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Abstract Data Types in Fortran 90

Michael Metcalf
CERN, Geneva, Switzerland
(metcalf@cern.ch)

Abstract

Progress in programming languages has been marked by successive waves of new
techniques, each accompanied by miraculous claims from its proponents. Only after a
certain time lag do these techniques become standardized. The functionality required to
support one of these techniques, abstract data types (ADTs), is now part of the latest
Fortran standard, but the newest wave is object orientation (00). This paper describes
the implementation of ADTs in Fortran and speculates on whether the language will
withstand the OO onslaught.

1. Fortran and abstraction

It is now forty years since work began on the first Fortran compiler [1). Fortran was the first high—
level programming language but since then tremendous developments in programming techniques in
procedural languages have occurred. The most recent Fortran standard [2)(3] consolidates one of these
developments, structured programming, and incorporates two others, data structures and abstract data
types. An early paper {4] referred to an abstract data type as "a class of objects defined by a
representation—dependent specification”, with attributes "that specify the names and define the abstract
meanings of the operations associated with an object”. This is just how they are implemented in For—
tran 90, following initial suggestions made by Lawrie Schonfelder of Liverpool University to the ISO
Fortran standardization committee, meeting in Vienna in 1982.

In this paper we shall see how a derived—data type may be defined, and how such types can be
packaged into modules together with a set of defined operations on objects of the types. We shall see
how these, combined with function overloading, provide all we need for abstract data types. We shall
examine examples and include complex types such as linked lists that require other new language fea—
tures: pointers, recursion and dynamic memory allocation.

We shall conclude by noting that this round of standardization did not (and could not) take the
final hurdle and incorporate the messaging and other features (inheritance, polymorphism) that conven—
tional wisdom deems necessary for the full implementation of object-oriented programming. But the
Fortran standards committees are giving very serious consideration to adding these to the next major
Fortran revision, due in the year 2000.

2. Features for ADTs M

2.1 Derived—data types

In order to vse an object of a derived—data type we must first define the form of the type. For a very

simple string data type, defining the effective length of the string in one component and the string’s
contents in a second, we might write
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TYPE string
INTEGER length
CHARACTER(80) string_data
END TYPE string

Now we can create structures of that type:
TYPE{string) strl, str2

To select components of a derived type object, we use the % qualifier:
stritlength = 7

The form of a literal constant of a derived type is shown by
str2 = string(?, ’'Fortran’}

which is known as a structure constructor. Each component is assigned the value in the corresponding
position in the constructor.

2.2 Structure-valued functions

For an operation between derived—data types, or between a derived type and an intrinsic type, we must
define the meaning of the operator. Given

CHARACTER charl
TYPE(string) strl, str2, strd

we might wish to write
str3 = strl//str2 ! must define operation

where we note the use of the intrinsic operator symbol // between two objects of derived type. This
requires us to define the exact meaning of the // symbol in this context, and this we do using a func-

tion like

FUNCTION string_concat(sl, s2}
TYPE (string), INTENT(IN} :: sl, s2
TYPE {(string) string_concat
string_concat%string data = sl%string_data(l:sl%length) // &
s2%string_data(l:s2%length)
string_concattlength = sl%length + s2%length
END FUNCTICN string_concat

that takes its two INTENT(IN) arguments‘i}as operands and returns the result of the operation as the
function result. The function is of the same string type as its arguments.

The association between an operator and its cormresponding function is made via an interface block.
An example of an interface for this string concatenation is

INTERFACE OPERATOR(//)
MODULE PROCEDURE string_concat
END INTERFACE

We could also write the statement above as
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str3 = strl.concat.str2 ! must define operation

where we note the use of a mamed operator, .concat. . A difference is that, for an intrinsic operator
token like //, the usual precedence rules apply, whereas for named operators their precedence is the
highest as a unary operator or the lowest as a binary one. Thus, assuming the obvious definitions, in

vector3 matrix * vectorl + vector2
vector3 = (matrix .times. vectorl) + vector?

H

the two expressions are equivalent only if the appropriate parentheses are added as shown.

