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ABSTRACT

With the development of ab-initie molecular dynamics method, it has now become
possible to study the static and dynamical properties of clusters containing upto a few
tens of atoms. Here | present a review of the method within the framework of the density
functional theory and pseudopatential approach to represent the eleciron-ion interaction
and discuss some of its applications to clusters. Particular atiention is focussed on the
structure and bonding properties of clusters as a function of their size, Applications to
clusters of alkali metals and Al, non-metal - metal transition in divalent metal clusters.
molecular clusters of carbon and Sb are discussed in detail. Some results are also presented
on mixed clusters.

1. Introduction

During the past decade much expenmental and theoretical progress has been
made in our understanding of the physical and chemical properties of several ele-
mental, binary and compound clustersi=S. Interest in these studies has basically
arisen from the technological importance of clusters e.g. in catalysis, photographic
films, magnetic recording, etc. and from the quest to understand the evolution of
materials properties as a function of the size of an aggregate. Very recently it has
also become possible? to prepare a new form of solid carbon from large carbon clus-
ters which are now referred to as fullerenes. These fullerenes are caged structures
baving 12 pentagons and a varying numb<s of hexagons of carbon atoms. The most
beautiful and interesting among these fuli~raes is the Cyo molecule which has the
truncated icosahedral structure. These molecuies can be crystallized i & Pal struc-
ture st low temperatures. The exciting discovery of superconductivity ot relatively
high temperatures in K’(18 K), Rb*%28 K) and Cs and Rb*(33 K) doped solid Ceo
kas provided another dimension to cluster research and efforts are now alno being
madei?-1 to find other clusters/molecales which could be used as building blocks for
making new materials. It has also been possible to encapsulate atoms and molecules
within fullerenes!® and to prepare other forms of carbon such a buckytubes' and



bucky omans'® ete . These developments have therefore broaden the scope aof the
studies of fimte aggregates and opened up new avenues in materials research. Also
it is hoped that the progress in cluster research will enhance our understanding of
complex structures and pave the way for new molecular architecture.

One of the important factors which governs the properties of clusters is their
structure which is in general very different from a bulk fragment. This is due to the
fact that in a small cluster most of the atoms are on the surface and therefore have
ceduced coordination. This leads to a reconstruction of the bulk fragment so that
the free energy of the cluster becomes minimum. In addition there are quantum effects
which lead to an oscillatory behaviour of e.g. the binding energy, ionization potential
etc. as the cluster size grows, Such changes in the atomic and electronic structure
can affect significantly the bonding and other physical and chemical properties of
clusters Some interesting examples are small clusters of divalent and tetravalent
clements. Si clusters have been found to have closed packed structures'® as compared
to strongly directional bonding in the bulk whereas small carbon clusters have
structures ranging from chains, rings, fullerenes, tubes, onicns and possibly some
other forms also. Dimers of divalent metals such as mercury and magnesium are
very weakly bonded due to ns® closed shell atomic electronic structure and a large
promotional energy to the p state but these are good metals in bulk. Therefore for
such elements a transition to bulk chemicai bonding should occur as the cluster size
grows. However. in most cases it is still not clear when such a transition would occur.
This may ranze from a few tens to a few hundred or thousand atoms depending
upon the species involved. For mercury, experiments'” indicate this transition to
occur for a moderate size of the clusters (70 > ¥ > 13}

Clusters also differ in an important way from bulk materials when alloyed.
In the bulk. ailoving is not possible if the atomic size difference is larger than
about 157, However, for clusters there is no such restriction on the relative size
of atoms. Thus binary ctusters such as Cu-Os could be formed™. This provides
another interesting way of improving the reactivity and selectivity of clusters by
sffectively changing the focal electronic structure. Several studies on the reactivity
of clusters ilustrate the importance of the varation of the electrondc structure with
cluster size. Iron clusters have been found to show'® several orders of magnitude
change in the reaction rate of deuterium as the cluster size changes from a few to few
rens of atoms. This correlates well with the variation in the electron binding energy
of the clusters as shown in Fig. 1. The reactivity increases as the electron binding
energy decreases. The latter generally durroases with an oscillatory behaviour to
the value of the work function as the cluster size grows. Simlarly Al clusters show
marked variation in the reactivity with oxygen as a function of their size?®. The
magic clusters Al and Al are found to be unreactive with oxygen whereas the
non-magic clusters do react.

The magnetic properties of small clusters are also in general very different
from the bulk due to the discrete nature of the electronic energy spectrum. Clusters
of »lements which are non-magnetic in bulk can possess magnetic moments while in
the case of the magnetic elements. the moments can be significantly different from
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Figure 1: Comparison of electron binding energy and reactivity of Fey clusiers for dissociative
chemisorption of Dy and H;. The shaded portion reflecta the upcertainty in ionization threshold
measurements while the vertical bars indicate uncertaioty in reactivity resuits. (After Whetten et
d‘lD)

their bulk value. Also the different sites in a cluster wiil in general have different
magnetic moments, There is little progress in this direction so far. Similarly due
t~ changes in the charge density distribution, the optical prrperties of clusters are
expected to be different from the behavieur on semi-infinite surfaces. In principle
clusters form a much broader class of materials because different clusters of even
the same material may behave quite differently and in the case of more than one
component, the atomic size of the constituents is not the iimiting factor. Such
studies can therefore help to prepare better catalysts, photographic films, magnetic
tapes. energy storage devices. etc. by suitable choices of material and particie
size and can open doors for making new classes of materials such as fuilerites, the
crystals obtained from fullerenes.

Experimentally while direct information on the structure of clusters is dif-
ficult. it has been possible to study the ionization energy, magnetic and electric
miowents. density of states, polarizability, photoabsorption cress section and effects
of multiple charging etc. of masa sefected clusters, Experimenta on mass selected
clusters containing upto several thousand atoms have become possible’. However,.
most theoretical studies based on ab-initio methods have been possible on clusters
containing a few atoms only since it is difficult to know the lowest energy structures
due to the very many atomic and electronic configurations that are posaible for a
given size of the cluster. Calculations based on a jellium model*? are simpler and can
be done for large clusters. These have been very successful in providing a qualitative
understanding of the variations in the stability, ionization potentials, polarizability
ete. of clusters of simple metals as a function of their size*. However, in several



cases of interest such as clusters of semiconductors, transition metals and alloys,
a jellium model may not be suitable. Also for a quantitative understanding it is
necessary to know the atomic structure and the changes in the electronic structure
as a function of the size and geometries and their temperature dependence. This
is also likely to enbance our understanding of the dynamical properties, structursl
transformation and telting etc. of clusters and will be helpful in understanding
chemical reactions on clusters.

Theoreti-el studies (see e.g. Refs. 1-5) of the atomic and slectronic struc-
ture of clusters of various elements have been numerous. These include studies
based on the use of some interatomic potentials as well as ab-initio calculations.
While studies based on some interatomic potentials can be done for clusters having
upto several thousand atoms and have given some useful information, one has to be
cautious about the validity of such results (in particular for small clusters) as poten-
tials generated from some known structures of a material may not be Bppropriate
for other structures of the same material. One can hope to get & good descrip-
tion of clusters of rare gases using pair- potentials whereas interactomic potentials
based upon effective medium theories or tight binding methods may particulardy
be useful for large clusters of metals and semiconductars. Ab-initio ealculations are
much more difficult and have been possible for clusters having at best upto = few
tens of atoms. A majority of these calculations have been done for a fixed atomic
distribution in the cluster. However, in several cases the atomic structure has been
relaxed and efforts have been made to find structures with lowest energies. These
include calculations based on configuration interaction as well as density functional
methods. However, most of these have been restricted to clusters with a few atoru
only. The most promising development which has given theoretical study of clusters
a new perspective, has been the ab-initio molecular dynamics (MD) approach de-
veloped by Car and Parninello® (CP). In this appraoch the many body interatomic
potential is calculated from ab-initio caleulations bassd upon the density functional
theory (see articles by von Barth and M P Das in this volume) which has proved
very successful in the study of the structural and electronic properties of a variety
of materials. The ab-initiv molecular dynamics method not only allows a search of
the lowest energy structures within the framework of the sirpulated annealing {SA)
but also it can be used to study the static and dynamieal properties of clusters
having upto a few tens of atoms. So far its applications have been to clusters of
s—p bonded elements. However, recent developments of dealing with the d-orbitais”_
within this scheme {see article by Laasonen in this volume) will make the study
of technologically more important clusters with transition metal elements feasible.
Some of the systems that have already been studied successfully include clusters™®
of §5i'7, Se®, 5§77, Na®3, pP% RBel! MW Sb™M, Gp3, AT Gatts , C»- BG
Ge™ and mixed clusters of GaAs, GaP and AlAs®, NaK™, Na-Mg¥, ALSi, AMC

e

and B-C**. Good agreement has been obtained with experimental data w -
avatlable. Here [ will discuss the CP method and present results of some of thess,
applications. There are a few other reviews*4* on this method which have ap-
peared recently and contain some details of this method and applications to other

svstems such as liquid and amorphous matenals, surface structure, diffusion, defect_s
etc. Some details can also be found in the articles by Pastore and Laasonen in this
volume.

In the following section I present the calculational procedure. Section 3
contains a review of most of the results on clusters obtained so far using the ab-
initio molecular dynamics procedure. Section 4 contains an outlook for future work.

2. ab-initio Melecular dynamics method

In classical molecular dynamics approach an empirical interatomic potential,
often a pairwise interaction, is used to caiculate the energy of a system. Such empir-
ical potentials are constructed from a fit to some known properties of that material.
However, except for rare gas solids and strongly ionic materials, in most other sys-
tems it is difficult to justify s pairwise interaction from first principles. Furtber,
during MD simulation the ionic positions can change very significantly from their
starting configuration and structural transformation may occur for which the start-
ing potential may not be valid. In cases such as clusters where the structure of the
system is g priom not known, it would be difficult even to find a good interatomic
potential. Car and Parrinello® combined one of the most successful theories of to-
tal energy calculation of an aggregate, namely the density functional method®®*1,
with the molecular dynamics approach to develop an efficient combined electron-
ion minimization procedure. Hereafter we shall refer the methods based on the idea
of the density functional mol-zular dynamics approach to as the ab-initio molec-
ular dynamics methods. In the following we first discuss briefly the Kohn-Sham
equations®® which are central to the solution of the electronic structure problem
within the density functional formalism and ther describe the standard and the
MD approaches for solving these equations.

