R,|R;) =0, because whereas R,
lies in D(R;), R; may not lie in D(R,). In that case de-
tailed balance demands that the move from R; to Ry be
rejected, i.e.. A(R/|R;)=0. Since these rejections may
be performed on purely geometrical grounds (they do not
require calculating the wave function or its derivatives at
R/). this does not result in an appreciable loss of
efficiency.

Results.—The efficiency of the algorithms is inversely
proportional to the autocorretation time of observables of
interest. Table [ shows the autocorrelation time of the
energy for four algorithms and four wave functions. The
four algorithms are (1) the simple Metropolis algorithm

cosfy =cosh,, — (6)

moving all clectrons at each MC step, (2} the Cartesian
coordinate directed Metropolis algorithm moving all elec-
trons at each MC step, (3) the Cartesian coordinate
directed Metropolis algorithm moving only one electron
at each MC siep, and (4) the spherical-polar coordinate
directed Metropolis algorithm moving only one electron
at cach MC step. The four wave functions used are (1) 3
simple Ne wave function, (2) a good Ne wave function,
(3} a simple Ar wave function, and (4) a simple Liy wave
function. The simple wave functions consist of a deter-
minant multiplied by a simple Jastrow function which is a
function of the interelectron distances only, whereas the
good wave function consists of a determinant multiplied
by a more complicated Jastrow function which is a func-
tion of both the interelectron distances and the electron-
nuclear distances [12],

The measure of efficiency of the algorithm is the auto-
correlation time which is determined as follows. The en-
tire MC run (after discarding the equilibration updates)
consists of ¥ MC updates that are divided into Ny blocks
each consisting of N, MC steps for each of the n elec-
trons. The local energy is measured after each MC
update. The autocorrelation time is given by Toone
=N, {5s/0)?, where o and ay are the rms Auctuations of
the individual energies and the block average energies, re-
spectively. N, must be chosen such that NV, » T, The
autocorrelation times presented in Table [ were obtained
using values of N, that were at least 100 times greater
than Teye. It was found that using ¥, == 10 T, resulted
in estimates of T that were too low by as much as
20%. When MC moves consist of moving one electron at
a time it takes twice the computer time to move all the
electrons as compared to when they are all moved at once
[71. Hence Table [ has values of T =27 corr for algo-

TABLE I. Autocorrefation times for the four wave functions and the four algorithms dis-
cussed in the text. In order to have 3 fair comparison. T = T for algorithms | and 2 and
T ooet ™ 2T ooy for algorithms 3 and 4. In algorithm 4, 6, =x/2 for Ne and Ar and 6 =x for Liy.
A is the average acceptance. The uncertainty in T % is typically 10% of its value.

Wave function Algorithm 4 A A T ooer
Ne simple | 0.25 e 0.288 84
£'=—128.716 hartree 2 0.3 0.661 P
E oo =43% k] 0.8 s 0.769 i3
a=1.8 hartree 4 e 5 0.708 20
Ne good 1 02 e 0.290 3T
£ = —=128.901 hartree 2 0.3 - 0.663 1
Ecor=91% 3 0.8 0. 12
o=0.9] hartree 4 e 5 0.708 1.7
Ar simple 1 0.12 .- 0.307 190
E= <5271 hartree 2 0.2 - 0.474 “u
Ewre=31% 3 0.5 0811 1
o=4{ hartree 4 s 5 0.620 2.2
Li; simple 1 0.75 . 0.268 10
E = —14.9476 hartree 2 l s 0.614 56
Econ=61% k! 2 0.616 n
o=0.41 hartree 4 S 8 0.775 5.8
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rithms 3 and 4. We note that o and the variational ener-
gy E depend on the trial wave function but not on the al-
gorithm used. Tcor and the acceptance 4 depend on both
the algorithm and the trial wave function.

For each of the algorithms the values of A or A, and 8,,
were optimized to yield the smallest possible Teorr. Table
I shows the values of T&e for approximately optimal
values of the parameters. Moderate variations of the pa-
rameters about their optimal values affects the efficiency
of the algorithm only slightly. For example, changing the
value of A, from 5 to 4 altered the value of Teger by less
than 10% for each of the wave functions. For the four
wave functions, the autocorrelation times get smaller by
factors of 42, 22, 86, and 36, respectively, as we progress
from algorithm 1 to 4 and by factors of 6.5, 4.2, 5.9, and
5.5 in going from algorithm 3 to 4.

