INTERNATIONAL ATOMIC ENERGY AGENCY
€ } UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION
INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS
I.C.T.P, P.O. BOX 586, 34100 TRIESTE, ITALY, CABLE: CENTRATOM TRIESTE

H4.SMR/854-7

College on Computational Physics

15 May - 9 June 1995

Introductory Lectures IV

C. Rebbi

Boston University
Boston, USA

Mawn Buining Steava Cosrma, 11 Ta. 224011 | Tamrax 224163 T 460392 Apnianco Guest Houss Via Guonano, 9 Te 224241 Tamax 224531 Tasx 460449
Micaoraocussor Las. Via Bamur, 31 Ta. 224471 Tmmax 224500 Taex 460392 Gaungo Gusst Houss Via Basur, 7 Ta. 22400 Tasax 2240310 Tamx 460392

Multigrid techniques

We have seen how the rate of convergence of relaxation algorithms depends on the spectrum
of eigenvalues of the discretized differential operator. The closer the factors rmaz and |rminl
are to one, the slower becomes the rate of convergence. On the other hand, the example
we considered in some detail has shown us that the distance of ryq from 1is proportional
to the square of the lattice spacing (cfr. Eqs. (25) and (26a) of the notes of Oct. 11) and
this is a rather typical situation. This suggests that we might improve the convergence by
working on a coarser lattice, with larger lattice spacing dr. However, a coarser lattice will
be, per se, obviously unstisfactory because of the poorer resolution it provides. The way
out of the dilemma lies in the observation that the modes responsible for slow convergence,
i.e. the eigenvectors associated with the largest values of r{¥ are typically the long-range
modes, those exibiting the slowest variation of the field. These can be well reproduced
also on a coarser lattice. We can therefore put together the advantages that derive from
the faster convergence on a coarser lattice and the higher resolution of a finer lattice if we
adopt a “multigrid” technique, which uses both lattices. As a matter of fact, the scheme
can be iterated, and one can use several lattices of different degrees of coarseness. The term
“multigrid methods” refers indeed, in its generality, to those techniques that use multiple
scales of discretization.

Let us now consider now the multigrid technique in some more detail.
We wish to solve

Ap=p (1)

We take ¢ to represent the actual value of the field, as stored in the memory of the
computer, at some definite point in the iterative procedure. We will use the symbol ¢ezact
to characterize the actual solution of Eq. (1).

We define a residue (note: r is an array, just as ¢ and 2)

r=p— Ad (2)

and a COI‘I‘&CtiOﬂ Or error

16' = ¢cxact - ¢ | (3)

From Fqs. (1-3) and the fact that ¢ezqac satisfies Adezact = p we see that the error obeys
the equation

Ae=r C(4)

Of coarse, we do not know e. Knowing e would be equivalent to knowing the exact solution,
because, having defined 7 from the current value of ¢, if we were able to solve Eq. (3), we
could then obtain ¢erect simply by adding to ¢ the correction e.

1

The basic idea of the multigrid method is that both r and e will be approximated on a
coarser lattice. where an approximate calculation of e will be performed. The algorithm

proceeds through the following steps:

1) start from a given ¢, calculate r according to

r=p—A¢ (2)

2) project r onto a coarser lattice (the details will be given later) to obtain r¢. Notice that
r¢ is an array defined over a lattice with much fewer points than the original one and has
correspondingly fewer components;

3) define a projection A€ of the original operator over the coarser lattice;

4) starting from an initial value e = 0 perform some number of steps of an iterative
procedure for solving Eq. (4): A®e =

5) interpolate the error e® onto the original fine lattice (again, detail will be given later)
to obtain the fine-grid correction e and add this to ¢ to obtain a new value for the field.

Notice that all of the five steps in the algorithm correspond to well defined procedures,
that could be implemented by suitable subroutines. It is indeed convenient to introduce
a subroutine like notation also for purposes of explanation. Let us thus make reference to
the five steps above in terms of “subroutines”:

1) residue(r, phi, rho) - This subroutine receives the current value of the field ¢ and the
array p and returns r. We do not add A to the list of arguments, because the very sparse
matrix A is never stored explicitely, but is rather “hard-wired” in the subroutine. It would
be appropriate, however, to pass to the subroutine the parameters which enter in the
definition of 4, such as dz and m. We will leave these implicit, nevertheless.