2.1 Kohn-Sham equations

The density functional theory as developed by Hohenberg and Kohn® and
Kohn and Sham?® offers a formal exact treatment of solving the ground state elec-
tronic properties of a system. However, it requires the knowledge of a functional
for exchange and correlation whicn is not known for most systems. An approximate
treatment of the exchange and ~r:reiation energy based on the local density or io-
cal spin density approximation (LDA or LSD) has been successfully used in a wide
varniety of systems ranging from stoms and molecules to surfaces and bulk materials
and will also be the basis of the ab-nifio MD to be discussed here.

For systems such as clusters onke of the principal tasks of an ab-initio calcu-
lation is to obtain the lowest energy isomers by minimizing the total energy £ with
respect to the ionic and electronic degrees of freedom. Within the density functional
theory this can be achieved by solving the Kohn-Sham equations (for details see
the article by M. P. DAs),
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where V..., vy and V.. are the external (electron - ion), Hartree and exchange-
correlation potentials respectively (atomic units ¢ = & = m, = 1 are used.}. The
electron-ion potential can be an ail electron or a pseudopotential. The other two
contributions to the potential are
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where the electronic charge density n,(r) i3 given by,
ny(r) =3 Hi(e)P, #)
F(i), being the occupation aumber for the state i. The ground state total
energy £ for a given configuration of the ions {R/)} is

see
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Here Z; is the charge on the /** ion at the position Ry. E,(n.] is the exchange-
correlation energy. This has been calculated within the LDA/LSD in almost all the
applications of the ab-initio MD,

Exdndl = ] demy(rYe_oimadr)], ()

where ¢..[n.(r)] is the exchange-correlation energy per particle for a homo-

geneous electron gas with density n.(r). In the case of spin polarized calculation,

this encrgy should correspond to the density with the same spin polarization as

in the.-actual system, There are several approximate forms availale for this and -

therefore £,. can be easily calculated in real space once the density is known. This

approximation yields reliable binding energy trends and equilibrium structures for.

a variety of molecules®? and solids®. Emwrer recently there have been interesting’
develupments where non-local exchange-correlation functionals havie been success-
fully used which have provided imprqved agreement with experiments for several
systems (see von Barth in this volume}. Their inclusion in the ab-initio MD schenp

is also likely to give improved results but since most applications have been done
within LDA/LSD we shall restrict our discussion to LDA/LSD only.

2.1.1 The standard approach

In the standard approach, for a given configuration of the ions, one has to
guess a starting wavefunction, construct the Hamiitonian matrix and then solve (1}
iteratively untill self-consistency is achieved. One can then use the steepest descent
technique to relax the ionic positions by calculating the forces on ions,
Fis i M
following the Hellman.Feynman theorem®. This would lead to a focaf mini-
mum in the energy surface. However, for finding giobal minimum one has to then
take a new configuration and repeat this procedure until a configuration is obtained
which has the lowest energy. This is a challenging task and it would be nearly im-
possible to explore all the electronic and ionic configurations that may be possible
for a given number of atoms in a cluster except in the case where this number is
restricted to a few atoms. Though much progresa has been made by the steepest
descent root, the energy surface is in general very complicated for most systems
and in-such situations other strategies based on simulated annealing become more
efficient.

2.1.2 The molecular dynamics approach

The development of the ab-initio molecular dynamics method® has provided
an efficient way for the optimization of the energy functional with respect to the
electronic and ionic degrees of freedom simuitameowly. This method relies on the
assumptions that the jons ¢an be regarded as classical particles and that the motion
of the electrons and the jons can be treated within the Born-Oppenheimer(BO)
approximation. The ab-initio MD exploits the fact that in the BO approximation
the eiectrons follow the ions wmstantenconsiy as they move and therefore remain very
close to the ground state of the corresponding ionic configuration. This eliminates
the need to find the electronic ground state for each ionic configuration and therefore
reduces the computaional «ffort very significantly.

In the MD approach the electronic {¥;} and the ionic {R;} degrees of free-
dom in the energy functional Ef{w:}, {R;}] are taken to be time dependent and a
Lagrangian is introduced :

e

L= flim ] delvi(rid+ (1/2) 3 MR} — E({%}. (Ri)], {®)
i I

which generates a dynamics for ¢ and R, through the Newton's equations
of motion:
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where u;'s ate the fictitious .wiusses for the elecironic degrees of frecdum
which are generally taken to be independent of the state i. A,, are the Lagrangian
multipliers for the orthonormalization of the single particle orbitals w;,

f&.'(r)v’;}(r)dr = by, {10}

The ion dynamics described by Eq.(9) is real whereas the dynamics of the
electronic degrees of freedom is fictitious and should be regarded as a means of solv-
ing the Kohn-Sham equaticns. For a fixed ionic configuration when the acceleration
of the orbitals becomes zero, then Eq.(9a) reduces to the standard problem and the
eigenvaiues of the A matrix are the eigen values of the Kohn-Sham equations. Once
the orbitals are converged. one can then use the set of Eqs.(9) to foliow the coupled
electronic-ionic motion. As we shall discuss later, the calculation of the forces on
lons can be easily done using the Hellmann-Feynman theorem. In principle for an
exact calcuiation of the Hellmann-Feynman forces the electrons should be in the
ground state at any instant of time during the simulation. This can be done but
it is computationally very expensive. In the CP method, however, the dynamical
simulation can be performed accurately (within a certain bound) when the devi-
ation from the BO surface is small. This is due to a cancellation of errors in the
calculation of the Helimann- Feynman forces as the electron- jor: dynamics proceeds.
This cancellation follows from the fact that plasma frequencies are generally much
higher than the ionic frequencies. Therefore during a period of the ionic moticn the
aorbitals would osciliate several times around the ions. The forces exerted on the ions
by the electrons due to deviation from the BO surface would oscillate around the
correct value and would be nearly cancelled when averaged over several oscillations.
Therefore for a successiul CP dynamics the smallest plasma frequency should be
larger than the largest iomic frequency. Further. the energy gap between the high-
est occupied and the first excited state in the electronic energy spectrum shouid
be Jarger than the thermal energy associated with the ionic motion (see also the
chapter by Pastore in this volume). This is typically the case for semiconductors
and insulators. In such cases, for a given temperature there is very little transfer of
energy between the ions and the electrons for a significant and in some cases even
for the whole observation time of the simulation and the electrons remain very close
to the BO surface. However, in metals the energy gap between the highest occupied
and the lowest unoccupied states is zero and therefore it becomes s problem to keep
the electrons moving adiabatically. As the simulation proceeds the kinetic energy
associated with the electronic degrees of freedom increases at the expense of the

kinetic energy of the ions. In such situations one should ,n principle, use®® the
fractional occupation of various states according to the Fermi-Dirac distribution
function at any finite temperature. An casy way to overcome this probiem is to
bring the electrons close to the instantaneous ground state after a certain number
of time steps and then proceed with the simulation again. This wouid generally lead
to a cooling of the ions. To avoid this problem Nose*® thermostat has been used to
keep the ionic temperature at a desired value. This, however, does not eliminate
the problem of energy transfer to electrons. Bléchl and Parrinello® have used a
Nose thermostat for the electrons alio 50 that the electrons remain ciose to their
ground state. However, such constraints increase the computational effort signifi-
cantly. For clusters as the electronic energy spectrum is discrete, the condition of
large gap between the highest occupied molecular orbital (HOMG) and the lowest
unoccupied molecular orbital (LUMO) is satisfied in some cases (in particular for
the magic clusters) whereas for other clusters and more so for larger clusters of
metals, deviation from adiabatic behaviour could be significant to warrant frequent
electron minimization or adopt other strategies. The formulation presented here is
general and can be applied to solids, liquids or finite systems.

2.2 Implimentation of molecular dynamics using pseudopotentiais

In the foregoing discussion we did not assume any particular form of ionic
potential. Though there have been interesting developments of doing all eiectron®
MD simulations, most studies have been done using pseudopotent,als®® which allow
the use of a plane wave basis set. A plane wave basis is convinient particularly when
the ions have to be moved as the plane waves are not localized on a particular site.
Then the wavefunction in {1) can be written as

vk = Y Cerplitk + Gyr] (1)
G

The sum over G 15 usually truncated to include plane waves upto a certain
kinetic energy which determines the accuracy of the caleulation. Further, the use of
plane waves assumes impoeition of periodic boundary conditions which are aiso used
in classical MD simulations in bulk systems. In the case of clusters. the MD cell
1s taken to be sufficiently large so that the interaction between the, cluster and its
periodic iniages is negligibie. k is a wave vector in the Brillouin zone.’ For achieving
self-consistency one generally uses a set of a few special k points*®. However, in the
case of clusters, as the cell dimensions Are large, one can use just a single k point
. the T point. in {11) to sample the Brlllouin zone of the MD supercell and neglect
the band dispersion. This hes an additional advantage that the single particle
orbitals become real and therefore the computational effort reducés significantly.
Henceforth, we shall drop the k index.

The total potential from the jons can be written as



VerelT) = 3 2h (= Ry, {12)
T
where v/, (ri is the pseudopotential for the ™ ion. There are several ionic
pseudopotentials available in the literature 3. However, in most applications
norm-conserving pseudopotentials of Bachelet et o#' have been used as these have
been tabulated. [n general, we can write the jonic pseudopotential as,

L
i =Y v(na (13}
ag
£ is the angular momentum projection operator which projects out the M
angular momentum component of a function. w(r) 13 the pseudopotential which
uperates on the I angular momentum component of the wave function. If one
assumes v/ = vf___ for | > lm. then the infinite sum in (13) can be rewtitten as

frmus =1

din =N+ 3 adinA (14)

IE-1H

where

aef(r) = vf (7) ~ o, (7). {18)

vi__ is local and therefore avf becomes the non-local part of the ionic pseu-
dopotential. Thus we can write the total ionic potential as a sum of a local contri-
bution. Vi.(ri and a non-local contribution, AVy(r).