2.3 Assignment
For assignment between two objects of the same derived—data type, as shown so far, assignment applies
on a component-by-component basis (but can be overridden). However, between an object of one

derived—data type and an object of a different derived or intrinsic type, we must define the meaning of
the assignment. For

str3 = charl ! must define assignment

we have to provide a subroutine with two arguments, one comesponding to the left—hand side and the
other to the right-hand side of the assignment. This might be

SUBROUTINE c_to_s_assign(s, c)

TYPE (string), INTENT(OUT) FE- 4
CHARACTER(LEN=*), INTENT(IN) :: c
s%string _data = ¢

s%¥length = LEN(c)

END SUBROQUTINE c_to_s_assign

The association between an assignment and its corresponding subroutine is alsoc made via an interface
block:

INTERFACE assignment {=)
MODULE PROCEDURE c¢_to_s_assign

END INTERFACE

2.4 Intrinsic function overloading

Just as we overload the intrinsic operator symbol // to indicate concatenation of two objects of our
string type, so we might wish to use the name of the intrinsic function LEN to extract the length of a

string, as in

length = LEN{st¥3) i)

Here also we are able to use overloading. By use of an interface block

INTERFACE LEN
MODULE PROCEDURE string_len
END INTERFACE

we indicate to a compiler that a function string_len should be invoked wherever LEN has an argument
of type string.
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2.5 Information hiding

To make a full-blown abstract data type we have to place the procedures defining the operators,
assignments and overloaded function definitions in a module along with the type definition and all the
interface blocks.

An example of a module containing the facilities we have so far introduced, as well as the defi-
nition of string—to—character assignment, follows (with a : standing for code that has already appeared).
As already stated, this is for a very simple string type, of fixed maximum length and with no error
recovery, and serves only as an example of the basic principles.

MODULE string_type
TYPE string
INTEGER length
CHAPACTER (LEN=80) 11 string_data
END TYPE string
INTERFACE assignment (=)
MODULE PROCEDURE c_to_s_assign, s_to_c_assign
END INTERFACE
INTERFACE LEN
MODULE PROCEDURE string_len
END INTERFACE
INTERFACE OPERATOR(//)
MODULE PROCEDURE string_concat
END INTERFACE
CONTAINS
SUBRQUTINE c_to_s_assign(s, c}

END SUBROUTINE c¢_to_s_assign
SUBROUTINE s_to_c_assignic, s)
TYPE (string), INTENT({IN)
CHARACTER (LEN=*), INTENT({OQUT)}
c = s%string_data{l:stlength)
END SUBROUTINE s_to_c_assign
FUNCTION string_len(s)
INTEGER string_len
TYPE(string) :: s
string len = s%length
END FUNCTION string_len
FUNCTION string_concat(sl, s2)

N n

- er

END FUNCTION string_concat
END MODULE string_type

The user of this module simply has to add the statement
W

USE string_type

to a procedure to gain access to its facilities. However, in general we wouid want to hide as much of
the internal details of a module as possible, and we can do this by making parts of the module pri-
vate, as in

PRIVATE string_len
or by making the whole contents of the module private by default, and making just those entities pub-

lic that are to be exposed to users. This high degree of information hiding is essential to achieve
good abstraction: the details of operations and even types can be changed without user code being
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affected, and the internal state of the module is protected from deliberate or inadvertent outside inter—
ference during execution (remember those awful COMMON variables!).

2.6 Pointers and dynamic allocation

It is possible in Fortran 90 to give an object the POINTER attribute, and such a pointer can be a
component of a derived type:

TYPE entry
REAL value

TYPE{entry), POINTER :: next
END TYPE entry

where the type definition defines a data component, value, and a pointer component, next, that can
point to the next entry in a linked list. We can define the beginning of a linked list of such entries:

TYPE(entry), POINTER :: chain
After suitable allocaticns and definitions, the first two entries could be addressed as

chaintvalue chain%next¥value
chainsnext chain%next&next

but we would normally define additional pointers to point at, for instance, the first and current entries
in the list. \

A pointer has an association status that is one of:

. undefined (initial state);

. associated (after allocation or a pointer assignment):
ALLOCATE {chain} ! space allocation to pointer
first =» chain ! pointer assignment

. disassociated:
DEALLOCATE {(chain) ! for returning storage
NULLIFY (first) ! for setting to ‘null’

Some care has to be taken not to leave a pointer 'dangling’ by use of DEALLOCATE on a target
without NULLIFYing a pointer referring Lo it.

