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Abstract

Over the last three vears short-range parallel Molecular Dynamics methods have converged to two ap-
proaches: the cell method, which uses spatial decomposition to map rectangular regions of space to processors,
and the Verlet neighbor table method, which combines the use of these cells with local neighbor tables. In
this article we review the basics of these methods and analyze in detail one example of each: Los Alamos’s
SPaSM and Boston University-TMC’s MD program. We show that these methods are fast, scalable, efficient
and fully exploit the power of parallel machines even for thousands of processors. The article also contains an
intraduction to Malecular Dynamics, its history, traditional methodology, state-of-the-art and a list of problems
in Statistical Mechanics and Materials Science that can be addressed with current methods,

1 Introduction.

After more than thirty years of existence Molecular Dynamics {MD) has become an important and widely used
technique for the study of liquids, solids, and complex molecular systems in Chemistry, Biclogy, Statistical Physics
and Materials Science. During the last decade vector supercomputers made possible the application of MD to
more realistic and challenging problems. The recent introduction of scalable parallel computers has provided us
with unprecedented computational power and at the same time with the challenge to make efficient use of it.

A MD simulation consists of the integration of Newtonian equations for a system of N point-like particles
which represent atoms, molecules or larger units and is an example of a conceptually simple but computationally
intensive numerical problem: a “high school physics problem from hell” as one of us likes to characterize it.
Computationally speaking, the most important issues for short-range MD are the identification of interacting
pairs and the computation of the forces. The basic tradeoff is between time invested in identifying the non-zero



interactions, so as to reduce time spent computing zero forces, and the actual force calculation itself. Traditional
methods for serial and vector computers have been based on the use of spatial cells and/or Verlet neighbor tables.
Parallel MD algorithms are based on similar coneepts but new problems arise not present in traditional approaches.

Not 'many years ago it was unclear if parallel computers could be used efficiently to run MD simulations.
Today, thanks to the work of many people, we know that there are efficient and scalable MD algorithms that fully
exploit the power of parallel machines even for thousands of processors. Parallel MD methods have converged to
two basic approaches: the cell method, based on using spatial decomposition to map rectangular regions of space
(cells) to processors, and the Verlet neighbor table method, which combines the use of spatial cells with Verlet
neighbor tables in each processor. In this article we will show the result of this convergence by describing these
two methods and by analyzing in detail one example of each. It is our hope that the student who is interested in
implementing these methads will obtain enough information to get started on his or her favorite parallel computer
and the expert will find some of the tables, figures ar biblicgraphical references useful. These methods have proven
to be fast, scalable, efficient, easy to implement, and have allowed us to simulate one or two orders of magnitude
larger and faster systems than older algorithms on vector supercomputers. We will limit our subject to short-range
large-scale simulations of relatively homogeneous systems, where load balance issues are not critical.

We will analyze these issues in more detail in the next sections: section 2 is an introduction, including a
brief history and a short review of traditional methods. In section 3 we discuss parallel computing and general
approaches for parallel MD. Section 4 describes a representative cell method (Los Alamos’ SPaSM) and discuss
its characteristics and scaling properties. Section 5 describes and analyses a Verlet neighbor table method (the
Boston University-TMC program), and finally section 6 discusses the perspectives for parallel MD simulations and
lists a set of interesting problems that can be addressed in the near future.

2 Molecular Dynamics.

In this section we make a brief introduction to MD. For more complete introductions we will refer the reader to
other works. A basic introduction to computer simulation methods is Gould and Tobochnik’s Computer Simulation
Methods* (chapter 6) and Stauffer i al Computer Simulation and Compuier Algebra®. For a comprehensive intro-
duction to MD simulations see Allen and Tildesley's Computer Simulalions of Liquids®, Hockney and Eastwood’s
Compuler Simulations Using Particles?, and the collection of articles in Simulation of Liquids and Solids®. Articles
about the conceptual foundations of MD can be found in Molecular Dynamics Simulations of Statistical-Mechanical
Systems®. Other useful references are Hover's Computational Statistical Mechanics’, Molecular Dynamics® and
the collection Molecular Dynamics Simulations® edited by Yonezama.