In the MD approach for solving the Kohn-Sham equations the expansion
coefficients become time dependent and therefore the equation of motion for
can be recast into equation of motion for Cg. Substituting Eq.(11) in {9a) and
muitipiving with ezp(-:G'r) and integrating over ¢ gives

wly = Z[U?lGi’ﬁcG- + Vel G = G') + AV(G. G
el

HVR(G ~ G + Vel G = GNClg, + 3 45Ch. {16}

1
These equations are then numencally integrated using the standard MD pro-
cedures such as Verlet algorithm or the conjugate gradient technique. In the Verlet

algonithm, the second derivative is written as a second order difference equation:

Ciglt+ At) = Wy (th- Cglt ~ af) + A CL (). 17)

It :ntroduces an error of order (A0)* into the integration of the equations of
motion. A more sofisticated finite difference equation could also be used but this-

10

would require storing the coefficients for a larger number of time steps and since
these are large arrays, the storage can become a problem.

2.2.1 Electron minimization

The simulation proceeds with an initial choice of the ionic distnbution and
of *he coefficients in the expansion of the wave functions which are orthonormal-
ized, The latter can be used to construct the charge density n,{r) and therefore the
exchange correlation potential and energy. The Hartree contribution to potentiai
is easily calculated by performing a fast Fourier transform (FFT) of n.{rj and it is
given by

Vg (G} = 4wn,(G)/G? (18)

The locai contribution to the total ionic potential ¥..(G) is

VieeG) = Y SalGIvfe (Gh. (18

where 3, is the structure factor for the specie a and is given by

5GY =Y eapiG.r}). (20
14
Here =7 is the position of the p* atom of type 2 in the basis. The sum over
p 15 on all the atoms of type « and

v (G) = ;-l:fdrv,’“(r)c:pu(},r), 12

where 0, is the cell volume. The Hartree and the local jonic potential terms
can now be transformed into reai space with a fast Fourier transform to construet,
together with V..(r), the product V(r)w(r) whose transform leads to the convolutions
in Eq.(16). The non-local contribution needs separate attention as it is not in the
form of a convolution. The non-local contribution to potential is

lmam =1t

v {G.G) = dx Z (U + VPicosidgg.)) Jf drr i Gr )G R Avi(r). [22)
1=0

Here P is the Legendre polynomial of order [ and i is the sphérical Besael
function of the first kind of order 1. 8¢xg. is the angle between G and G'. Evaluation
of Ea would require computation of N, ¥ N,(N, + 1)/2 integrals where ¥, and ¥,
are respectively the number of statea and the plane waves. This is a very time
consuming operation due to large values of N,. It can, however, be simplified
following a suggestion from Kleinmann and Bylander®® who transformed the semi
non-local part of the potentiai (local in radial part but non-local in anguiar part)

into a fuily non-local operator:

11
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Here ¢7, is the atomic pseudo wavefunction for specie a. It can easily be
varified that in the case of atom, the fuliv non-local and the semi non-local forms
tead to the sam. solution. However, the same is not true when this separable form
1= used in other situations. In particular ghost states have been found* in some
cases. This can however, be taken care of by a suitable choice of the local potential.
With this choice. the Fourier components of the non-local pseudopotential can be
written into a separable form such that

lomaw =1

WilG.G = Y F(GIFHG), (24)

tz0

where F, and £ are functions of only one wave vector. This reduces the
number of integrals to N,NN,.

2.2.2 Total energy and forces on ions
The total energy® can be written as

ExExe+En+ Epu+ Ege + Eqem. (25)

The kinetic energy of electrons and the Hartree term are givea by
Exe=(1/03 fHGiCy Cg, (26)
.G

and

1o~ ..
En= 5% Vi (GIn (~G) (27)

The prime indicates that the G = 0 term is excluded in the summation.
This represents the long range slowiy varying part of the Coulormb potential. For a
neutral svstem. the tots! contribution to energy from G = [ term is zers in the case
of a purely 1/r potential. However, since we are using pseudopotentials; there is &
non-zero contribution coming from these terms and it needs to be treated carefuily.
It is convinient to smear the ton core charge into a Gaussian® given by

nl{r —Ry) = (;—,’),a’-,’“ezp(-lr —~ ReJORS), L
, _

where RS is the width of the Gaussian. The potential felt by nn.;_lectmn due -

to this distribution is

it~ Ryl

velr = Rp) = = —2L—er file - Ry|/RS). (29)°
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The total charge distribution and potential from the Gaussian smeared 1on-
cares are,

ne(r) = 3" nltr - Ry),
i
and

Veir) = Y uelr = Ry). (30)
I
Considening the electronic and ionic charge distributions together as a neutral
system, the Hartree. the local pseudopotential and the Madeiung ( E,..) terms can
be written together as

1
Eqx+E + Eon = Ejdrdr

“T‘rl_’% + [[amnun) T wielle = Rel) = Epey 4 8. (31)
I

where n = a, + n, and

- wtnelr) = Bl (1) + Zerste/ ) (321

The second term in the above equation anses from Gaussian smeared ion

cores {Eq. 29) and should be subtracted as it has been included in the first term

on the right hand side of Eq.{31). The latter can now be evaluated in the Fourer
space and is given by,

% 3 a(GY n(Glr/C7, (33)
G

where,
n(G) = n, G+ Y 5,(GIn?(G), (34)

and nZ(G) is the Fourier transform of the smeared ion-core charge of the a
specie. Therefore. the explicit evaluation of the Madelung sums is avoided. w,. is
a short range potential as the long range parts of the two terms in Eq. {32) cancel
each other. E,u is the self-interaction of the Gaussian smeared ion core charges
which is inciuded in the first term in Eq. (31) and should be subtracted. A. is a
correction to the first term in Eq. (31). It is equal to the difference in the interaction
between the original point charges Z; and the Gaussian broadened charges. These
are given by, !

'
Evpy = 1/2'}"/*4,"‘“"_8"‘""2(_"_'_“_’2
- fe—r|
which from Eq.(28) simplifies to
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which reduces to

Res
Ris

ZrZ;
1/2 erfel
E Ryt

where R,y = Rq - Ryl and RS, = TR + B3
The remamming contribution to the total energy comes from the non-local
part of the pseudopotential and it is given by

I3 (36)

ERI S {0) 0 D o (K- Ul ors¥ (a1
v I G.Gr

whereas the exchange correlation energy can be calculated from Eq. (6).

The forces on ions can be calculated from Eq. (7) following the Hellmann-
Feynman theorem according to which it is sufficient to know the changes in the
Hamiltonian when the ions move, the contribution from the changes in the wave-
function being zero. The R; dependent term in the Hamiltonian is the electron-ion
interaction. The other contribution to force would come from the Madelung energy.
From the above reformulation of the various contributiona to the total energy, it can
be noted that the contributions would come from Eq.(33), wie, A. 2nd En;. These
can be written as.

3A;  OEar
+ o=

T Gl (GHr/ G + (@l GG O R+ e o 2, )
i i
G
where.
A s~y oo R Risy o ZiE 2 iy
T ;‘( 1202, ertel 1 4 gl it 1 (39)
and
IEni vy VL 4
=% il
TR 2%1(:)52( TR my {40),
with n-
War = T Cg AlG1EE R ),
G T
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The prime in Eq. (39} indicates that J = / term is excluded.

2.2.3 Orthogonalization of wave functions

After the forces are calculated, the set of Eqs. (9) have to be zoived with the
constraints {10). Starting with a set of orthonormalized vy, the parameters 4,, can
be rajculated*® by differentiating (10} twice and using (9a), to ohtain:

Ay =< dyln O H () > —y[dw;(r,tw‘(r,:). (42)

Thus the Lagrangian multipliers depend upon the trajectories of the v's
and therefore on the algorithm used to integrate the equations of motion. The
solution of the equations of motion is achieved in two steps. First an unconstrained
wavefunction v; is obtained. In the Verlet aigorithm this can be written as,

Agd
Bi(t+ Aty = —wi(t ~ AL + 20t — '\T‘Hwam. (43)

The constraint forces are then added to the wavefunctions w;,

wlt+at) = h(t+ A0+ Y e, (44)
!

where z;; = (at?/u)A;,. Now imposing the orthonormality condition on wi(t +
at),
‘/drw,'{r,!+At)¢l;(r.t+dt)=«5;,‘ {45)
we get,

A+ 3 En By + 2Bl + Y ) = &y, {46)
k 1

which can be wnitten in matrix form as

A+XB+BIX' + XXM =1, (47}

where, 4y =< Gt + At + At) > and Bi; =< w(t)d(t + a1) > Eq. (47)
can be solved iterativeiy. Using Eq. (43) and making a Taylor series expansion of
wavefunctions at time (¢ — At), it can be shown that Ay = 5;+ © (At?) and Bi; = &;+
@ (at). Therefore, from Eq. (46) within:aecond order in (&t} we can write

X* = f1/2)(1 - A). ) C(48)
¥ -
Then the solution to (47) can be found iteratively from

X = %[1 ~ A+ XU=1(1 =~ B) + (1 + BNX-1 - x(e=0% {49)
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where & is the number of iterations. Typically 1t requires a few iterations to
solve (47).