The intrinsic function ASSOCIATED can test the association status of a defined pointer:
]
IF (ASSOCIATED(chain)} THEN .

or whether association exists between a defined pointer and a defined target (which may, itself, be a
pointer):

IF (ASSOCIATED{first, chain)} THEN

We have just met the statement to allocate space to a pointer. We can use this statement also to
allocate space to arrays as long as they have the POINTER (or ALLOCATABLE) attribute, and such a
pointer array can appear as a component of a derived-data type. We can thus modify the example
above to make value an array which, for each entry in the list, has a different, dynamically—defined
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length. The daia type becomes

TYPE entry
REAL, DIMENSION({:}, POINTER :: value
TYPE({entxry), POINTER :: next

END TYPE entry
and for a given entry named chain we can allocate space to value thus:

ALLOCATE (chain%value(n}) 'n is a variable

2.7 Recursion

In an example we shall meet in the next Section, the traversal of a data structure will require that a
procedure be able to call itself recursively. This too is possible in Fortran 90, by adding the
RECURSIVE keyword to the procedure header line:

RECURSIVE FUNCTION finish(tree)

We now have all the elements we require to manipulate quite general data structures such as lists
and trees.

3. Examples

Given the original initiative of Schonfelder, it came as no surprise that one of the first examples of an
ADT was that for a varying character-string type proposed by him to become a standard Fortran 90
module [5]. Indeed, this proposal has since been developed and formally published as a standard [6],
and a model implementation makes use of all the features so far described. A paper published in
1991 discussed how a histogramming package might be impiemented in Fortran 90, with 2 histogram as
a derived—data type [7]. A completely implemented example concerned with the construction of sets of
electron configurations and their angular momentum couplings has been given by Scott et al. [8].

3.1 Interval arithmetic

An example using an arithmetic type is given in outline in [3]. This is for a data type for interval
arithmetic, in which the type contains the absolute bounds on any given calculation. The basic type is

TYPE interval

REAL lower, upper
END TYPE interval

Y
and we can define the interface for the addition operator as

INTERFACE OPERATOR (+)

MODULE PROCEDURE add_intervals
END INTERFACE

giving access to the corresponding function in a module:
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FUNCTION add_intervals{a,b)

TYPE(interval) add_intervals

TYPE(interval), INTENT{IN) :: a, b

add_intervalstlower = a%tlower + b%lower ! Production code would
add_intervals%upper = a%upper + b%upper ! allow for roundoff.

END FUNCTION add_intervals

This shows addition for two scalars. In the general case, a function must be provided for each rank or
pair of ranks for which it is needed. For example, the moduie below provides summation for scalars
and rank-one arrays of intervals:

MODULE interval_addition
TYPE interval
REAL lower, upper
END TYPE interval
INTERFACE OPERATOR(+)
MODULE PROCEDURE add00, addll
END INTERFACE

CONTAINS
FUNCTION add00 (a, b)
TYPE (interval) addoo
TYPE (interval}, intent(in) :: a, b
addo0%lower = a%lower + bilower ! Production code would
add00%upper = a%upper + b%upper ! allow for roundoff.

END FUNCTION addoo0
FUNCTION addll (A, B)

TYPE (interwval}, DIMENSION(:)}, INTENT{IN) 1A

TYPE (interval), DIMENSION(SIZE{(a)) :: addil

TYPE (interval}, DIMENSION(SIZE{a)), INTENT{(IN) :: b

addll%lower = a%lower + bi3lower ! These are whole array
addll%upper = atupper + b%upper ! assigmnents.