For other review articles about MD on vector and paraliel computers we refer the reader to van Waveren!?,
Fincham!!, Rapaport!23312 Abraham!®, Smith!®, Gupta!?, Boghosian'®, Plimpton!®*%?! and Esselink15:19,

The program library CCP5 at Daresbury Laboratory U.K. contains many examples of MD programs inclnding
the ones from Allen and Tildesley’s bock, K. Refson’s “Moldy,” and Forester and Smith’s “pL POLY.”

Other references and links can be found in our “Molecular Dynamics Related Resources and Information”
World Wide Web page at http://conx.bu.edu/CCS/md/md html.

2.1 A Brief History.

The first computer simulations to study statistical mechanical systems, or any physical system for that matter,
were done on the first-generation vacuum tube computers, such as the ENIAC and MANIAC, after World War I}
at Los Alamos National Lab. The first MD simulations, properly speaking, were done by Alder and Wainwright?2
in 1957. They simulated systems with a few hundreds of hard-sphere particles and discovered the existence of a
fluid-solid phase change. This was somewhat surprising because it was thought that an attractive potential was
necessary to produce the fluid-solid transition. At the same time Wood and Parker?® studied the properties of
simple fluids using the Monte Carlo method. These early resuits attracted the attention of physicists and chemists
who saw in the numerical methods a new tool to test models and improve the understanding of many body systems.



In those, the early days of computational science, simulations were done on state-of-the-art UNIVAC and
IBM 704 computers using assembler programming. Debugging consisted of lecking at endless piles of histings
with “dumnp core”, something young readers are hopefully unaware of. In 1964, Rahman®? performed the first
MD simulations with the Lennard-Jones potential. He determined pair correlations and diffusion constants and
obtained very good agreement with experimental data. This was one of the first breakthroughs that opened the way
for future work. A few years later, in 1967, Verlet?® determined the phase diagram for the Lennard-Jones fluid and
introduced the use of neighbor tables to save computation. By then, computers were made out of transistors and
were much easier to use thanks to the introduction of the first fortran compilers. In 1969, Alder and Wainwright?®
discovered an algebraic long-time tail in the velocity autocorrelation function of hard spheres. This important and
unexpected discovery stimulated continuing interest in MD simulations as a tool of exploration. In 1971, Rahman
and Stillinger?” addressed the problem of simulating more complex, and at the same time more realistic, molecular
interactions as in the case of liquid water (see review of F. Sciortino, S. Sastry and P. H. Poole in vol. 1I of this
series).

Once the basic methodology and confidence in the technique were established the horizons of MD expanded.
The 70’s saw further improvements in methodologies and algorithms, for example, practical algorithms to compute
molecular rotations were developed by Evans and Murad?® and Ciccotti and co-workers®®, and new methods
to measure free energies, such as the umbrella method, were introduced by Torrie and Valleau®®, Frenkel and
Ladd®!| Bennett?? and others. State-of-the-art MD programs used cell partitioning and Verlet neighbor table
methods in fast sequential machines such as the CDC 7600 and the IBM 370. In the early 80’s Andersen®3,
and Parrinello and Rahman®?, developed methods to perform constant pressure and constant temperature MD.
In 1984, Nose®S developed equations to simulate constant temperature MD by introducing additional degrees of
freedom in the form of a “thermostat”. These equations were later reformulated and simplified by Hoover®®. All
these improvements extended the applicability of MD to other ensembles besides the constant energy ensemble of
the original simulations.

The advent of the first vector machines motivated the search for efficient vectorization techniques, in particular
the ones relevant to the use of Verlet neighbor tables373%:391240" The first generation of vector supercomputers,
such as the Cyber 205, Cray 1 and IBM 3090, produced a significant improvement in relation to the serial machines
of the previous generation. By the mid 80’s MD methods and algorithms were mature enough to address problems
in non-equilibrium statistical mechanics. For example, Erpenbeck and co-workers?! discovered the “string phase”
in planar couletie flow in 1984. Further progress came in 1985 when Car and Parrinello?? introduced a method
combining MD and electronic structure calculations. In 1984, Abraham and co-workers?® gtudied phase separation
and spinodal decomposition in 2D systems with up to 161,604 particles.