2.3 Simulated annealing

As the energy surface in the multidimensional configuration space is in gen-
eral complicated, simulated annealing technique®” is used to obtain the lowest energy
structures. ln thus technique the cluster is heated upto a certain ieinperature T s
that the ions start diffusing. This temperature is in general different for different
matenals and will in general also differ for different clusters of a material as the
binding energy per atom may change significantly with cluster size. The cluster is
then allowed to evolve at this temperature for & few pico-seconds which is & rather
short time as compared to standard classical molecujar dynamics simulations where
the observation time 15 of the order of nano-seconds. Experience with different sys-
tems has. however, shown that this period is sufficient to make the cluster loose
completely the memory of its starting configuration. Subsequently it is then cooled
such that the system remains close to the BO surface. The time step for integration
of the equations of motion is taken to be such that there is negligible transfer of
energy from the ionic to the electronic degrees of freedom. As discussed above, in
the case of clusters having a large HOMO-LUMO gap it has been found that the
system can remain close to the BO surface even for the whole period of the simula-
tion. The simulated annealing procedure has proved very successful in finding new
structures which have lower energy than the lowest energy structures obtained by
other methods in some cases. Also it provides a natural way to study the dynami-
cal properties of clusters and the changes in the atomic and electronic structure at
finite temperatures which are going to be impaortant in understanding reactions on
clusters. in the uext section we discusss some of the systems to which this technique
has been successfully applied.

3. Applications to clusters
3.1 Clusters of metals

in their pioneering experiments on simple metal clusters, Knight i a% ob-
served marked stability of sodium clusters with 8, 20, 40, 58, and 92 ... atoms (Fig.
23] Sodium has one valence electron and therefore clusters with 8, 20, 40, 58 and

. valence electrons are particularly abundant. Such clusiers are referred to as
magic clusters as the abundance of clqc'ta-s having one more atom is significantly
less. Similar results have been obtainedfor clusters of otbet alinli metals® and their
mixed clusters™ as well as clusters of poble” metals. Clusters of divalent™ elements
also show marked stability for the same number of valence electrons. However,
small clusters of divalent elements are weakly bonded due to the ns® closed shell
configuration. Therefore, as the cluster size increases, there occurs a non-metal -
metal transition which we shall discuss in detail later. Studies of the ionization
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Figure 2: (a) Abundance spectrum of sodium ciusters and {b) the second order derivauive of energy
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potentials™, fragmentation™ and polarizabilities™ of metal clusters and reactions
of some gases with them!®* have provided further information about their stability
and electronic structure.

While experimental studies have been carried out on clusters of several met-
als, ab-initic MD method has been applied mainly to clusters of s —p bonded metals
such as Na, K. Be, Mg, Al, Sn, and binary clusters ut Na-K , Na-Mg as well as
doped clusters of Al. Caiculations have also been performed on dimers of group IB
and [IB elements™ and clusters of semi-metals Sb™* and Ga**®. These studies
have provided information about the lgw lying structures, bonding nature and dy-
namics of clusters. Before these calculations became posesible, the spherical jellium
model™>™ (SIM) plaved the central role in the study of metal ciusters and it is
still a nice model to understand many of the results obtained by these elaborate



caiculations. We therefore first describe the essential results of this model.

3.1.1 The jellium model

Alkali and other simple metals are quite well described by a nearly free elec-
tron modet as the effective lonic (pseudo-) potential seen by the valence electrons
s nearly constant throughout the metal. The weak pseudopotential can be approx-
imately treated as a perturbation ou the free clectron like behaviour of the s—p
conduction electrons in these metals. The same features can be expected to hold
for clusters of these elements. However, a3 the structure of clusters is not known in
most cases, one can consider a cluster to be spherical in the lowest approximation
and solve the problem of electrons in a spherical potentiai well. Thus Knight and
cowarkers®® used a simple spherical potential to gtudy the stability of clusters
as a function of the number of valence electrons. Very similar to the sheil structure
in atomic spectrum™ as well ag in nuclear physics™ they correlated the stability of
clusters with the filling of the electronic shells 1s, 1p, 1d, 25, 1f, 2p, 1g, ... in the
spherical potentiai. Later, Cohen and collaborators®® used SIM in which the ionic
charges were smeared out in a uniform positive spherical background such that

_f na fra<h :

nalr} ‘{ 0 othcrwise (50)
Here R is the radius of the cluster which is related to the number of atoms

~ in the cluster.

%rR“’ =NQ. (81) ’

where Q is the volume per atom in the macroscopic metal, The constant
positive density ng 15 related to and the number of valence electrons Z (the sub-
seript / is dropped as only one type of atoms are considered) by Z ='nofl. The
Kohn-Sham equations (1) are then solved to obtain the eigenvalues and the total
energies. Similar to the spherical potential model the energy levels of the eec-
trons are again characterized by the radial and angular quantum numbers. The
1s. 1p. ld. s, 1f 2p, lg, 2d, 3s, 1h, .. shells are respectively filled for the to- -
tal valence electron numbers, 2, 8, 18, 20, 34, 40, 58, 68, 70, 92, and so om in
ihe cluster. Tle closed shell configurations are stable due to energy gaps hatween .
electronic sheils and again this simple model provides a good explanation for the
marked stability abserved in alkali metal clusters for 8, 20, 40, 58 and 92 atoms. .
The fine structure in the abundasce spactrum can be understood in terms of the
completion of the subshells that arisaiiue to deformation of the spherical pgl‘.ltlw
background. Clemenger®' has studied the effects of the ellipscidal deformatigna on;
+ three dimensional modified harmonic oscillstor model. As shown in Fig. 2b this?
deformation leads to fine structure in the second order energy difference, 43 which_l._
shows peaks at ¥ = 10.14,18,26,30,34,38. 38,44, 46,54 etc. corresponding to subshell”
flling in addition to the main peaks at 8,20,40.58, .. For shell closing numbers not-
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observed in the experiment the reason may be that only a large gap to the pext
shell enhances the stability of a closed shell or the SJM is not a good representation
of the actual potential seen by the electrons in a cluster. The nucleation condi-
tions can aiso affect the abundance spectrum. The absence of fine structure in the
abundance spectrum for large clusters is due to smaller gaps for higher shells while
the variation in the intensities of clusters of different elements in the same group is
possibly due to the difference in the kinetic behaviour and different iomic potentials.
While the general trends in several properties such as relative stability, lonization
potential, polarizability etc. of metal clusters are well described?*™ by the jellium
model and it has the advantage of being applicable easily to large clusters con-
taining several hundred atoms, it is of interest to study these aspects from a more
cealistic model and to understand their atomic structure and dynamical properties.
In the following we review resuits on clusters of several systems obtained by using
the ab-initio molecular dynamics method.

3.1.2 Alkali metal ciusters

Several theoretical studies have been made on clusters of alkali metals but
sodium is one of the most extensively studied. Ballone ef of* studied Nas. and
NawoK o clusters. More recently a very detailed LDA study on sodium clusters hav-
ing upto 20 atoms has been carried out by Rathlisberger and Andreoni®®. Several
interesting observations have been made. First of all when the results of these
caleulativns are analysed in terms of the angular character of the electronic states
around the center of mass of the cluster, then the low temperature electronic struc-
ture agrees with the predictions of the shell model. However, one finds that with
increasing temperature the clusters become less and less spherical and the hybndiza-
tion between states of different angular momentum increases due to the decrease of
energy gaps. This is in contrast to the widely held belief that the clusters tend to be
spherical as the temperature increases and that the validity of the jellium model is
enhanced in warm clusters. The hybridization is less pronounced for magic clusters
but increases with increasing size due to the decrease in the spacing between the
one-electron energy levels.

The potential energy surface is found to be rather flat and the electromc
charge density, delocalized. However, there is a preference for pentagonal rings
analogous to the complexes of Lennard-Jones systems. The energy difference be-
tween several low-energy structures is tiny. But even in this case the SA has proved
very useful as a powerful optimization technique. The small energy differences for
various cluster structures are also in agreement with the results in bulk where ac-
curate LDA calculations®? predict a difference of 2 meV between hcp and bec and
3.3 meV between hep and fee structuges.

The non-magic clusters such as Naj, and Nay tend to have many more
isomers which are nearly degenerate with the lowest energy structure, as compared
to the magic clusters such as Nay and Nay. The lowest energy structure of Nag is
found to be dodecahedron which has the Dy symmetry. This is nearly degenerate
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with the one having the T, symmetry which was predicted to be the lowest energy
structure from configuration interaction calculations®.

Fig. 3 shows four structures for Naj, cluster. (a) and (b) have been obtained
from simulated annealing and are nearly degenerate. These are based on pentag-
onal motif. Inteiestingly (b) is also the ground state and (a) a local minimum for
Lennard-Jones clusters. {(c) and (d) have tetrahedral symmetry. In this case the
electronic states-can be classified with good accuracy by their angular momentum
in agreeme.t with the shell model. However, in contrast to the Nag cluster, Naq
looses this shell model character even at as low temperatures as 200 K. Accordingly
8-atom clusters are predicted to be more stable with respect to increasing tempera-
ture. ln fact the diffusion coefficient was estimated to be 0.5 x 10-* cmn?/sec for Nag,
at 640 K from the root mean square displacement and it is only a factor of 3 lower
than the value for liquid sodium at the same temperature. Further, the electronic
structure 15 found not to be very semsitive to the atomic structure and therefore
the electronic properties may not te useful as a probe to study the structure. In
Fig. 4 we have shown the spherical average of the electronic charge density arcund
the center of the cluster corresponding to four isomers shown in Fig. 3. One cac
see that there is very little variation from one structure to another beyond the core
region. However, the vibrational spectra has been found to show a stronger depen-
dence on structure and can be used as a probe to get some information about the
structure.

For non-magic clusters such as Na,p, one can consider the cluster to be made
up of a core which is more rigid and some cap ions which are constantly farther away
from the center of the cluster. Thus individual atoms can undergo displacements
larger than the typicai interatomic distance. As shownin Fig. 5, the displacement of
cap lons is far more than for those in the core region. However, the radial movement
is much smaller than the root mean square displacement which indicates that the
cap ions travel more on the surface of the cluster. While such a detailed study is not
available for clusters of other alkali metals, we expect to have similar behaviour for
them as also indicated from results of a few other studies and those in the bulk. In
fact calculations® on Cs clusters do show that the general trends remain the same
though the energy differences between different isomers become even smaller than
in the case of Na.