END FUNCTION addll
END MODULE interval_addition

where, once again, the appropriate function is selected by the compiler depending on the rank of the
operands. In a similar fashion, elemental versions of defined assignments must be provided explicitly.
Such a module might be further extended to provide, for instance, overloaded mathematical functions
like SIN and COS.

3.2 Tree structure

As a second example we take that of a tree structure where, as an experiment, 2 module providing
many of the facilities required to support and manipulate tree structures has been written. It is called
eagle and its use in a physics experiment has been reported in [9]. For the purposes of this paper, a
tree data structure consists of a set of cofnected nodes, arranged in levels. The top node points to
some nonzerc number of nodes at the second level. ANl other nodes point at zero or more nodes at the
next lower level, and point back to exactly one node at the next higher level. The set of nodes
pointed at by a single higher node is referred to as a layer. This is thus a standard tree of mother
nodes each connected to a set of daughter nodes.

Internally, the module allocates a node, and allocates data at that node if the corresponding argu-
ment is present in the call to new_node, based on the basic node definition. At each node are stored,

as far as the user is concerned:

. an index number supplied by the user,
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. a pointer to its mother node,

. an optional fixed character component,

. an optional integer array,

. an optional real amray,

. and the optional pointers to nodes with specified index numbers (the daughter nodes).

The node contains also various internal variables, such a running index number maintained by the
module. The corresponding type definitions are firstly for a pointer data type for use to create a
pointer armray:

TYPE ptr
TYPE (data), pointer :: pp
END TYPE ptr

and secondly for the basic node data type:

TYPE, PUBLIC :: data

PRIVATE
INTEGER index, amount(3), running_index
CHARACTER {max_char) header
INTEGER, POINTER :: J(:), link{:)
REAL, POINTER tr yl:)
TYPE({ptr), POINTER :: p{:)

TYPE(data), POINTER :: back
TYPE(state), POINTER:: cwn_state
END TYPE data

where the pointer array p holds the dynamically defined pointers actually required at each node. Note
that the internal structure of the type is inaccessible outside the module.

The module supports an arbitrary number of independent trees; they may be manipulated simulta—
neously.

A single reference pointer to another node (even in a different tree) may also be stored at each
node. A reference pointer is one between any two nodes and is not part of the tree structure as such.

The user interfaces are:

start must be called to initialise a tree immediately before the first call to new_node for
that tree.
new_node stores the data provided at]the node whose index number is supplied as a second

argument, and sets up pointers to all the specified daughter nodes that will be stored
in subsequent calls.

retrieve retrieves a specified node; the data amays (if present) are accessed via pointers, as are
the pointers to any daughter nodes.

next like retrieve, for the node with the next following running index number.
next_in_layer like nexr, for the next node in the current layer.

previous retrieves the data in the mother node of the most recent node accessed.
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dump_tree writes a complete tree to a specified unit.
restore_tree reads a complete tree from a specified unit.

set_reference  establishes a reference pointer between a node of one tree and a node of the same or
another tree.

get_reference  like rerrieve, but for the data at the node that is the target of the reference pointer at
the specified node.

finish deallocates all the storage occupied by a complete tree.

These interfaces are simple. To add 2 new node to a tree, with a name, some integer data, and poim-
ers to three daughter nodes, we write, for example,

CALL new_node{tree_name, index, node_name, &
integer_data = (/ (i, i =1, 10) /), links = (/ 2, 3, 5/})

and to retrieve data we write
CALL retrieve(tree_name, index, back, name, j, y. link)

where back is the index of the mother of the node index, and J. ¥, and link are pointers to any
optional integer data, real data or pointers stored at that node. These names are chosen by the user,
and retrieved data can be referred to directly, say as j(16).

