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Lecture 2, 6** June 1995

Introduction to Path Integral Monte Carlo

Cyrus J. Umrigar

Cornell Theory Center and Laboratory of Alomic and Solid State Physics,
Cornell University, [thaca, NY 14853.

I INTRODUCTION

This lecture provides an introduction to the path-integral Monte Carlo method. For further details the reader is
referred to an excellent review by Ceperley nj.

Diffusion Monte Carlo and Green function Monte Carlo are used to calculate properties of pure states (mostly
ground states, but some work has been done on excited states as well}. On the other hand, path integral Monte Carlo
is mostly used to calculate quantum statistical properties in the canonical ensemble. Some properties that have been
studied are

* structure of atomic clusters and liquids and their pair-correlation functions,

e electron localization in various environments such as liquid rare gases, molten salts, atomic clusters, water and
helium,

¢ properties of normal and superfluid *He, such as the pair-correlation function, specific heat near the A-point,
superfluid fraction (Ceperley and Pollock).

Properties of the ground state can be obtained by working at a sufficiently low temperature but this is computationally
expensive. However, there exists a variant (Ye, Nightingale preprint) (3] of path integral Monte Carlo that is efficient
for calculating pure states because it builds in information from approximate trial wavefunctions. They used it to
calculate ground and excited states of a quantum spin chain.

IL. DISCRETIZED PATH INTEGRAL MONTE CARLO

In quantum statistical mechanics the expectation value of an operator P is given by

_ t(pP)
P2 tr(p) W

where p = e is the quantum density operator, Z = tr{p) is the partition function, H is the Hamiltoniz?n and
B =1/ksT. For example, if the trace is evaluated in the energy representation then the energy of the system is
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where E; are the eigenvalues of H. For many-body systems it is in general impossible to find the energy eigenvalues
and perform the above sum. However, path integral Monte Carlo provides us a means of evaluating the trace in the
coordinate representation. The expectation value of P in coordinate representation is

sy _ J 4z (z|Pe” M |z)
(P = [ dx (x]e=PH|r) )

Introducing a complete set of states, we obtain,

_ [z dz’ (@|Plz)|e~PH )

(P) [ dx (z|e=PH|) )

If P is diagonal in the coordinate representation then this reduces to

[ dz P(z) p(x,z, B)

(Py= [ dz p{z, =z, B) (5)

where p(z', z,3) = (z'|e~?¥ |z} is the density matrix in coordinate representation.
p

Eq. 5 is in a form that can be readily evaluated using the Metropolis method provided that we can devise a way
to sample from the diagonal elements of the density matrix in coordinate space. This can be done by expressing the
density matrix in the form of a path integral. We begin by trivially rewriting the density matrix as

p(x’,z, B) = (r'[(eFHIM)M |4y (6)

where M is an integer. Introducing M — 1 complete sets of position eigenstates we get

ple' 2, 8) = fd:c 1 ...dz M_1(::'Ie_‘”le._1)..,(1:1|e_‘"]:t) {7)

where € = §/M. We have reexpressed a density matrix at inverse reduced temperature 8 in terms of integrals of density
matrices at inverse reduced temperature ¢ = 8/M. The reason for recasting the density matrix in this seemingly more
complicated form is that approximate analytical expressions that become exact in the high-temperature limit can be
derived for the density matrix.

The density operator in quantum statistical mechanics is identical to the quantum mechanical time evolution
operator if we make the identification { = —ihf. Hence Eq. 7 may be interpreted as the motion of a particle starting
at position r at imaginary time 0, to a position z' at imaginary time Aig, through a sequence of M — 1 intermediate
steps that define a “path”. The total amplitude for the particle to start at # and end up at z’ is given by summing
over all possible paths. The path becomes continuous in the limit M — oo, and Eq. 7 may be written as

plx' 2, ) = [ Dz ®[z(u)] (8)

where Dr = limpy ,odr . dr ag g and ®fz(u)] = limpy L oop(x’, Tar_1, €)plTr_y, Ta—2,€)...p(21, 7, €).