Very recently Fois ¢t «#* have done a LSD study of Na clusters and have
also studied the effect of the self-interaction correction (SIC). While for Nag the
LSD calculation predicts the same structure as obtained from the LDA calcuiation, -
namely a pentagonal pyramid to be lowey in energy than a 2-dimensionsl triangular.:
structure. in the LSD-SIC calculation the triangular structure has a lower energy.
than the pentagonal pyramid. These Tesulis no doubt raize the question of the
correctness of the LDA/LSD geometrjes. However, we expect that the trends.and
the information about the dynamics and the charge densities obtained from the
LDA/LSD calculations are useful in understanding the general behaviour of flusters
of differet sizes. E

Mixed clusters of Na and K have also been studied within LDA and &
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Figure 3: Isomers of Nagg. (a) and (b) are lowest energy structures whereas (c) and (d) are higher
energy structures of Ty symmetry. { After Rithiiaberger and Andreoni®®)
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Figure 4: Spherical average of the electron dennity (here denoted by pg) in the four structures of Fig.
3 for Nago. r = 0 corresponds to the center of the cluster. {Afier Rothlisberger and Andreoni®®).
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Figure 5. Time variation of the mean square displacement of 'caps’ and "seed’ ions for Najp cluster
at 760 K. The inset shows the radial part. Note the difference between the scale of the main plot
and the inset. For comparison the mean square displacement of the atome in Nag around the same
temperature is also shown by dasbed line. {After Hothlisberger and Andreoni®®)

dency for K segregation on the surface bas been found®. This is expected also on
the basis of simple models based on broken bonds on a surface and the atomic size
mismatch. According to these models, the element having the lower surface energy
{larger size} tend to segregate at the surface®. This segregation might lead to pref-
erential evaporation of the larger specie and favour clusters enriched with smaller
atoms. The lowest energy structure of this mixed cluster is similar to that of Nas
and the one - electron orbitals are delocalized over the entire cluater. In agreement-
with the experimental observations™, the shell model behaviour is applicable to this*
alloy in spite of the ionic segregation. Also for Mg doped Nay clusters a tendency
for Mg ion segregating to the surface has been obtained“. However, in this case
due to surface segregation there is hybridization between states of different angular
momentum components and the shell model is not quite applicable. On the other
hand when a small size atom is doped as in the case of NasAl cluster, then the im-
purity ion prefers to sit inside the cluster and the electronic structure agrees \nth
the predictions of the jellium model.

The finite temperature studies of clusters provide useful information lbouL
theit dynamica] behaviour. The vib onal spectrum (Fig. 6) of NasMg dultu‘
has a soft 'diffusive’ mode as well as a frequency mode, the latier being absent”
in pure sodium clusters. Even at 10( K a sodium atom which caps a pmtaml
pyramid (Fig. 6} diffuses around the fivefoid axis and gives rise to the soft modg:
Whereas the high frquency mode corresponds to a strong bond between Na ud'Mfg
atems which also causes Mg to have a high coordination with Na atoms. )
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Figure 6: Structure and the vibrationel spectrum of NayMg cluster. (a)lowest energy structure
(pentagonal bipyramid +1} and {b) tetracapped tetrahedron which also corresponds ta a low energy
isomer of NarAl. The vibrational density of states i3 shown for {a) at an average temperature of

100K. Total (solid line}, sodivm cap (dashed line) and magneaium atom (dashed-dorted line) (After
Rothlisberger and Andreom**).

3.1.3 Divalent metal clusters: growth and the non-metal - metal transi-
tion

For divalent metals, extensive studies have been made recently for Mg*** and
Be?! clusters. The equilibrium structures of Mg clusters having upto 13 atoms have
been studied by Kumar and Car®®. The lowest energy structures with singlet states
are shown in Fig. 7. Due to a closed shell atomic electronic configuration, Mgy is
found te be very weakly bonded with a bond length 6.33 a.u.. Experimentally Mg;
is found*® to have a singiet ground state with a bond length 7.35 a.u. and cohesive
energy 0.027 eV/atom. The larger {smaller) value of the calculated cohesive energy
{bend length) is due to the use of the LDA which over- (upder-) estimates the
Linding energy (bond length). Ballone et a#* have done a calculation with a non-

local exchange correlation functional and find an improvement over the LDA repuits,

However, the results of Kumar and Caragree very well with a LSD cajculation®
which gives 0.11 eV and 6.37 a.u. rap‘,:twdy for the binding energy and the bond
length.

The lowest energy state for Mgs is an equilateral tna.ngle with bond length
53.93 a.u.. Mg, chainis 0.111 eV/atom higher in energy than the equilateral tnangle.
Thus Mg clusters favour to maximize the coordination number. This trend is con-
tisued for bigger clusters as well. The lowest energy structure for Mg, is a reguiar’

23



e, .

—— .

tetrahedron. This is a particularly stable ciuster with considerably smaller bond
length. Mgs is a slightly eiongated trigonal bipyramid. These results are in agree-
ment with a LSD calculation® which also finds a singlet state for all these clusters
to be of lowest energy. These resuite were obtamed by performing steepest descent
calculations for a few selected geometries of the clusters. However, simulated an-
nealing technique was used for larger clusters. For Mg it leads to a structure shown
in Fig. 7. This can be obtained by capping a face (3-4-5) of Mg,. Independently
Reuse «t ™ (Utaimed an octahedron with a rectangular base to be of lowest energy
for this cluster. A steepest descent calculation dore by Kumar and Car® for this
structure gives it only 0.004 ¢V /atom higher in energy than the simulated annealing
structure, thus making them nearly degenerate. This is due to the fact that the
pair distribution function for the two structures is nearly the same.

For Mg, the lowest energy structure is a pentagonal bipyramid. Its two apex
atoms with coordination 6 have the shortest distance {5.3 a.u.) whereas the base
atoms with coordination four have & bond length 6.04 a.u. As we shall discuss later,
the short distance is significant from the point of view of non-metal - metal transition
in these clusters. This structure can be obtained from Mg, by capping two faces
and is also in agreement with the results obtained by Reuse et al*™® and Pacchioni
et al*! using the LSD and cofiguration interaction calculations respectively.

The lowest energy structure of Mg, can be simply obtained by capping a face

{1-3-7) of the pentagonal bipyramid. For la.rger clusters a new structure starts. Mg,
is a tnicapped trigonal prism as shown in Fig. 7. This structure has some simiiarity
with a fragment of the hep lattice except that the bond lengths 1-4, 2-5 and 3-6 are
shorter whereas for bulk Mg they correspond to the c-axis. Adding an atom to one
of the triangular faces of the trigonal prism leads to the structure of Mg,, as shown
in Fig. 7. The same result has also been obtained independently by Andreoni* and
de Coulon et o#°. This provides further confidence in SA strategy to obtain lowest
energy structures. Among Mg clusters this is another most stable structure as it
can be seen from the second order finite difference of the energy which is plotted
in Fig. 8 along with the cohesive energy. E(N) is the energy of a cluster with ¥
atoms. While the cohesive energy increases with the size, the peaks in the difference
spectrum in this plot can be correlated with the abundaace in the mass spectrum.
The marked stability of 4 and 10 atom clusters agree with the jellium model. Also
a small peak and a shoulder appear for 7- and 9-atom clusters respectively whick
again agree with the fine structure in the calculated spectrum in the jellium mddd*

Mg, is obtained by capping the other tnangular face of the trigonal priam.
While the eleventh atom caps the Mg, cluster symmetrically, the simulated anneal-
ing results indicate it to be weakly b?ndcd to the cluster and similar to the Naj,
cluster, its mean square displacement {§ much largsr as compared to other atoms mn
the cluster. This can cause cvaporan?n of an atom and absence of the abundance
of Mgy, clusters in the mass spectrum as it is generally noted. Mg, is also & capped
trigonal prism. However, instead of face capping, in this case an atom caps an edge
of the trigonal prism.

13 atom clusters are interesting as these have been considered to have either

Figure 7: Lowest energy structures of Mg ciustera with 2 to 15 stoms. (After Kumar and Car™¥).
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Figure 8 Plot of the coheaive energy and its second order differsnce speetrum a5 2 function of the
numbet of atoms 1o Mg clusters. (After Kumar and Car'?).

an icosahedral structure which is the closest packed for 13 atoms or a cubooctabedral
structure which is the closest packing in the bulk. However, Mg, i3 neither an
icosahedron nor a cubectahedron. It can be considered to arise from the fusion of a
Mg, and a Mg, cluster (atoms 10 to 13 :n Fig. 7). The tetrahedron of Mg, opens up
to form a bent distorted rhombus. Calculations™ on Mg, cluster have shown that
this is possible as there is no barrier for this motion. It is interesting to note that a
relaxed fcc and an icosahedral structure are respectively 0.032 and 0.043 eV /atom
higher in energy than the simulated annealing result. The structures themselves
relax very significantly. However, relaxing a hep cluster leads to a structure which
15 nearly degenerate with the one obtained from the simulated angealing. From
table T it cap be seen that for a 13-atom cluster the cohesive energy {see Fig. 8)
is about 54% of the bulk value {1.687 eV/atom) calculated by Moruzzi et 4#* and
much larger clusters may be needed for getting the bulk like behaviour.

An independent study of Mg clusters by de Coulon «f o7 also finds a tetra-
capped trigonal prism for 10-atom cluster using the Car-Parrinello method. How-.
ever, their results for 6-, 8-, 12- and 13 atom clusters are different from those
obtained by Kumar and Cac®? and thejr structures lie slightly higher in energy. It
may be noted that for these calculatigns simulated annealing was not used. .

Since a non-metal - metal transition is expected for clusters of divalent ele-
ments. Kumar and Car studied the nature of bonding in these ciusters by calculading
the p character of charge density around various ions. Fig. 9 shows the p character
obtained for different ions in a cluster. When these results are analysed together.
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Figure 9: p character of the electronic pseudo-charge density around different icus in a few Mg
clusters. Here M refers o the aumber of an ion as shown in Fig. 7. (After Kumar and Car™®)

with the structure of the clusters, it is clear that the transition to metallic behaviour
starts preferentially in some bonds such as bond 3-4 in Mg, and no in the whole
¢luster. Different atoms in a cluster have different p character and there are some
short bonds which develop metallicity first. This is likely to be important for the
study of reactivity of clusters. When the p character is averaged over the ciuster,
it shows an oscillatory behaviour and the convergence to the bulk value is slow.
The charge density in these clusters indicate that bonding in these clusters changes
slowly from weak chemical to covalent to metallic behaviour. Therefore the general
agreement with the jellium model in such cases should be considered with caution.