The late 80’s and early 90's saw the appearance of parallel MD algorithms. In 1990 the first multi-million
particle simulations were done by a group at Livermore®?, by Swope and Andersen®® and by Rapaport!®1%:46,

Large scale simulations have contributed to the understanding of new and complex phenomena. For example,
Swope and Andersen?® made a comparative study of crystalization in systems with 15,000 and 10° particles and
found the existence of competing crystal structures that could only be seen in the larger system.

2.2 State of the Art.

In the last five years many parallel MD methods have been studied and introduced in the literature. See for
example the methods of Rapaport1213:14:46:37 Smith18 Brown ef a2, Kalia et al'17, Scott et al1!®, Plimpton?®2,
Plimpton and Heflelfinger!?, Form et af?, Buchholtz, and Péschel®3, Raine et af?, Fincham and Smith®*, Esselink
et a5, Hedman and Laaksonen®®, Bruge and Forlini®7, Melcuk et a3, Beazley and Lomdahl®®, Lomdahl et a9,
Beazley et ol 52, Tamayo et aff?, Tamayo and Giles®4.

Almost all of these methods use spatial decomposition to define coarse-grained cells sometimes in combination
with Verlet neighbor tables. Most of them have reasonable scaling properties and despite some differences the
partitioning techniques and basic algorithms are similar.
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Figure 1: Space and time scales of short-range 3D Molecular Dynamics simulations. See table 1 for legends

It is interesting to analyze the progress in short-range MD algorithms (Lennard-Jones) as measured by the
updating speed versus system size as is shown in Fig. 1. The figure also shows physical space and time scales.
There are several interesting observations we can make about this plot. Since the mid-sixties up to nowadays
the performance per atom update has increased by about six orders of magnitude. This is the result not only of
faster machines and better compilers but also of more efficient implementations and algorithms with appropriate
scaling properties. One can roughly distinguish three different stages: the first from the mid-sixties to the laie
seventies is the period of the fast serial machines (UNIVAC, CDC 6600 and 7700, IBM 360, etc.). In the 80’s the
vector supercomputers {Cray-1, Cray XMP, Cyber 205, IBM 3090 etc.) produced another two orders of magnitude
improvement over the previous era. The last period from the late 80’s until today has seen a dramatic increase in
performance produced by the parallel machines (nCUBE, iSPC/860, Paragon, T3D, VP1000, CM-2, CM-3 etc.).

The diagonal lines in the plot are consfant performance lines. A given machine and implementation of the
algorithm gives a performance point and these lines are defined assuming there is a linear trade off between speed
and size. One can make the system size smaller to increase the speed or viceversa. This trade off holds within
some central region. If one changes the system size so as to move far up or down the line one encounters practical
limitations. For example, moving up by decreasing system size increases the speed but reduces the data set in each
processor and consequently the efficiency goes down and at the end one faces the limit imposed by the computation
speed of a single processor. Moving down increasing system size is limited by the total amount of memory in the
machine.

There are two ways 1o increase performance: hy adding more processors —and moving to the right on a horizontal
line— or by increasing the speed of the processors, and in this way moving up vertically. It is easier to add mare
processors than making them faster. This has been one of the motivations for parallel computing in the first place.
Adding processors is an easy way to increase the performance but one still faces a problem of scalabihily: the
efficiency —measured as the effective divided by the aciual number of processors in the machine- will decrease as
the number of processors increases. This is the reason algorithms with good scaling properties are needed.



Table 1. A sample of State-of-the-Art MD algorithms.