Now we derive an approximate expression for the high-temperature density matrix. First, we note that since the
operators for the kinetic energy I¢ and the potential encrgy V do not commute,

2
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or better



et = om V2 ek eV O(eh). (10)

Since the potential energy is diagonal in position space, we can introduce 2 resolutions of the identity operator in
coordinate representation to obtain

(26~ |z) = (o] |z)omr(V DV (D)2 (11)

Since the kinetic energy is diagonal in momentum space, we can evaluate (z'|e~*%|z) by introducing complete sets of
momentum eigenstates
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Substituting this in Eq.7 we get
ple' e, f)

m y(M=1)/2
:[dml odx M-—-1 (QWT)

(R —ma ) HEaemzara) o (21mn)Y] = (XY (zao )t Vim0 + YR

> £ 2nde
m (M-1)/2
= /dl‘] ...dzx Af -1} (21rh1')
el TP g (IMt oM 3y 22y 3y 4 (VGO (g 4 V(m)+ 2D (13)
- ]m o STr(w)I/A (14)

where S[z(u)] = f(jwdu['—"—f‘éﬂ)1 + V(:n(u))] and r = he. S{z(u)] is a classical action but with the sign of V reversed.
Hence the most probable path is not the actual classical path that satisfies Newton’s equations. Nevertheless, this
path is referred to as the classical path. In classical mechanics the particle has a high velocity in low potential
energy regions and consequently a low probability of being in those regions. In contrast, here the particle has a high
probability of being in the low potential energy regions.

In Fig. 1 we show a representative path. The kinetic energy term favors smooth paths, whereas the original
potential energy favors regions of low potential energy.
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Eq. 13 has the form of a Boltzman factor of a classical particle in d + 1 dimensions (d being the dimensionality
of the original quantum problem we wished to solve). We will refer to this extra dimension as the fime direction
or the temperature direction or the Trofter direction. Now that we have reduced the original quantum mechanical
problem to an equivalent classical statistical mechanical problem, we can now use the Metropolis method to sample
from the distribution and caleulate various expectation values. The kinetic energy of the original quantum problem
18 now a potential energy of harmonic springs that connect a particle at a given time with the particle at adjacent
times. Each of the original quantum particles is mapped onto a polymer consisting of beads that are f:onnected by
springs to adjacent beads of the same polymer. In addition we have the potential energy of the original pro_l)lfzm.
Hence, beads on one polymer interact with beads corresponding to the same time of other polymers, wiﬂ? the original
tnter-particle potential. All beads of all polymers interact with the external potential, if any. Expectation values of

operators diagonal in the position representation require evaluation of a trace. In this case the polymers form closed
loops.

The length of each polymer is set by the inverse temperature J. The length of each link r = ,G./M.is limited by the
accuracy of the form of the approximate high-temperature density matrix relative to the discretization error tha!‘, we
are willing to tolerate. In the interest of computer efficiency, we wish to make M as small (r as Iarge).as possn'lﬂe.
Ceperley and Pollock have developed techniques for constructing more accurate high-temperature density matrices
than those in Eqs. 10 and 12.

The simplest (but very inefficient) “bead pushing” way to evolve the system is to propose moves for mdwtdu'a.l
beads with a uniform probability distribution in an interval around the current bead position, followed by a Met:ropolts
accept/reject step. If a bead moves a considerable distance from either of its neighbours, then the move is unlikely to
be accepted because of the increase in the kinetic energy. This is a particularly serious problem in those cases where
there is more than one low-action path, separated by large regions of large action. In that case in qrde‘r to have any
reasonable prbbability for transitions from one low-action region to another one separated by a barrier it is necessary
to propose moves that move a considerable section of the polymer in a single move. As discussed in the lecture on the
Metropolis method, one has complete freedom in the nature of the proposed moves. In ordgr to sample ‘the c?rrect
distribution one just has to make sure that the acceptance probabilities are such that detailed balance is satisfied.
Hence a variety of more intelligent ways of proposing moves have been presented in the literature, some of which we
will now sketch.