Note that for each of the four algorithms Ty is small-
er for the good Ne wave function than for the simple Ne
wave function. The reason for this is that the good Ne
wave function has a more rapidly varying local energy
(but with a smaller amplitude of course) and consequent-
Iy it takes fewer Monte Carlo steps 10 wander from a re-
gion where the local energy is too high to one where it is
too low and vice versa. Hence the gain in efficiency from
improving the wave function is greater than would be
supposed by merely comparing their respective values of
.

The variational energy for the good Ne wave function
is = 128.9005 +0.0005 hartree, corresponding to 91% of
the correlation energy. This is the lowest energy calcuiat-
ed to date by variational Monte Carlo for Ne. The fact
that the energy is good is due to the high quality of the
wave function, but the fact that the energy could be
determined with a small statistical error, in just a few
hours on a workstation, is testimony to the efficiency of
the new algorithm.

Comparison of the resuits for algorithms 2 and 3
shows, as has been noted before (7], that for systems with
many electrons, and for this class of algorithms, it is more
efficient to move one electron at a time rather than all at
once.

For aigorithm 1 there is a considerable increase in Ty
in going from Ne to Ar. On the other hand for algorithm
4, T o increases vety little. This does not mean that cal-
culations of heavy atoms can be performed as rapidly as
those of light atoms. The time for evaluating deter-
minants in the wave functions scales as Z? and the fluc-
tuation in the local energy o is empirically found to scale

roughly as Z or Z'*. Consequently the computer time
required to obtain results with a fixed statistical uncer-
tainty increases as Z° or Z% if T is independent of Z
and yet more rapidly otherwise.

In conclusion it was shown that an efficient choice of
the proposal matrix in the generalized Metropolis method
is SRR ~/FR/0(R,). Large gains in efficiency
were demonstrated in calculations of the electronic ener-
gy of atoms and molecules.
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PATH INTEGRAIL MONTFE CARLO: Problem
Charusita Chakravarty, IIT Delhi

1. Simple Harmonic Oscillator

For a single particle in a harmonic potential, implement the Fourier path
integral Monte Carlo algorithm. A sample program to do this is also avail-
able. For a 1-dimensional harmonic oscillator with mass m and potential energy

V(z) = 0.5kz?, the analytical result is
(K} = (V) = (E)/2 = 0.25hw coth{0.55hw)

2. Convergence Strategies: Partial Averaging
The partial averaging algorithm can be implemented for complex potentials

hy replacing the potential along a path V' (z{u)) by

Vers(e(u) = V(z(u)) + 0.50% (u) V"' (z(u))
where V"(z(u)) is the second derivative of the potential and

a?(u) = ﬁ (Bh — u) i’ o2 sin? ,Bh
For a multi-dimensional generalisation of thls algorithm, see J. Chem. Phys.,
85, 4567 (1986).

Implement this procedure for the harmonic oscillator system to see the im-
provement in efficiency i.e. the reduction in the number of Fourier coefficients
required for convergence. Remember that when deriving the expressions for the
thermal average of the total and kinetic energy, the partial averaging correction
term in the effective potential must be considered.

3. Incorporating exchange of identical particles in Path Integral
Monte Carlo

Let the density matrix for N distinguishable particles be labelled by D and
for N indistinguishable particles be labelled by /. Then

1
pr(x,x'i8) = 553 3 €% pp (x, Px'; B) (5)
G



where 12 is the parity of the permutation and £ is +1 for bosons and -1 for
fermions. The effect of permutation P on the elements of the vector x = (x4, 73, ..., zN)
is denoted by Px. &7 is always +1 for bosons but for fermions, éF equals —1
and +1 for odd and even permutations respectively. This result can be used to
show how the Fourier path integral approach for distinguishable particles can
be adapted to incorporate exchange effects for bosons and fermions (J. Chem.
Phys., 85, 4567 (1986).

‘T'he difference between fermionic and bosonic systems can be illustrated by
considering non-interacting quantum particles in a harmonic potential. For a 1-
dimensional system with i = m = & = 1 and a potential given by V{zy, 2, .. .,2y5) =

ZN %1:'2, the average total, (F'), kinetic, (K}, and potential, {V), energies are

=1

N
(B)/2=(K)=(V) =3 tzcoth 5%- —EW

Use either the algorithm given in the above reference, or any other discretised
path version of it, to construct a path integral Monte Carlo program for this

model system.