Cade Researcher(s) year Algorithm Machine ploc Size lupdate | lparticle ipasr ;?,,
pP=DataParallel {# of procs.) N s€ecs psecs | namo- | usecs
sSpP=SinglePrec. secs

Serial and Vector Machines:

Ra64 | Rahman®® 64 Direct N2 IBM 703 (1) 0.8/2.25 | 864 35.5 52662 108 -

Ve67 Verlet?® 67 Tables CDC 8800 (1) 0.45/2.5 | 864 1.2 1380 | 37157 -

Fig0 Fincham®' 80 Direct N2 CDC 7608 (1) 256 0.21 8172 -

Fisl Fincham and Ralston®® 81 | Tables Cray 1(1) 500 0.08 113 -

Es93-3 | Esselink%® 04 Cells HP 9000/735(1) | 0.84/2.5 | 2,000 0.106 53 964 ~

Was7 | van Waverenl? 87 - Cyber 205 (1) 1.0/2.5 | 2,500 2.73 1092 | 16684 -

Hes3 Heyes and Smith®® 28 Cells Cray 1s (1) 6,912 1.60 230 -

S5cBY Schoeni® 89 Direct N? Cyber 205 (1) 6,912 0.53 76.5 -

Grag Grest et a7 89 Cells/Tables Cray XMP (1) 0.84/2.5 | 6,912 0.18 23.1 421 -

P193 Plimpton?® 03 Cells/ Tables Cray YMP (1) 0.84/2.5 | 100,000 1.47 13.7 267 -

P193-2 | Plimpton®® 93 Cells/Tables C-90 {1) 0.84/2.5 | 100,000 0.59 5.9 107 -

Swal Swope and Andersent® 80 | Cells/Tables IBM 3090 (1) 0.95/2.3 | 1,000,000 108 108 2231 -

Parallel Machines:

5c03 Scott et al'l® 93 Replic. Data®™" | MUSIC (20) 0.89/2.5 | 1,000 0.02 20.0 333 | 6.87

Badi Batista and Coker'?® 92 Cells/Tables SGI (IP22) (8) 1.0/2.5 | 4,000 1.17 293 | 2489 | 358

Tagl Tamayc et aff® 91 CellsP? CM-2 (32K /32) | 0.8/23 18,000 0.57 31.7 605 619

Es93 Esselink et a®® 93 Cells T200 (400) 07/2.5 | 39,302 0.88 21.9 a8 191

Ta92 Tamayo and Giles®t 92 Cells Tables CM-5 (512) 0.84/2.5 | 51,200 0.20 3.91 711 | 364

Es04-1 | Esselink®® 92 Cells IBM SP1 (12) 0.83/2.5 | 53,000 0.73 13.5 248 | 2.95

Ka93 Kalia et al'l” 93 Cells iPSC/860 (8) 1.0/2.5 | 108,000 5.2 481 736 | 5.88

Es93-2 | Esselink!®® sa Cells SGI Chal. (28) 0.84/2.5 | 126,000 0.33 5.59 120 | 3.36

Me91 Mel'tuk et al®® 91 CellsP¥ CM.-2(32K/32) | 0.95/2.3 | 512,000 58.8 115 | 2372 | 2429

Cs93 Ossadnik and Gyure!20 g2 | Cens™” CM-5E (32) 1.0/2.5 523,288 10 19.1 291 9.33

Bro3 Brawn et af'® 93 Cells/Tables AP10G0 (512) 0.8/2.5 | 720,000 0.93 1,23 24.3 12,5

Hed3 Hedman et al’® 93 CellsP¥ CM-200 (8K /32) | 0.82/2.8 | 1,000,000 5.9 5.9 78.1 20.0

Ly94 Lynch and Tamayo'®® 92 CellsPF CM-5E (32) 1.0/2.5 | 1,000,000 14.8 14.8 223 7.12

Rad1 Rapapert? 91 Cells iPSC /860 (64) 71/1.12 | 2,050,000 2.75 1.32 321 ] 205

P193-3 | Plimpton®! 92 Cells/Tables T3D (256) 0.84/2.5 | 5,000,000 2,25 0.45 8.19 2.10

P192-2 | Plimpton®! 92 Cells/Tables” | nCUBE? (1024) | 0.84/2.5 | 10,000,000 10.2 1.02 18.6 19.0