We do not wish to propose multiparticle moves which consist of individual particles moving indepenqently from
each other, because such moves will for the most part have high kinetic energy and will consequently !)e rejected. One
way is to grow sections of the polymer from one end to the other such that the probability distributlop of each bead
is a gaussian with its center of mass on a straight line from the previous bead to the far end of the section of polymer
being grown.

We now describe two ideas, (due to Ceperley and co-workers) bisection and multi-level‘Metmpolis thlat toge_:ther Ifzad
to the most efficient method for evolving paths. We have a section of the path consisting of m = 2 -‘1 time slices
that we wish to evolve. The fixed end-points are at times i and i + m. We will first evolve the midpoint i + (m + 1)/2
of the path by sampling a gaussian of the width v mr /2 (about the point {x: + x;+m)(2. Next we evolve the bea'\ds
at the mid-points of each of the two segments of the path, i.e. at i + (m + 1)/4 and i + 3(m + 1)/4. by sampling
gaussians of width \/m7/4 and so on until all m beads in that section of path have been. evolved. The a:dvantage. of
this bisection method is that we can move a large section of the path by a large amount while at t‘;he same time growing
a relatively smooth proposed path. The entire segment of path is then accepted ot rejfiCtEd wn!.h probabilities given
by the Metropolis method. Most of the rejections occur because of unfavorable potentlz_ﬂ energies near the center of
the path segment, because the beads in the center are furthest from the end—pc'nnts which we know hav?- acceptable
potential energies. One can in fact make the method more eflicient by performing Metropo'hs accep_t/rejec_t steps at
each of the [ levels of the hierarchy. We define a level density px. The ideal i 1S tthe del"ISIFy matrix p w1th' all the
finer levels k + 1.1 integrated out. p; must equal p. For k # | deviations from the ideal llmlt affect the efﬁcnen.cy of
the method but do not compromise the correctness of the distribution samplec_]. Te(z'|z) is t.he prorposal ma:.nx for
sampling the positions at level k contingent on the levels already sampled. The ideal Ti(z'|z) is px(z')/px—1(z'). The
detailed balance condition

At o) Ti2) L = (oo Tato1) L (15)

1s satisfied by choosing the acceptance probabilities to be
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‘The total Markoy matrix for the proposed move is
!
M{z'lry = [T Aela’|2) Ti(2'|2) (17)
k=1
Multiplying Eq. 15 from & = 1 to I and using g = p we obtain
M(='[)p(e) = M [z)pl'). (18)

Hence we have shown that the algorithm satisfies detailed balance and must therefore converge to the distribution
p. Since most of the rejections occnr during the first few levels of the hierarchy, before much time has been spent on
constructing the paths, this leads to a considerable gain in efficiency.

Another way to move all the beads of a polymer in a relatively smooth way is to propose the moves

Fi = T + a, sin(nir /M) (19)

whete n = 1,2, .. M/2, with ry = 7 and zp = 2’. The coefficients a, are decreasing functions of n. Both these
procedures ignore the effect of the potential, but it is possible to devise ways of favouring low potential energy regions.

III. FOURIER PATH INTEGRAL MONTE CARLO

The idea of the last section is taken a step further in Fourier path integral Monte Carlo, developed by Dolt and
Freeman. The Fourier components are themselves taken to be the dynamic variables (plus the coordinates of one
of the beads of the closed polymer). The Fourier components define a continuous path, over which we can evaluate
both the kinetic and the potential energies, so we no longer have a discretization approximation. However, in practice
one must truncate the Fourier series somewhere, so this introduces an approximation that is akin to discretization.
Most of the discretization error can be removed by “partial averaging” as we will discuss later. We can evaluate the
free-particle action S over the continuous path

Emax
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where o2 = n—‘(fk—%; I'he density matrix p(x’, 2, 3) can then be written in terms of the free-particle density matrix

polz’, 2, 3) (the first term in Eq. 21 factors out of the numerator and denominator}):

)fffa exp (2221’2—?3 ~A(V)a)
[ daexp (Shry 2 )

plr’ 2, 3) = polz’,z, 8 (22)

where
ah

(V)a = El?}- j du V(z{u)) (23)

is the average potential over the particular path given by a. The expectation value of the potential energy is then
given by

Jdz daw(z,z,a B)V(z)

(V)= fdz daw(z,z a,p3) (24)
where
kmax al
w(z',z,a,0) = pg(x',x,ﬁ)exp(zi:—z ~A(V)a). (25)
k=1

(The denominator of Eq. 22 has cancelled out of the numerator and denominator of Eq. 24. po(z’, », 8) is constant
that also cancels out.)