The changes in the mean nearest neighbour bond length and the average
coordination of an atom in the cluster are shown in Fig. 10. While the average co-
ordination increases monotonically, the bond length shows an oscillatory behaviour
which is suggested to be a feature of clusters showing a traasition from van der
Waals or weak chemical to metallic bonding. A simple reason for this is the fact
that for van der Waals bonding the bond length is large and it should decrease
till metallization occurs in the cluster; Beyond this there should be a tendency
for the bond length to increase tow-u? its bulk value. The sharp decrease in the
bond length for 4 and 10-atom clustérs is likely to be due to shell closing. This
behaviour is different from clusters off metais like Cu for which the bond length has
been reported to increase towards its bulk value monotonically®.

Fig. 11 shows the chemisorption energy of Mg on Mg clusters and its corre-
lation with the variation in the HOMO-LUMO gap. While both of these show an
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Figure 10- Mean nearest neighbour bond length (left scaie) and the number of nearsst neghbour
bonds (right scale) a5 a function of the ciuster size. (Afier Kumar and Car’?).

oscillatory behaviour as a function of size, the magic clusters have smaller chemisorp-
tion energy and larger HOMO-LUMO gap. This is consistent with the experiznental
results of chemisorption of oxygen on Al clusters®,

Kawai and Weare® have done a similar study for Be clusters having 2 to
20 atoms. Small clusters of Be have the same structure as for Mg. However, their
calulations suggest that Be clusters tend to attain some of the features (p character)
of the bulk bonding even for a 6-atom cluster whereas this is quite slow for Mg. Also
Bes is a bicapped trigonal prism as compared to the capped pentagonal bipyramid
for Mg. While Bey has the same structure as for Mg,, larger clusters of Be are
different and have some similarity with the butk hep structure. In particular, though
the trigonal prism structure is retained, the capping patterns are different for the two
systems. Calculations®? for Be;,, 8 magic cluster, with the Mg, structure show it to
be 0.028 eV /atom higher in energy than the structure obtained by Kawai and Weare.
Therefore in this size range. Be and Mg clusters have different bebaviour. However,
similar to Mg, for Beyy also, a relaxed icosabedron structure liee 0.7V higher

in energy than the one obtained from the simulated annealing’ procedure. Unlike

Mg clusters, there 1s a remarkable teqtfcncy for a two dimensional ‘growth pattern
related to hep packing which suggests Hirectional bondmg to be very important for

Be clusters and crystals. However, the orbital energies and the angular character’

of the wave functions for Be clusters correlate well with the predictions of the shell

mode! described above. Also the second-order finite difference of the calculatsd -
total energy shows large maxima at N = 4, 10, and 17 which again-agrees with the
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Figure I2: The structures and spin muitiplicities of the moat stable planar and J-dimensional iscmers
af Alw. N=44 Bands are shown if the nteratomic distance is less than 5.48 a.u.. I_'he planar
structure m Aly cortesponds to a saddle point in the energy surface and buckies readily. {After

Jones?¥y.

shell model.

Ballone and Galli*® studied bonding in neutral and ionized dimers of group
[B and [IB metals by solving the CP equations in cylindrical coordinates and using
a large cutoff of upte about 300 Ry. This large cutoff was needed because the 4
~lectrons were treated as valence electrons. As in the case of Mg, the binding en-
ergy and the vibrational frequency was overestimated whereas the bond length was
underestimated when compared with the experimental resuits. [t was shown that
the bonding in IIB ctusters could be described reasonably well by taking only the #

valence electrons but by incorporating the non-linear core corrections™ and a repul-

sive short-range interaction with exponential shape characteristic of the closed-shell
overlap due to the d-efectrons. Application of the short range repulsive interaction
was shown to produce the same results as obtained with very large epergy cutoff
for murcury dimer. o

H
i

3.1.4 Trivalent metals ’

[n this group clusters of Al and Ga have been studied in detail. Jones®¥-

has studied Al clusters having upto 10 atoms. These calculations have been done

within the LSD approximation. The lowest energy structures are shown in Fig.

12 . Small Al clusters favour planar geometries. The lowest energy structure for
Aly is an equilateral triangle while Al, is a rhombus with Dy, symmetry and is a
tripiet. For larger clusters three dimensional structures are favoured. The binding
energy increases monotonically towards its bulk value as the cluster size increases.
For Al a planar ¢;, structure is almost degenerate with a C, structure with similar
band lengths (both doublets). For ¥ » 6, states with minimum spin degeneracies
are favored. For Aly, the lowest lying state is (Da,) and is a singlet. This is nearly
degenerate with triplet D, state. Al:is a nearly symmetric capping of Al [Dad Al
is one of the most prominent in the mass spectrum. As it has 20 vaience slectrons,
its stability has been correlated with the completion of the 2s shell in the spherical
jellium model. For such clusters there is a large gap between the highest occupied
and the lowest unoccupied orbitals. Similar bebaviour was obtained by Kumar and
Car for Mg, and Mgy, clusters which have 8 and 20 valence electrons respectively
and are magic. Also the iomization potential of Alr and the dissociation energy of
Al are low. This is in agreement with the results for Mg, cluster. la addition to
these lowest epergy structures, a variety of planar and buckled structures (similar
to one in a - Ga) are also found to be locally stable. This is consistent with the
metallic nature of Al and the fact that there are usually unoccupied orbitals near
the highest occupied ievel and it is easy to transfer electrons between r orbitals {
which dominate in the bonding in planar structures) and « orbitals. The finding of
several planar and buckled structures with arrays of triangles and having nearly the
same energies can be helpful in understanding layer arrangements with triangular
nets in many Al - transition metal alloys®.

Ah cluster is a classic exampie for studying the relative stability of icosahe-
dral and coboctahedral structures. Negatively charged Aly; clusters are particularly
abundant in mass specttum® shown in Fig. 13. Bernholc and coworkers® have stud-
ied 13- atom and a few other large clusters of Al. The energy differences between
the icosahedral and cuboctahedral structures for 13-, 19-, and 55- atom clusters are
found to be small. For 13- atom cluster a nearly regular icosahedron is found to have
the lowest energy, whereas for 53- atom cluster the structure has large distortions
though its ongin from an icosahedron can be discerned. While no efforts were made
to make a systematic study as a function of the size, several structures were found
to be close in energy for a 55- atom cluster. In the shell model of metal clusters, Al
is nearly magic with 39 valence electrons and therefore a nearly perfect icosahedron
has the lowest energy and a single weil defined energy minimum. Adding an electron
i0 it makes it a closed shell system which is most likely the reason for its strong,
abundance. Ou the other hand a 55- atom cluster is not magic in the shell model.
The fact that several nearly degenerate structures exist for this cluster agrees also
with the results of Kumar and Car®? for Mg,s cluster {non-magic) in which case
the structure obtained from the simulated anneaiing is nearly degenerate with the
one obtained from relaxation of the hep structure. However, for Al dusters the
deviation from the bulk cohesive energy is not large and it was suggested that a

transition from icosahedral to bulk structure may occur early.

Mixed clusters of Al have also been studied. These are interesting from
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Figure 13: Time of light mass spectrum of Aly (N =5 - 38) clusters. One peak av ¥ = 13 and
a1 step between ¥V = 23 and 24 corresponding to magic numbers 1o the sheil model can be observed
and there are no other peakes or steps up to N = 70. {After Nakajima et ai®® )

several points of views. First of all there are several alloys of alumunium which have
very compiicated situctures and in which an icesahedral unit {cluster} plays an
important role. n addition, several aluminium alloys form quasicrystals in which
again icosahedral order is prevaient. This together with the tendency of Aly; to form
a nearly icosahedron merits study of the stability of such local units which may exist
in crystalline, quasicrystailine or amorphous structures. Also the neutral clusters
of Al do not satisfy the electronic shell closing condition. However, by suitable
doping a cluster one can achieve the shell closing and enhance the stability of magic
clusters of aluminium. Of particular interest are the 13 atom icosahedral clusters
which may also act as entities to form new materials. Several binary clusters of
aluminium have therefore been studied. Mixed clusters of Al-Mg were studied®
using the steepest descent approach in the CP method. There are.several pha{m
of Al-Mg allovs. Among these, notable are the Frank-Kasper phase® in which
icosahedral AL Mgis_r. AhsMgs and AluMgs clusters are abundant. In the latter
two. a Mg atom is swrounded by 12,1 and 2 or 4 Mg atoms repectiveiy.l 14
and 16 coordinated clusters were precgcted by Frank and Kasper on the basis of

zeometrical arguments. Study of sugh clusters is interesting m,\mderna‘nd the':
role of the electronie structure and the atomuc sizes ig compiicated crystailine and.
quasicrystalline structures. For Alj;Mga cluster which has 42 wvalence electrona,

there is only a little distortion from the capped hexago@ antiprism structure found
in the crystalline phases wheress for AljsMgs ciuster which has 46 valence electrona,
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there are considerable John-Teller distortions from the bulk atomuc packing. This
suggests that the bulk structure of the 17- atom cluster is not particuiarly stable
and there are other considerations such as those suggested by Frank and Kasper
that play a more important role in the crystal packing.