Rag3 Rapaport?” 93 Cells CM-5 (84) 71/1.12 | 10,976,000 12.5 1.14 273 17.4

Lo94-2 | Lomdahl et ai'?® 92 Cells CM-5E (32) 1.0/2.5 | 18.384,000 91.7 5.60 855 | 2.74

Gig4 Giles and Tamayo!!? 91 Cells/Tables CM-5E (256) 0.83/2.5 | 43,904,000 19.65 0.443 &.15 2.09

Be93 Beazley and Lomdahl®® 83 § Cells CM-5 (1023) 1.0/2.5 | 67,108,864 87.7 1.31 20.0 | 20.4

Lo94-1 | Lomdah! et al'?® 94 Cells T3D (128) 0.84/2.5 | 75,000,000 36.9 0.625 11.4 1.46

P94 Plimpton?! 94 Cells/TablesST | Paragon (3680) | 0.84/2.5 | 100,000,000 as 0.035 | 0636 | 2.34

Lo93 Lomdahl et aff? 3 Cells CM-5 (1024) 0.83/2.5 | 131,072,000 34.0 0.259 3.96 | 4.08

Lo94-3 | Lomdahi et af'26 92 Cells CM-5 (1024) 0.84/2.5 | 300,800,000 90.6 0.301 5.48 5.61

Loo4d Lomdahl et a8 02 CellsF CM-5 (1023) 0.84/2.5 | 600,000,000 232 0.403 7.33 7.51

To give a better idea about the actual performance of state-of-the-art MDD programs Table I shows performance

data for some state-of-the-art MD algorithms on a variety of new and old machines. This is not intended as an
exhaustive enumeration but just a sample of algorithms and implementations we are aware of. As we can sce in
the table the fastest programs attain performances in the nanosecond per pair interaction range.

When comparing different MD algorithms one has to be careful because no single measure of performance
sives the full picture. Mflop rates do not give a reasonable measure of performance because they depend upon
the particular method being used. A more useful quantity, frequently reported in the literature, is the time per
particle updaie tparticie, which is simply the update time fypiae for one time step divided by the {olal number of
particles N. This is in general a useful quantity but the use of different densities and cutoffs makes comparisons
between machines, algorithms and implementations difficult. A better quantity to characterize the performance
of an MD algorithm is the effective fime per pawr tnteraclion, Tpgir,

- tpartécle

1 = 4
twoipN  3molp

tupdale

tpm'r -

(1)

where &, is the cutoff, the distance beyond which the potential is taken to be effectively zero, and p the density.
This quantity muitiplied by the number of processors, p. gives the one-processor effective time per patr interaclion,
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Figure 2: Speed (updates per second) vs number of particles per processor for some state-of-the-art parallel MD
algorithms. Scalability implies that data for different machines sizes should collapse on a single line as can be seen
for some of the examples shown.

=1
iiair = pt}m""’ (2)

which is also useful to compare performance independent of the number of processors. These quantities measure
the time to compute an “effective unit of work” in a MD simulation: a single Lennard-Jones pair-interaction in
double precision. If the caleulation is done in single precision we suggest to multiply 3;_}1 by an appropriate factor
to make comparisons. This quantity is roughly independent of the density, cutoff, machine and system sizes within
reasonable limits. Of course, no single number can convey the scaling properties of an algorithm but ¢psi, and
tga:if. provide useful figures of merit when used judiciously. The last two columns on the table include 1,4, and
t;;ﬁ. for the algorithms and implementations shown.

To study scaling properties it is useful to plot the speed of a program wvs the number of particles per cell-
processor, Nown. If the algorithm, and the parallel architecture, are scalable the data should fall roughly onto the
same line independent of the number of processors. This is indeed the case for some algorithms as can be seen in
Fig 2. When MD algorithms are scalable, and keep the communications costs to a minimuin, the dominant factor
for performance becomes the effective computational speed of the local processing node. We will come back to

this subject when we discuss each of the parallel methods in detail.
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Simulation with 5 particles Simulation with 2000 particles
Problem: high school homewark Problem: study of liquid structure
Machine: hand calculator Machine: workstation

Simulation with 38 million particles
Problem: study of crack fermation
Machine: parallel supercomputer

Figure 3: Three examples of Lennard-Jones 3D Molecular Dynamics Simulations.
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2.3 A Short Introduction.