2) project(rc, r) - The meaning is obvious.

3) define_Ac - As we will see, all this module amounts to is a calculation of the parameters
of the coarse grid operator A°. This will often be totally straightforward, e.g it may reduce
to the redefinition dr = 2 * dz and will not require a separate subroutine.

4) relax(ec, r, ec0, nit) - Starting from ej (which may be 0) perform nit steps of the
iterative procedure used to solve A€e® = re.

5) interpolate(phi, ec) - Given the correction e® over the coarser lattice project it first onto
the fine lattice to obtain an array e and add e to the current value of ¢: ¢ = ¢ + e. This
overwrites the initial value of ¢, which is passed as argument to the subroutine.

The definition of the projection from the fine lattice to the coarse lattice is not unique.
Several different projection methods can be used. The definition itself of the coarse lattice
leaves some degree of arbitrariness. But, in any case, the projection must conform to
the underlying principle that we wish to have a mechanism for approximating well the
long-range modes responsible for slow convergence on the coarser lattice. We will define
now two possible projection precedures for a two-dimensional square lattice. These are
the most obvious procedures, those that would be used in most applications. Moreover,

2

the student may easily derive from these two examples guidelines for implementing more
complex projections, for the cases where such may be needed.

A) We take the sites of the coarse lattice to be the centers of 2 x 2 cells of the finer lattice
and define the coarse lattice residue as the average of the fine lattice residue over the cell.
In program notation, assuming that r and rc have been dimensioned as r(0:N-1,0:N-1)
and rc(0:N/2-1,0:N/2-1) we would have (for all i,j ranging over 0:N/2-1, and with proper
attention to the boundary conditions}):

r(1,))=0.25%(r(2%1,2%j)+ r(2%1+1.2%))+ r(2*141,2%j+1)+ r(2%],2*j+1))

B) We identify the sites of the coarse lattice with the sites of even parity of the fine lattice
and take the new residue to be a weigthed average of the residues at the site itself (weigth
1), at the nearest neighbor sites (weight 1/2, the fine site is shared between two coarse
sites) and at the next nearest neighbor sites (weight 1/4, the fine site is shared among four

coarse sites):

r(1,))=0.25%(r(2%,2%))+ 0.5*(r(2%i+1,2%))+ £(2%,2%+ 1)+ r(2%-1,2%))+1(2%1,2*j-1))
4+0.25%(r(2%+1,2%)+ 1)+ r(2%-1,2%]+1)+ r(2%1-1,2%)-1)+1(2%1+1,2%j-1)))

Correspondingly, the interpolation operator will be as follows:

A) the coarse correction e® will be added (with weight 1) to the value of the field at all
the 4 (fine lattice) sites of the cell;

B) the coarse correction e€ will be added with weight 1 to the field at the same site in the
fine lattice, with weight 1/2 to the fields at the nearest neighbor sites and with weight 1/4
to the fields at the next nearest neighbor sites. (Notice that all the field elements over the
fine lattice will receive contributions with weights that add up to 1).

Finally, about the coarse lattice operator A, the most important point is that it must
have eigenvectors and eigenvalues that approximate well, in the part of the spectrum
corresponding to the long range modes, those of the original operator A. In many cases,
especially in connection with the discretization of simple differential operators such as the
Laplace operator, the prescription to follow will be obvious. In the examples of differential
operators we have considered in the previous lectures as coarse grid operator we would
choose the same one we used on the fine grid, but with dz replaced by 2dz. However, in
some more elaborate problems, it is not obvious how to choose an optimal operator, and
this may become a topic of research.