The code consists of less than 800 lines of Fortran 90. This demonstrates one of the remarkable
features of the language - the succinct way in which it can be used to express algorithms. As an
example, the complete code to traverse a tree deallocating all its associated storage is simply:

RECURSIVE SUBROUTINE finish (tree)
]
! Traverse a complete tree or subtree, deallocating all storage
TYPE (data), POINTER :: tree
INTEGER loop

DO loop = 1, size(treeip) ! loop over children
CALL finish {tree%p(loop)%pp) ! delete all their subtrees
END DO

DEALLOCATE (tree%j, treely, treeip, treek¥link)
DEALLOCATE (tree)
END SUBROUTINE finish

Future plans might be to add the following features: replace a node; add a node; extend a com-—
ponent; allow an error exit if insufficient storage is available for allocation for dynamic memory; and
further validation and navigation facilities. ‘i The existing code is available on request to the author,
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4. Fortran and the future

Fortran has always had a slightly (sometimes even decidedly) old—fashioned image. In the 1960s, the
block-structured language ALGOL was regarded as superior to Fortran. In the 1970s the more powerful
PL/1 was expected to replace Fortran (and COBOL). ALGOL’s successors Pascal (with its emphasis on
safety) and ADA {with its ADTs) caused Fortran proponcnts some concerm in the 1980s. Meanwhile,
it ploughed on as the workhorse of scientific computing. However, in the late 1980s, two develop—
ments did begin seriously to affect Fortran’s predominance in this field — UNIX and object orientation
— and this trend was certainly accentuated by the uncertainty that surrounded the new standard at the
end of that decade. '

UNIX brought with it the now highly-successful gencral-purpose language C. This language has
been further developed by Bjame Stroustrup into C++, an object-oriented language influenced by
Smalltalk. C came as a part of most UNIX systems and is widely used for all levels of systems pro-
gramming. Its simplicity has meant also that it has made inroads into Fortran's traditional numerical
computing community, although attempts to incorporate meaningful numerical features into the language
are apparently making little headway (Jones {10]). its standard lays less stress on portability than does
Fortran’s.

C++, with its fully fledged OO features is widely viewed as a proper superset of C, but in fact
this is not the case, and Jones points out that potential problems of a lack of compatibility between the
existing (and future) C and C++ standards are beginning to emerge. He quotes also an opinion that
C++ is getting too complicated and will fall apart under its own weight. As a language, C++ is espe—
cially strong on those features required to handie effectively graphical interfaces, where objects really
come into their own. But as a numerical language, Stroustrup himself, quoted by Woodyard and Mills
[11), writes "In some areas, such as interactive graphics, there is clearly enormous scope for object—
oriented programming. For other areas, such as classical arithmetic types and computations based upon
them, there appears to be hardly any scope for more than data abstraction and the facilities needed
for the support of object-oriented programming seem unnecessary”. This might be even more true giv—
en the existence of the array as a first—class object in Fortran 90, although with respect to abstraction
(as opposed to numerical features), Woodyard and Mills regret the absence of a method for specifying
the precedence of defined operators in both languages (but note the module as an advantage for Fortran
90).

C++, available widely also on PCs, has begun to dominate many programming applications, espe—
cially those based on windowing, but still does not benefit from having a recognised standard, some—
thing that writers of non-trivial applications are beginning to find a disadvantage. De Morgan [12]
reports on the difficulties that the C4+ standards committees, X3J16 and WG21, face in trying to
produce an agreed document (as does Jones too). However, despite these formal obstacles, many sci—
entists, whose work requires not only numerical calculations but also suitable interfaces to their pro—
grams, are investigating the use of C++ for all their work. (A survey I conducted on the Internet news
group comp.lang.c++ in 1994 failed, however, to turn up many finished products.) On the other hand,
large-scale computations still seem to be performed in Fortran, and here a supplementary standard,
High-Performance Fortran, has been established by a consortium of academia and industry [13)[14}.
The Fortran committees, X3J3 and WG5, Mave set themselves the task not only to add similar powerful
features to the next major language version, Fortran 2000, but also to add the OO features deemed
vital to compete with OO languages, and especially C++, on their home ground. Whether this plan will
succeed only time can tell, but the final irony may be that Fortran 90, once criticized for its size, will
resist inroads from C++ because that language is seen to be larger still. In the meantime, what would
be most helpful to users would be a standardized method of communication between languages, for
both procedures and IO, enabling numerical code in Fortran to be used via interfaces in C++. Could
this be one of the standards community’s most important tasks for the next decade?
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