A. Partial averaging

Freeman and Doll have shown that it is possible to take into account much of the effect of the omitted high-frequency
Fourier components by a method called partial averaging {2]. The basic idea is that the path is mostly defined by the
low-frequency components, but the high-frequency components have the effect of making this path fuzzy. The net
effect of the high-frequency components can be approximately taken into account by replacing the path integral over
the potential by a path-integral over a gaussian transform of the potential, when it exists. In practice the gaussian
transform is performed by making a quadratic expansicn of the potential at each point along the path. The result is
to replace the potential V(ra(u)) by Veg(za(u}), where

Vot (ralu)) = V(za(n)) + %V”((Tn(u)) o?(u) (26)
where
f Pl kmu
2 = —{(fh —u) - 2 cin?(——
al(u) = e CURRl) k}ﬂ: ol sin’( ah ). (27)



IV. EVALUATION OF THE KINETIC ENERGY

Evaluation of the kinetic energy requires a little more thought than the potential energy because the kinetic energy
operator is not diagonal in coordinate representation. lHowever it is semi-local by which we mean that it requires
evaluation of derivatives only at the point in question, Ilence Eq. 5 becomes

R [ dr Vp(s',,B)lercs

2m  [dr plz,z, /) (28)

(K)=

There are two other methods that are used for calculating the kinetic energy but the tests in the literature seem
to indicate that they yield larger statistical errors than the above. First, one can use the virial theorem to find the
kinetic energy by evaluating an appropriate derivative of the potential energy. Second, one can use the relation

dlog Z

v

to evaluate the energy directly.

V. BOSONS AND FERMIONS

If the particles obey Fermi or Bose statistics then it is necessary to sum over all the permutations of the particles
{with the appropriate sign) in evaluating p{z’, z, 8). In the Fermi case p(z’, z, ) is no longer positive everywhere,
This results in the “Fermion sign problem” to which there is no general solution as yet. We will discuss the Fermion
sign problem further in the lecture on diffusion Monte Carlo. In the Bose case, Ceperley and Pollock have devised
efficient ways of summing ovet the permutations. The permuted paths result in polymers that link up to form larger
polymers. In the figure below we show both the permuted and the unpermuted paths for a 2-particle system. In a
many-body system one needs to sum over all the n! permutations.
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VI. EFFICIENT GROUND STATE ENERGY EVALUATION

Evaluation of ground state properties requires us to use a large value of 3 and therefore polymers with large numbers
of beads resulting in computationally expensive caleulations. If a good trial wavefunction 1 is known then the length
of the projection time (the value of /7) can be greatly reduced since one just has to project away only a relatively
small amount of contamination from the higher states. Further, for operators that commute with the Hamiltonian

_ yrlf]y) 30
(H) ) (30)

Hence
(el He P [y
W~ ey
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In order to evaluate Eq. 31 one needs to propagate an open polymer whose ends are subjected to a field given by
¥r. This method was (to the best of my knowledge) introduced in condensed matter applications of path integral
Monte Carlo by Ye and Nightingale [3], though it is commonly used in lattice gauge theory and is closely analqgous
to diffusion Monte Carlo. As ¥/r — 4!, E1(2’) aproaches a constant independent of 2. Hence this is a “zero variance
estimator” for the energy, t.e., as ¥rp — 1 the variance of the energy estimate goes to zero. Hence, in this unattainable
limit, the exact energy can he obtained in a single Monte Carlo time step!

[1] D.M. Cepertey, Rev. Mod. Phys. xx, xxx, 1995.
{2] J.D. Doll, D.L. Freemnan and T.L. Beck, Adv. Chem. Phys. , 78, 61 (1950).
[3] Y. Ye and M.P. Niglhtingale, preprint (1993).