Apr 27 18:42 1995 mg.c Page 1

#include<stdioc.h>
#include<math.h>
#define L 32
#define SIZE 1364
#define IS8 2
#define JS 1
#tdefine MAXLEVL 50
#define M2 0.04
#define DM2 (.06
#define A 1

extern relax_{();
extern residue_{);
extern max_res_();
extern project_{():
extern interp_ ()

)
)
)

main{)
T
/*
This program calls the functions relax_, residue_, max_res_, project_
and interp_ to solve a discretized differential equation by a multigrid
Gauss-Seidel relaxation algorithm. The equation to be solved is defined
in the comments at the beginning of the function relax_. The details
of the multigrid cycle are defined (input) by the user at the beginning
of the run.
*/
int ncy, nlevl, currlevl, level [MAXLEVL], it, nit [MAXLEVL];
float f[SIZE], s[S8IZE}, r[SIZE], k([SIZE];
float ac, *fp, *sp, *rp. *kp, rn, nf, avres, maxres;
int lc, i, cy. step;

/* Print parameters for the simulation: */

printf({"Lattice size: %d x %d, M2: %f, DM2: %f, source=1l in %d,%d \n\n",
L, L, M2, DM2, IS, JS);

/* Input the parameters of the calculation: */

printf("Please enter the total number of multigrid cycles: "};

scanf (" %d",&ncy);

puts("");

puts("Please enter the composition of the multigrid cycles in the");
puts{*following manner. Enter the level number first, 0 being the");
puts{"finest level, 1 the next coarser level etc., then the");
puts{"corresponding number of iterations, then the next level number,");
puts("then the corresponding number of iterations, etc. until you"};
puts({"terminate the cycle by entering -1 for the level number.\n"):;

puts ("Please notice: the level numbers must be contiguocus, for example”);
puts(®*0 1 0 1 2 1 0, and must begin and terminate with 0, although®);
printf("it is possible to go through a definite level witout any "};
puts("iterations.\n"});

nlevi=0;
Enterlevel:

Apr 27 18:42 1995 mg.c Page 2

printf("Level: ")
scanf (" 3%d",&currlevl);
1f {currlevl>=0)
{
level[nlevl])=currlevl;
printf ("Number of iteraticns: “);
scanf{" %d4d",&it);
nitinlevl]l=1it;
nlevl++;
goto EnterLevel:

}
putS(" n);

/* Initialize variables and pointers: */

ac=A;
lc=L;
fp=£f;
sp=s;
rp=r;
kp=k;
nf=pow(2.,31.);

for (i=0; i<lc*lc; i++)
{
fli1=0;
s[1]1=0;
rn=rand{(}/nf-0.5;
k[i]=M2+DM2*rn;
}
s[lc*IS+J8]=1;
/* Define the k variable for the coarser levels: */

while (lc>2)

{

project_(kp. &lc);

kp=kp+ic*lc;

le=1lc/2;
}

/* Reset the current lattice size and the pointer
to k: */

le=L;
kp=k;

/* Begin multigrid cycles: */
for (cy=1; cy<=ncy; cy++)
/* Calculate and print information on the residue: */
residue_(r, £, s, k, &ac, &lc);
max_res_(&avres, &maxres, r, &lc):
printf (" At cycle %d, av. res. = %f, max res. = %f\n",cy-1,

avres, maxres);

currlevl=0;
for (step=0; step<nlevl; step++)

Apr 27 18:42 1995 mg.c Page 3

/* If the level goes up, calculate the residue,
project it to the coarser lattice, reset
the pointers to the coarser lattice, redefine
the current lattice spacing and lattice gize,
copy the residue into the source term for the
coarser lattice and set the field to zero: */

if(level [step]l>currlevl}
{ ‘
residue_(rp, fp., sp, kp, &ac, &lc};
project_(rp., &lc};
rp=rp+lc*lc;
fp=fp+lc*lc;
sp=sp+lc*lc;
kp=kp+lc*lc;
ac=2%*ac;
le=1c/2;
for (1=0; i<lc*lc; i++)
{
(sp+i)=((rp+i)};
*(fp+i}=0;

/* If the level goes down, reset the pointers
to the finer lattice, redefine the current
lattice spacing and lattice size, interpolate
the correction, contained in the field wvariable
for the ceoarser lattice, and add it to the
field of the finer lattice (interp interpolates
and adds): */

if{level[stepl<currlevl}
{
lc=2*1c;
rp=rp-lc*lc;
fp=fp-lc*lc:
sp=sp-1c*lc;
kp:kp—lc*lc;
ac=ac/2;
interp_{fp, &lc):