Since in an icosahedron the center to vertex distance is about 5% shorter
then the vertex to vertex distance, Khanna and Jena'' suggested substitutional
doping of Alyy clusters with a smailer atom such as C and Si at the center of an
icosahedron in arder to obtain a closed packed structure. This would also make this
cluster a 40 valence electron system. They obtained significant gain in emergy as
compared to Alyy cluster. However, their calculated center to vertex distance was
longer in the doped clusters as compared to the one in Als. Gong and Kumar®?
subsequently studied several A1;X (X = B, Ga, C, §i, Ge, Aa, and Ti) clusters and
found Al;;C. Al,;Si and Al2Ge to have a substantial gain in energy as shown in
Fig. 14. While all these clusters except Ti have about 2 ¢V HOMO-LUMO gap,
Al;;B- is the most strongly bonded in this family. This agrees with the strong
abundance of Al;;B- clusters observed by Nakajima ¢ o The main conclusion
of this study has been that the chemical bonding plays the dominant role in the
stability of these clusters while the atomio relaxation leads to a small gain iz the
binding energy when a smaller atom such as B, C, 5i is sustituted at the center. For
5i, a small contraction in the center to vertex distance was obtained'? as compared
to Ali; cluster. A similar result was also obtained by Kumar and Sundararajan'®
from CP calculations. Further, Si substitution at the center of an icosahedron was
found to be more favorable than at a vertex. This is similar to the result for NarAl
where Al was found also at the center. A large gain in energy by Si doping may
also explain the improved stability of Al-Ma-Si quasicrystals as compared to Al-
Mn. On the other hand doping with Ti which also has 4 valence electrons leads
to a partially occupied HOMO and a small gain in binding energy as compared
to Alys. This is likely to be due to an increase in the Al-Ti bond length. This
calculation also suggests that the jellium model may not be applicable in clusters
with a transition metal element. An important point which is not resolved by these
calculations is whether C at the center is most favorable. It can be noted that
though the Al-C bond length is shorter than Al-Al boad, it is still much larger than
in the case of Al-C dimer. The large bond length can not be accounted also from
an increase in the coordination number of C in an icosahedron. In order to find
this, Kumar and Sundararajan® have recently done an ab-initio molecular dynamics
caleulation for Al,;C. First of all from steepest descent calculations C at the center
of an icosahedron is more favorable than C at the vertex by about 1.5 V. Simulated
annealing calculations, however, indicatdthat carbon tends to have a closed packed
environment with 8 atoms while the fgmaining 4 Al atoms join the Al,C unit. It
is to be noted that Al;C is not a magic cluster in the mass spectrum of AlyC-
clusters. But Al.C-, Al C- and ALJC- arc magic which respectively have 26, 47
and 77 valence electrons. None of these correspond. to closing of an electronic sheil
in the SJM. Carbon prefers strongly directional bonding and therefore the SJM
may not be appropriate for these clusters. A proper understanding of the carbon
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behaviour would be useful in the study of reactions on clusters. Simuiated annealing
calcuiations for these clusters are difficult a< verv large cut-offs are required to
represent the wavefunction but we hope that in the future such calculations can be
done in order to understand the structure of these clusters better.

Ga clusters have been studied by Jones”™ and Gong and Tosatti®® The
overall structural features are similar to those obtained for Al clusters. However,
the bonding properties are slightly different due to larger s - » promotion energy
i Gia as compared to Al. This leads to weaker sp hvbridization and consequently
the bond angles in Ga clusters are closer to 90deg arising due to predominantly p
bonding. Though Ga is heavier than Al its vaience orbitals are more compact than
in Al. This ieads to a small contraction in bond length as compared to that in Al
clusters. Also though the melting temperature of Ga (29.78deg C) is much smmaller
than for Al the binding energies of their clusters are very similar. This reflects the
molecular nature of bonding in bulk. For both Ga and Al. there are severa! ? and
3 dimensional structures with different spin multiplicities which lie close in energy.
This is consistent with their metallic behaviour in bulk.

3.1.5 Sn and Sb clusters

Elements of Group IV and V are very interesting as they exihibit a variety
of crystal structures and have differing bonding character in the bulk. Tin has both
a metallic (white tin) and a semiconducting (grey tin) phase. Grev tin has the
diamend structure, while white tin is body-centered tetragonal with a two atom
basis. Kumar® has done a calculation for Sny ¢cluster as it has 20 vaience electrons
and could be expected to be a magic cluster from the point of view of the jellium
model. The calculations were done for a few selected geometnies and the lowest
energy structure is a tngonal bipyramid. The bond length between the base atoms
Is large and equals 6.50 a.u. whereas the bond length between the apex and base
atoms 15 4.94 a.u. . This structure 15 similar to a 5- atom cluster of Ge or §;24.190
{see below ) and therefore its behaviour is more like the clusters of Si. It would be of
Interest to calculate the structure of Sn;, and see if it is the same as for S1y¢ cluster.
Also studies on other Sn clusters wouid be interesting to explore the development
of bonding in these clusters.

Clusters of pentavalent elements such as Sb and Bi (all of which are semimer-
als) have been experimentally studied in detail both using thermal evaporation and
subsequent condensation!® as well as by laser ablation!® For S§b clusters produced
by thermal evaporation. a very important feature in the mass spectrum is the abun-
dance of Sb,. clusters {Fig. 154). Also as compared to monomer dissociation in
alkali or divalent metal clusters, studies of the fragmentation of such antimony clus-
ters produce evidence of evaporation of tetramers'®. The abundance spectrum of
the thermally evaporated Bi clusters is verv different as compared to Sb. There 15
no particular preference to Bi,., clusters (Fig. 15§). However, clusters of Sb and
Bi produced from laser abiation have simitar festures ic the abundance spectrum
(Fig. 16). These studies show abundance of clusters wish 3. 5 or T atoms. Kumar®
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1ok has studied Sb, and Sh, clusters whereas Sundararajan and Kumar® have recently
. Biy studied some other clusters of Sb. The lowest energy structure of Sby is a regular
- i i et gos concangation tetrahedron. A bent rhombus lies about 0.5 V/atom higher in energy. Sb. has 20
| THe = 190K valence electrons and can be expected to be 2 magic cluster as also observed. From
this it will appear that the results of the jellium model may be applicable to 5b
s clusters as Sbe has 40 valence electrons which alsc corresponds to shell closing in
SJM and Sb, has 60 valence electrons which can correspond to the mage clusters
@l - U S with 58 electrons. However, recent studies'® of the photoionization spectra of Sb
. clusters indicate striking differences in the behaviour of Sbyy , p > 1 and other clus-
Bin ters which are not understood. Also the persistence of 4p type clusters for larger

e gascondensation| values of p (upto about 25) indicates a different bonding character in these clus-
! ters. Detailed calculations by Kumar® on Sb, clusters show that a cube, two fused
‘ bent rhombuses. and a capped octahedron are not even stable against two isol-ted
l . tetrahedra (Fig. 17a-¢). Simulated annealing calculations for this cluster rezult in
v se a structure having two tetrahedra wealkly interacting with each other (Fig. 17e} in
N e —— e LB confirmity with the well known result that thermal heating of Sb leads to evapo-

50 i) s ration of Sk, units. Another SA calculation with a different starting configuration

b Time of flight [psec) and heat treatment leads to a differen} structure (Fig. 17d) which can be described

) as a bent rhombus interacting with a distorted tetrahedron. This structure lies

Figure 15 Time off}igbt mass specirum of St and Bi clusters obtained fiom thermal evaporation. only 0.117 eV higher in energy than the structure with two weakly {van der Waals
{After Sattler ef al'®t ) type) interacting tetrahedra. [ is well known that LDA is not good for describing
var der Wasls interactions and therefore binding energy of the two tetrahedra is

Intensity Tarl unils]
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Figute 17 Different isomers of Shs. (a}-(c) are not atable against two isolated tetrahedra. (e) bas
the lowest energy and is nearly degenerate with (d}. {After Kumar™),

likety to be overestimated. Therefore these two isomers can be treated to be nearly
degenerate. These calculations indicated the importance of bent rhombus structure
for larger clusters and suggested that the molecular architecture could depend upon
nucleation conditions. .
Results on 2- 5 atom Sb clusters are shown in Fig. 18. For Sbe-a square
pvramid has the lowest energy while for Shy a prizm has the lowest eltieky. The
Kohn-Sham eigenvaiues are shown in Fig. 19. It can be noted that for 3, § and-T.
atom clusters there is a large gap between the highest and the next occupied lcvell\'
This explains the abundance of Sby, b} and Sb clusters in the laser’ ablation ;
experiments it which the growth is ed to be atom by atom. Simnl ‘
7-atom clusser show that as the.clusjer is cooled, it undergoes fast mﬂ :
transformations by making and brealang bonds (Fig. 20). Such dynamizl aspects:
may play an important role in understanding reactions on clusters. Also the finite’
temperature studies help to get information about other low lying struchires which’
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Figure 18: Low enmergy structures of Sby - Sbs clusters. Tetrahedron and square pyramid are the
lowest energy structures for Sby and Sby..(After Sundararajan and Kumar®)
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Figure 1 Kohn-Sham eigenvaiues of Sb clusters. Note the large gap between the highest and the
pext occupted level for Sby, Sby and Sbr. {After Sundararajan and Kumar™).

the cluster may visit duting the simulation. Unlike in bulk, it is not just thermal
vibrations, but also much below the bulk melting temperature there could be 1m-
portant (dynamical) structural transformations in clusters which could be decisive
in determining their properties. From Fig. 20 one can see that while above 600 K
a structure with two fused bent Thombuses has a large basin of attraction, the low
temperature structure is a bent rhombus interacting with a triangle.

From the above discussion it is clear that the jeliium model is not appli-
cable to Sb clusters and the bonding is strongly directional. Also unlike ip other
metai clusters whers fragmentation is predominantly of monomers, the fragmenia-
tion channels for different clusters are different for Sb clusters™.

r-
3.2 Clusters of semiconductors apd other materials

3.2.1 5i, Ge, GaAs, GaP and ALps .

