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restricted to molecules comprised of very light atums, so that mo astsmen
is provided of the ability of the local-density approximation 1o dexcrive, for
example, IT-bonded sysiems or transition-metal systems involving kicalized ¢
oms in the first row of the

three groups!!*s-tan using successively
More accurate numerical methods. These cakculations waken together provide

ken..wozgcwnmm:munn-.an:_oq.vn accuracy of the local-density
approximation,

The binding energy of the H, molecule {E(H,}-2E(H)) 25 2 function of
internuclear separation is shown in Fig. 9. The figure compares essentially
exact results for the binding curve! %147y those obtxined using differen:
calculational procedures (with and without the use of the mufFin-tin approx-
imation, for example) and using different approximate treatments of ex.
change and correlation (local-density, "D xg et 500 Hartree~Fock ).

Three aspects of Fig. 9 warrant comment, First, the local-spin-density
resuh is significanty more accurate than the Hartree-Fock and X results,

Second, the _oﬂ_..ls.uoiww resuits differ from the exact resuit by only 0.1

eV. Third, a3 mentioned above, the binding energy is significantly corrupted
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exact result (Refs. 146and 147)
and the exact localspin-den-
sity result (Ref. 142) are avail.
able both for mutual compar-

ison and for comparison with

resuls obuined using more
approximate methods, The
Harntree-Fock (HF) resuits are
those of Ref. 149 and the Xa
Bl ] = results are those of Ref. 148,
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CONSTRUCTION OF PSEUDC PoTEMTt@%

FIG. 6. Flow chart describing the construction of an ionic
pseudopotential for an atom.
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FIG. 2. Schematic illustration of a supercell geometry for a
point defect {i.c., vacancy) in a bulk solid. The supercell is the

area enclosed by the dashed lines.
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F1G. 3. Schematc illustration of a supercell grometry for a
surface of a bulk solid. Same cowvention as in Fig. 2.
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FIG. 4. Schematic illustration of a supercell geometry for a
molecule. Same convention as in Fig. 2,
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FIG. 7. Flow chart describing the computational procedure for
the calculation of the total energy of a solid, using conventional
matrix diagonalization.
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FIG. 11. Flow chart describing the computational procedure
for the calculation of the total energy of a solid with meolecular
dynamics,
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Fig. 4. The time variation of (a) U{ = K + E and (b) the ionic temperature T, on
a segment of 800 steps for a run of 54 C atoms in a liquid-like (diffusive} state. The
system is metallic (from Ref. [3]).
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