/* Perform the required number of Gauss-Seidel
relaxations: */

currlevl=levelistep]:
it=nit([step];
relax_{fp, sp, kp, &kac, &lc, &it);

/* Calcuﬁate and print information on the
final '‘residue: */
residue_(r, £, s, k, &ac, &lc};

max_res_ (&kavres, &maxres, r, &lc); _
printf (" At cycle %d, av. res. = %f, max res. = %f\n",ncy, .

avres, maxres);

Apr 27 18:45 1895 mgf.f Page 1

oo 0on0a0nan

10

PROGRAM mgf

This program calls the functions relax, residue, max_res, project

and interp to solve a disgcretized differential equation by a multigrid
Gauss-Seidel relaxation algerithm. The eguation to be solved is defined
in the comments at the beginning of the function relax. The details

of the multigrid cycle are defined (input) by the user at the beginning
of the run.

IMPLICIT none

INTEGER L, SIZE, IS, JS, MAXLEVL

REAL MZ, DM2, A

PARMMETER (L=32, SIZE=1364, IS8=2, JS=1, MAXLEVL=50)
PARAMETER (M2=0.04, DM2=0.06, A=1)

INTEGER ncy, nlevl, currlevl, level (0:MAXLEVL-1}, it,
+ nit (0 :MAXLEVL-1)

REAL £{0:8IZE-1), s(0:8IZE-1), r{(0:8IZE-1), k{0:S5IZE-1)
INTEGER fp, sp, rp., kp

REAL ac, rn, avres, maxres

REAL rand

INTEGER lc, 1, cy., step

Print parameters for the simulation:

PRINT *(’‘Lattice size: **,I3, "'x"*",I3,'" M2: ", F7.4,"'" DM2: ',
+ F7.4,’'" source=1 in '"*,I3,"*,'",I3)", L, L, M2, DM2, IS, JS
PRINT *

Input the parameters of the calculation:

PRINT '{'‘Please enter the total number of multigrid cycles: e,
+$)

READ *, ncy

PRINT *

PRINT ‘(' ‘'Please enter the composition of the multigrid cycles in

+the’)"’
PRINT ‘' (’'following manner. Enter the level number first, 0 being

+ the' "}

PRINT ’(’’finest level, 1 the next coarser level etc., then the’’
+) !

PRINT ' (' ’corresponding number of iterations, then the next level
+number, ’ ‘)

PRINT ‘(’'‘'then the corresponding number of iterations, etc. until
+you’ '}’ X

PRINT * (''terminate the cycle by entering -1 for the level number.
+.r')r

PRINT ‘{’'Please notice: the level numbers must be contiguous, for
+ example’ ')’

PRINT "(*'0 1 0 1 2 1 0, and must begin and terminate with 0, alth
+ough’ '}’

PRINT ’(’’it is possible to go through a definite ievel witout any
+ iterations.‘ ')’
PRINT *
nlevl=0
CONTINUE
PRINT ' (''Level: -

Apr 27 18:45 1955 mgf.f Page 2

READ *, currlevl

IF {currlevl.GE.Q) THEN
level (nlevl)=currlevl
PRINT ' (’ ‘Number of iterations: trL,8)
READ *, 1t
nit(nlevl) =it
nlevl=nlevl+l
GOTO 10