Andreoni and coworkers?*#3.1% have studied these clusters from the CP method:
As expected Si and Ge clusters have similar structures. An important aspect of the'l

structure of these clusters is that these are closer packed as compared to more open’:

R
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Figure 20: Snap-shots of some structures at different temperatures for Sbr. Note the iscatructural
transformations during simuiated annealing. (After Sundararajan and Kumar™).

diamond strueture in the bulk. It is of considerable interest to know when direc-
tional bonding starts playing an important role in these clusters. Several efforts
have been devoted to answer this question. Extensive calculations'® for Si clusters
with upto 45 atoms show no sign of bulklike features in the structure, 51 was the
first example where the advantage of simulated annealing became evident when an
entirely new structure (tetracapped trigonal prism, same as for Mg} was found to
be of lowest energy. The growth pattern of Si clusters is rather complex and ne
common seed can be identified. Siy and Ges bave the same structure as the one
for Sns which suggest directional bonding but the larger clusters seems to behave
more like metal clusters. Si- is a pentagonal bipyramid as Mgs. Sis is 2 bicapped
octahedron (two opposite faces capped) and Sis is a strongly recanstructed struc-
ture and is shown in Fig. 21. Si,o and Ge,, are tetracapped trigonat prisms similar
to Mgyo whereas Siys is neither a cubooctahedron nor an icosahedron. Its iowest
energy structure is also shown in Fig. 21. An important message of these calcula-
tions is that the semiempirical potentigly available for Si may not be suitable for
the representation of the potential ey surface of microclusters'™. .

A few calcuiations bave also been done for GayAsy, GayPy and AlyAsy
clusters® containing upto 10 atoms.! Some of their isomers have similanty with
those of Si and Ge clusters but there are significant differences due to two species
and anion-anion bonds. All the atoms in these clusters are undercoordinated as
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Figure 21. Lowest energy structures of 8-, %, [0-, and 13- atomn Si clusters, {After Andreom*},

compared to bulk and therefore the chemical bonding and order differs from bulk in

these small aggregates. Bonds between unlike atoms are more prevalent in AlAs na,

the Al-As bond is more ionic than the Ga-As bond whereas in Ga-P clusters there .
18 a preference for Ga atoms to segregate at the surface. For GasAsg cluster, though-
the lowest energy structure is a distorted bicapped dodecahedron, a tetracapped:
trigonal prism is nearly degenerate, This is an interesting resuit because this ay well:
as Sijo and Ge, clusters have 40 valence electrons each. This is a magic oumber:
m the shell model. The occurrence of the same structure for Mg cluster makes:
us believe that there moy de some unigue structyres which sre exther lowest or ke Dery'cb;e.,
M oeneryy unth tAe lowest energy structures for mapc clesters for which directionsi bomding ph,_..‘l’\::;'

less impertant role. Thus studies of low lying isomers may provide useful miorm.lmon‘

about the chemicai bonding in small clusters.

3.2.2B,5,8e, P, C

Boran, a trivalent element, has § tendency for very strong directional bond-~
ing. The abundance specturm of bopon clusters produced fram n}uq*gb‘hhgu
source!®” shows prominent stability of positively charged 5, 10 mdls_a._tgm“y's
ters. This behaviour is diffsrent from clusters of aluminjum and is.in’ conformity
with the observation of several crystalline phases of boron and a large varictyof

R
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alloys in which atomic distribution is rather complicated'®. One of the most promi-
nent units in these structures is the B,; empty center icosshedron which has five
fold rotational symmetry. However, small distortions can lead to lower symmetries
compatible with crystailine order. Strong directional bonding in boron forces it
to develop a complicated three dimensional crystalline order, often with large unit
cells. One can the ask the question whether such icosahedral units would also be
favorable for clusters. Laser ablation experiments'™ showed 12 atom cluster not to
be magic. Other experiments'® suggest that B}, does not react with H, or H,O
whereas other clusters are reactive. High stability of B}, was considered to be due
to an icosahedral cage with an atom at the center. However, here it may be noted
that for aluminium, negativeiy charged 13 atom cluster was most abundant. Kawni
and Weare*?, have done ab-initio molecular dynamics study of By; and B,, clusters,
Their studies showed that an icosahedron is not even a loeal minimum for Bis. The
atom at the center comes out of the cage and the lowest energy structure consists of
a pentagon and a hexagon layer. The singly occupied HOMO and the next occupied
level are well separated and this leads to the stability of B},. For B,s, though an
icosahedron is a local minimum, it has dangling bonds and one of the atoms is very
locsely bonded. Simulated annealing calculations lead to an open structure which
is significantly lower in energy due to removal of the dangling bonds. The existance
of icosahedral clusters in buik phases has therefore been suggested to be due to
the formation of strong intericosahedrai links. Thess calculations also indicatéd the
inappropriateness of a SIM for these clusters, The same conclusion can be drawn
from the work of kumar and Sundararajan® who studied carbon substitution at the
center of the icosahedral B,y cluster. Similar to By, carbon comes out of the center
and the icosahedral structure is not energetically favorable.

Jones and coworkers have made extensive calcuiations for 577, Se¥ and P%
clusters. In some of these cases it is possible to compare the results with the
spectroscopic data available for the structure. These results give confidence in the
simulated annesling procedure as the calculated bond lengths and angles agree
remarlably with the experimental values. The atomization energies are however,
overestimated which is due to the use of the LDA. As there is a large amount of
information regarding the structure of these molecules, the reader is advised to
consult the original papers for details. [t would be worth to mention that simijar
o Sby, P, is also a regular tetrahedron. However, contrary to widespread belief,

"the most stable structure of P, is not cubic. It is a structure with G, symmetry

and its energy lies 0.47 eV below that of two isolated P, tetrahedra. A roof-shaped
tetramer (bent rhombus) is a prominent structural unit in the low-lying states of
Py, Py, Pr and Py clusters as it was also found for Sb clusters. However, the growth
pattern in the two cases is different. L )
Some calculations have also beerf done™ for C, and Cho clusters for which the

" structures are respectively a linear chain and a ring, Dueto more localizad arbitals ™

these calculations require use of very large energy cutoff in the plane wave expas-".
sion and therefore are very expensive to do. However, due to recent axiititie: Fip

fullerenes, several ‘efforts are going on to study large clusters of urbonhiﬂ:%
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Figure 22 Truncated icosahedral structure of Ceo cluster.

more atoms. Ceo cluster (Fig. 22) has a football structure with 12 pentagons and
20 hexagons. There are two bond lengths {1.40 and 1.45 A) as obtained from NMR
data'. The bonds sharing two hexagons form double bonds and are short whereas
the bonds sharing a pentagon and a hexagon are single bonds and are longer. All
atoms have identical environment. Caiculations by Feuston et o produce these
bond lengths to be 1.39 and 1.45 A in very good agreement with the NMR ~xpen-
ments. As it is possible to do calculations at finite temperatures, they studied the
structurai changes and vibrational and average electronic density of states at 450 K.
The fullerene structure of Ceo was found to be very stable and the average structursl
parameters change by at most 0.01 4. The calculated vibrational frequencies 530,
555. 1105 and 1345 cm~! are in close agreement with 527.1, 570.3, 1169.1, 1406.9
cm~' obtained from infra-red spectroscopy expcrimeni?"’. Due to the observation
of superconductivity in doped solid Ceo, studies of the doped fullerenes are of inter-
st Fohanoff ef e and Laasoner et af' have studied hydrogen and La doping of
fullerenes and their effects on the atomic and electronic structure of the fullerenes.
Due to the difficuity in doing CP calculations with plane wave bass, efforts have
beer made!i*!13 to use schemes based on a tight binding Hamiltonian. Thif has
atlowed the study of the relative stability of different isomers of carbon cliBters

upto about 100 atoms. Fig. 23 shows the heat of formation of carbon clusters

for 20-94 atoms obtained by Wang et aM from tight-binding molecular dynamics
calculations. It can be seen that the(beat of formation slowly approaches to the
value of graphite almost monotonically. However, Coo shows marked incressdfue
to its high symmetry and the distribdtion of strain due to curvature uni Iy. -
Efforts are also being made to understand the properties of solids made

such large clusters. Zhang etal''* have studied the structural properties of selid Ca
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Figure 24: Gaussian broadened electron energy spectrum of solid Cgo (After Kumar'?t.)
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with a fec structure and found the bond lengths to be 1. 40 and 1.45 i je. very little
rhange from the values in the cluster. Kumagi! has alse done a similar calculation
with 29 Ry. cutoff and find some anisotropy in the bond lengths due to different
environments of tne sites in the solid phase as compared to one in the isolated
cluster. In particular there are three different environtuents of carbon atoma in the
fce structure. The double bonds have one boad length which is equal to 1.404 i,
whereas the single bonds have three slightly different values. These ae 1.449, 1.454
and 1.462 4. 24 atoms have their nearest neighbour bond lengths to be 1.404, 1.449
and 1.454 A. The other 24 have 1404, 1.449 and 1.462 J and the remaining 12 have
1.404. 1.454 and 1.454 4. The calculated eiectronic energy spectrum is shown in Fig.
24 which 15 good aireement with the photoemission datal!s. Expetimentally!io.u?
an orientational ordering of the Ceo balls has been found below 249 K. This leads to
a Ped structure. Since the number of atoms in this structure become four times than
in the foo structure per unit cell, CP calculations becomes very difficult. However,
further work on these and doped fullerenes is in progress in some laboratories.

4. Cutlook

Fairly good amount of work has been carried out in recent years using the
Car-Parnneilo method for clusters of metals, semiconductors and other elementas
itke B. C, S, Se. P etc. The simulated annealing technique has given' a new thrust
iz the search for the ground state structures of clusters. The structures and the
vibrazional frequencies calculated with this technique are in general good agreernent
with experiments wherever results are available. interes:ing information has been
obtained on the dynamical changes in the structure at finite temperatures and the
bonding properties for some systems but more work on larger clusters and other
systerns would be usefu] with the availability of better computational facilities and
algorithms which scaje linearly with system size.)*. Also it would be most inter-
esling to apply this technique to problems related to reactions on clusters and to
other mixed clusters. From the point of view of applications, clusters of transition
metals are very important and recent developments in pseudopotentialsa'® and their
implementation in the Car-Parrinello method!™ is g step forward in this direction
and we hope to see applications of this to some transition metal clusters in the near
furture. Studies of the magnetic properties are few but hopefully these developments
would lead to better understanding of magnetic properties.of transition metal clus-
rers. It would be desirable to develop more efficient algorithma for systems having
4 electrons or more localized orbitals such as in € or O. In the next few yvears we
liope to see important developments in#t_}_;ese directions. '
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