ENDIF

PRINT *

0

Initialize variables and pointers:

ac=4a

lc=L

fp=0

sp=0

rp=0

kp=0

DO 20 i=0, lc**2-1
f(i)=0
s(i)=0
rn=rand(0}-0.5
k{i)=M2+DM2*rn

20 CONTINUE
s(lc*IsS+JS)=1

30 CONTINUE
CALL project{k{kp), 1lc)

kp=kp+lc*lc
lc=1lc/2
IF(1lc.GT.2) GOTO 30 '
lc=L
kp=0
DO 40 cy=1l, ncy
c
C Calculate and print information on the residue:
c
CALL residue(r, £, s, k, ac, lc}
CALL max_res(avres, maxres, r, lc)
PRINT ' (’''At cycle’’,I4,*', av, res. ='',F9.6,"', max res. ="',
+ F9.6)',¢cy-1, avres, maxres
currlevl=0
DO 50 step=0, nlevl-1
c
c If the level goes up, calculate the residue,
c project it to the coarser lattice, reset
c the pointers to the coarser lattice, redefine
C the current lattice spacing and lattice size,
C copy the residue into the source term for the
c coarser lattice and set the field to zero:
c

IF(level{step).GT.currlevl) THEN

Apr 27 18:4% 1995

a0 O0000000

noaan

CALL residue(r(rp)

mgf.f Page 3

CALL project{r(rp!, lc)

rp=rp+lc*lc
ftp=fp+lc*lc
sp=sp+lc*ic
kp=kp+lc*lc
ac=2%*ac
le=1lc/2

DC 60 i=0,

le**2-1

S(sp+i)=r{rp+i}

F{fp+i)=0
CONTINUE
ENDIF

(o)
o

If the level goes down, reset the pointers

to the finer lattice, redefine the current
lattice spacing and lattice size, interpoclate
the correction, contained in the field variable
for the coarser lattice, and add it to the
field of the finer lattice (interp interpolates
and adds) :

IF(level(step).LT.currlevl) THEN

ic=2*1c
rp=rp-lc¥*lc
fp=fp-lc*lc
sp=sp-1lc*lc
kp=kp-lc*lc
ac=ac/2

CALL interp(f{fp), 1lc)

ENDIF

currlevl=level (step)

it=nit(step)

CALL relax(f(fp), s(sp), k(kp), ac, lc, it)

50 CONTINUE
40 CONTINUE

CALL residue(r,

Calculate and print information on the
final residue:

f, s, k, ac, ic)

CALL max_res(avres, maxres, r, 1lc)
PRINT *(''At cycle’’,I4,'’, av. res. ='',F9.6,’', max res. ='r,
+ F9.6)',ncy., avres, maxres

END

Apr 27 18:42 1995 mg_sub.c Page 1

#include<math.h>

relax_{(f, s, k, a, 1, nit)

int *1,*nit;

fioat f£1[1, sl], kl]., ~a;

/*
This function receives the array f with the current values of the
field, the source array &, the array k with variable potential (or
mass squared) parameter and the pointers to the lattice spacing a,
the integer size of the lattice 1 and the integer nit, and must
return in f (overwriting the initial values) the result of nit
iterations of the Gauss-Seidel relaxation algorithm for the equation

M f = s.

The arrays £, 5 and k are all dimensioned in the calling program.
They are one-dimensional arrays of size 1**2 and the variables are
stored according to the following conventions.

i
~

The lattice is a square lattice of size 1*1 with periodic boundary
conditions. 1 is a power of 2 (this fact may be taken advantage of
in order to impose periodicity through bitwise logic operations).
Let the lattice coordinates be (i,j) where i and i range from 0 to
1-1. Then the elements of the arrays are stored in the order
{(0,0y, (0,1y, ..., (0,1-1), (1,0}, (1,1), ..., (1,1-1) etc., i.e.
the index of the elemnt with coordinate i,j is 1*i+j.

The matrix M is defined as follows. The (i,Jj) elemnt of M e is
given by

(M £)(i,3)=
(A%£(1,3)-F(i+l,3)-£(i-1,9y-£(i,3+1)-£(i,F-1))/a**2+k(1,3)*E(1,3)

where the values i+l, i-1, j+1 and j-1 are to be interpreted by taking
into account the periodic boundary conditions {(thus, if i=1-1, i+1
should be taken to be 0).

The Gauss-Seidel relaxation must upgrade the values of £ in the same
order in which they are stored in memory.

int it, i, ifwd, ibwd, j., Jjfwd, jbwd, 13j;
float aux;
aux=1l/{{(*a)*(*a)};
for (it=1; it<=*nit; it++)
{
for (i=0; i<*1l; i++)

{

Here and below define the indices of the nearest neighbors in the
forward (ifwd, jfwd) and backward (ibwd, jbwd) directions, respectively,
by bitwise operations to impose periodicity with a lattice size

1 which is a power of 2.

/i’

*/
ifwd=i+1&*1-1;

o R SR

Apr 27 18:42 1985 mg_sub.c Page 2

ibwd=i+*1-1&*1-1;
for (3=0; Jj<*1; j++}
{ .
JEwd=J+1&*1-1;
Jbwd=j+*1-1&*1-1;
1d={(*1)y*i+3;
flijl={s(ijl+aux*{£[*1*ifwd+j]+f[*1*ibwd+j]+f[*1*i+jfwd]
+f[*1*i+jbwd]l))/ (d*aux+k[1]3]};

——

}

residue_(r, £, s, k, a, 1)

int *1;

fleoat =[], £[1., sl], k[], *a:

/'k
This function receives the field array f, the source array s, the
variable parameter array k and the pointers to the lattice spacing a
and the integer size of the lattice 1, and must return in the array
r the residue of the equation M f = s, i.e.

r = s - Mx.

2ll the arrays are dimensioned in the calling program. For the
conventions relative to the indices of the arrays and the definition
of the matrix M, see the comments in the function relax.

int i, 1fwd, ibwd, Jj, jfwd, jbwd, ii;
float aux;
aux=1/({(*a)*(*a)):
for (i=0; i<*1; i++)
{
ifwd=1+1&*1-1;
ibwd=i+*1-1&*1-1;
for (3=0; Jj<*1; Jj++)

{
jEfwd=g+1&*1-1;
jbwd=j+*1-1&*1-1;
ij=(*1)*i+3;
rlijl=s{ijl-aux*(4*£{ij]l-f[*1*ifwd+j]-f[*1*ibwd+]]
~f[*1*i+Ffwd)~-£[*1*i+ibwd])-k{ijl*£[ij]);
}

}

max_res_{avres, maxres, r, 1)

int *1;

float *avresg, *maxres, rl[]:

/*
This function receives the array r and the pointers to the integer
size of the lattice 1 and to the variables avres, maxres. r is
dimensioned by the calling program and is a one-dimensional array of
sixe 1**2., max_res must return in avres the average residue, 1.e.
the squared root of the sum of the squares of the elements of r

LIRREP PP VT N -

Apr 27 18:42 1995 mg_sub.c Page 3

divided by the number of elements 1*1, and in maxres the maximum of
the absolute values of the elements of r.

*/
int i;
float sum, r2, maxres2:
sum=0;
maxres2=0;
for {(i=0; i<(*1)*(*1); i++)
{
r2=rlil*r(i];
if (r2>maxres2) maxres2=r2;
sum+=r2;
}
*avres=sqgrt{sum/{ (*1)*(*1}));
*maxres=sqrt (maxres2) ;
1
project_(r, 1)
int *1;
float r[];
/*

This function receives a one-dimensionai array r, dimensioned in the
calling program, and the integer pointer to the size of the fine
lattice 1. r contains in its first 1**2 elements the values of a
residue vector on a 1*1 lattice, stored according to the conventions
explained in the comments at the beginning of the function relax.
project must return in the subsequent (1/2)**2 elements of r (i.e.,
in the elements with index 1%*2, 1%*2,1 ceey 1**24(1/2)%%*2-1)

the projection from the fine lattice to the coarse lattice.

More specifically, if we denote with ic,jc the coordinates of a generic
point of the coarse lattice, the element of r corresponding to these
coordinates must contain the average of che four elements of tre fine
lattice corresponding to the fine lattice coordinates

i,3 = 2*ic,2*jc 2*ic+1,2*4¢ 2*ic,2*jc+1 and 2*ic+l,2%jc+l
The indexing on the coarse lattice follows, of course, the same

ordering conventions as used for the fine lattice, apart from the
obvious change in the range of the indices.

int 12, 1lc, ic, jc;
12=(*1)*(*1);

lc:(*l)/2:
for (ic=0; ic<lc; ic++)
{

for (je=0; jeo<lc; je++)
{
r[12+lc*ic+jc]=(r{*l*2*ic+2*jc]+r{*l*(2*ic+1)+2*jc]
+r[*1*2*ic+2*jc+l]+r[*l*(2*ic+1)+2*jc+l])/4;

interp_ (f, 1)

Apr 27 18:42 199% mg_sub.c Page 4

int

*l’.

float f[1];

/*

This function receives a one-dimensional array f, dimensioned in the
calling program, and the integer pecinter to the size of the fine
lattice 1. f contains in its elements with index 1**2, 1**2:+1 ...,
1**2+(1/2)**2-1) the values of the error {i.e. correction) vector

on a coarse (1/2)*(1/2) lattice, stored according to the conventions
explained in the comments at the beginning cof the function relax.
interp must return in the first 1#%+*2 elements of the same array the
sum of the original values of the field on the fine lattice with the
interpolation of the error from the coarse lattice to the fine
lattice. More specifically, if we denote with ic,jc the coordinates
of a generic point of the coarse lattice, the element of f
corresponding to these coordinates must be added to the four
elements of the field f on the fine lattice with coordinates

i,3 = 2*ic,2*jc 2*ic+1,2%*4¢ 2*ic,2*%jc+l and 2*%ic+1,2*jc+1

int 12, 1lec, ic, jc;
float aux;

12=(*1)*(*1);
le={*1)/2;

for (ic=0; ic<lc; ic++)
{

for (jc=0; jc<lc; jo++)

{
aux=f[l2+lc*ic+jc];
E[(*1*2*ic+2*jc]+=aux;
El*1*{2*%ic+1)+2*jc]+=aux;
fl*1*2*ic+2*jc+1] +=aux;
FI*1*(2%ic+1)+2*jc+1) +=aux:

P P D

May 1 10:41 1995 mg_out Page 1

lLattice size: 32x 32 M2: 0.0400 DM2: 0.0600 source=1 in 2, 1
Please enter the total number of multigrid cycles: 10

Please enter the composition of the multigrid cycles in the
following manner. Enter the level number first, 0 being the

finest level, 1 the next coarser level etc., then the

corresponding number of iterations, then the next level number,

then the corresponding number of iterations, etc. until you
terminate the cycle by entering -1 for the level number.

Please notice: the level numbers must be contiguous, for example
0101210, and must begin and terminate with 0, although

it is possible to go through a definite level witout any iterations.

Level: 0

Number of iterations: 10

Level: -1

At cycle 0, av. res. = 0.031250, max res. = 1.000000
At cycle 1, av. res. = 0.002862, max res. = 0.026376
At cycle 2, av. res. = 0.001883, max res. = 0.013568
At cycle 3, av. res. = 0.001450, max res. = 0.008808
At cycle 4, av. res. = 0.001191, max res. = 0.006358
At cycle 5, av. res. = 0.001018, max res. = 0.004875
At cycle 6, av. res. = 0.000896, max res. = 0.003888B
At cycle 7, av. res. = 0.000805, max res. = 0.003191
At cycle 8, av. res. = 0.000734, max res. = 0.002677
At cycle 9, av. res. = 0.000678, max res. = 0.002286
At cycle 10, av. res. = 0.000632, max res. = 0.001982

Lattice size: 32x 32 M2: 0.0400 DM2: 0.0600 source=l in 2, 1
Please enter the total number of multigrid cycles: 10

Please enter the composition of the multigrid cycles in the
following manner. Enter the level number first, 0 being the

finest level, 1 the next coarser level etc., then the

corresponding number of iterations, then the next level number,

then the corresponding number of iterations, etc. until you
terminate the cycle by entering -1 for the level number.

Please notice: the level numbers must be contiguous, for example
0101210, and must begin and terminate with 0, although

it is possible to go through a definite level witout any iterations.

Level: 0

Number of iterations: 3

Level: 1

Number of iterations: 4

Level: 0

Number of iterations: 3

Level: -1

At cycle 0, av. res. = 0.031250, max res. = 1.000000
At cycle 1, av. res. = 0.001882, max res. = 0.019156
At cycle 2, av. res. = 0.001136, max res. = (0.006709

May 1 10:41 1895 myg_out Page 2

At cycle 3, av. res. = 0.000850, max res. = 0.003895
At cycle 4, av. res. = 0.0006%6, max res. = 0.002630
At cycle 5, av. res. = 0.000597, max res. = 0.001924
At cycle €, av. res. = 0.000524, max res. = 0.00148%
At cycle 7, av. res. = 0.000465, max res. = 0.001203
At cycle 8, av. res. = 0.000414, max res. = 0.001004
At cycle 9, av. res. = 0.000371, max res. = 0.000857
At cycle 10, av. res. = 0.000332, max res. = 0.000744

Lattice size: 32x 32 M2: 0.0400 DM2: 0.0600 source=1 in 2, 1
Please enter the total number of multigrid cycles: 10

Please enter the composition of the multigrid cycles in the
following manner. Enter the level number first, 0 being the

finest level, 1 the next coarser level etc., then the

corresponding number of iterations, then the next level number,

then the corresponding number of iterations, ete. until you
terminate the cycle by entering -1 for the level number.

Please notice: the level numbers must be contiguous, for example
0101210, and must begin and terminate with 0, although

it is possible to go through a definite level witout any iterations.

Level: 0

Number of iterations: 2

Level: 1

Number of iterations: 2

Level: 2

Number of iterations: 2

Level: 1

Number of iterations: 2

Level: (

Number of iterations: 2

Level: -1

At cycle 0, av. res. = 0.031250, max res. = 1.000000
At cycle 1, av. res. = 0.001497, max res. = 0.014112
At cycle 2, av., res. = 0.000648, max res. = 0.002333
At cycle 3, av. res. = 0.000468, max res. = 0.001142
At cycle 4, av. res. = 0.000359, max res. = 0.000836
At cycle 5, av. res. = 0.000279, max res. = 0.000646
At cycle 6, av. res. = 0.000217, max res. = 0.000504
At cycle 7, av. res. = 0.000168, max res. = 0.000393
At cycle 8, av. res. = 0.000131, max res. = 0.000307
At cycle 9, av. res. = 0.000102, max res. = 0.000239
At cycle 10, av. res. = 0.000079, max res. = 0.000186

Lattice size: 32x 32 M2: 0.0400 DM2: 0.0600 source=1 in 2, 1
Please enter the total number of multigrid cycles: 10
Please enter the composition of the multigrid cycles in the

following manner. Enter the level number first, 0 being the
finest level, 1 the next coarser level etc., then the

May 1 10:41 1995 mg_out Page 3

corresponding number of iterations, then the next level number,

then the corresponding number of iterations, etc. until you
terminate the cycle by entering -1 for the level number.

Please notice: the level numbers must be contiguous, for example
01012 10, and must begin and terminate with 0, although

it is possible to go through a definite level witout any iterations.

Level: O

Number of iterations: 2

Level: 1

Number of iterations: 1

Level: 2

Number of iterations: 1

Level: 3

Number of iterations: 1

Level: (4

Number of iterations: 1

Level: 3

Number of iterations: 1

Level: 2

Number of iterations: 1

Level: 1

Number of iterations: 1

Level: O

Number of iterations: 1

Level: -1

At cycle 0, av. res. = 0.031250, max res. = 1.000000
At cycle 1, av. res. = 0.004645, max res. = 0.063010
At cycle 2, av. res. = 0.000449, max res. = 0.003472
At cycle 3, av. res. = 0.000063, max res. = 0.000923
At cycle 4, av. res. = 0.000008, max res. = 0.000063
At cycle 5, av. res. = 0.000001, max res. = 0.000015
At cycle 6, av. res. = 0.000000, max res. = 0.000002
At cycle 7, av. res. = 0.000000, max res. = 0.000000
At cycle 8, av. res. = 0.000000, max res. = 0.000000
At cycle 9, av. res. = 0.000000, max res. = 0.000000
At cycle 10, av. res. = 0.000000, max res. = 0.000000