One of the main objectives of Statistical Mechanics is to explain the macroscopic behavior and properties of matter
(temperature, phase. density, etc.) from the microscopic properties of atoms and molecules. For example, if we
look at a glass of beer®® —not a fruitless experiment if one remembers how the idea of the invention of the Bubble
Chamber came about— we will realize that it has well defined homogeneous properties despite the fact it contains
about 1025 particles. One is able to predict and control the behavior of this system without knowing anything
about the individual trajectaries of the myriad of molecules inside the glass.

The connection between the macroscopic emergent properties and the micrescopic laws is complex and far from
trivial in most cases. The particles interact dynamically and as a consequence complex physical behavior appears
at different space and time scales. The analytical techniques to explain the connections between the micro and
the macro world constitute the formal content of Statistical Mechanics, Chemical Physics and Condensed Matter
Physics.

Today, scientific research in the physical sciences is based on a triad of theory. ezperimeni and simulation. The
subject of Computational Science is about simulations and algorithms and the best way to implement them in
real computers. MD is a direct simulational approach based on the numerical calculations of particles trajectories
according to classical mechanics and simplified semi-empirical molecular interaction forces. If the simulations are
performed with enough numbers of particles, and if the potential captures enough of the relevant physics, then the
properties of interest will emerge as a consequence of the dynamics. Fig. 3 shows three examples of Lennard-Jones
3D MD simulations.

2.3.1 The Main Computational Tasks.

Suppose we have N classical particles in our system and that the state of affairs can be described by a collection

of positions and velocities,

{£Y. a5, 25, ... &N} {¥1, 0, 03, .., N ). (3)

Now lets define r- as the distance between the first and the second particles, r(3 between the first and third

ete. and assume the total energy will consist on pair interactions only,

E= U(T’IQ) + U(T‘]s) + U('f"zs) + ... (4)

where U(r) denotes the inter-particle potential for two particles separated by a distance r. The idea is to choose
a simple model for U(r) that will produce the physical behavior of mterest. For example, to simulate the ther-
modynamic behavior of a simple liquid the basic ingredients of an inter-particle potential are: a hard core. that
provides repulsive forces and exclusion effects if particles get too close, and an aftractive force, that models the
van der Waals inter-molecular attraction. One of the most widely used potentials with these characteristics is the

o[- (2)]

This potential is parameterized by o, the length at which the potential crosses zero, and by ¢ which defines the
energy scale. For liquid Argon atoms, which this potential models relatively well?*, ¢ = 3.44 and ¢/kp = 119.8K.
The potential decays rapidly and a cutoff distance can be defined beyond which the potential 1s very small and can
be taken to be effectively zero. In typical MD simulations this cutoff r. varies from 1.12 ¢ for hard core simulations
up to 2.5-5 o for simulations of simple liquids or sclids. The force is given by the gradient of the potential,

Lennard-Jones potential,

Fij = =VU(rg). (6)

The distance 7;; between each pair of particles is needed to compute the force,



rew e 1) (2)]

This force is used only if r;; < r. and it is made equal to zero otherwise. Notice that F;; = —Fj; so Newton’s
3rd law can be used to save computation. From the forces one finds the accelerations,
o Fij
iy = ey, ®
and then one integrates the equations of motion to find the new set of coordinates and velocities for time 1 + At
from the values at time t. The study of integration algorithms is a subject by itself56-67:58.:69.70 Here we will just

show one example: the Verlet velocity integration scheme,

it + &t) (1) + St E(t) + %(61)2@(1), (9)

It

Tilt + ot) #(t) + %51 (@) + d:(1 + &1)]. (10)

These equations are simple to implement and only require the storage of the current and previous posifions,
velocities and accelerations®.

The actual number of interacting neighbors is a function of the meclecular density. For a typical liquid-state
simulation using the Lennard-Jones potential the computation of a single pair-interaction requires about 30-40
floating-point operations, therefore a complete force calculation will require of the order of 2,000 floating-point
operations per particle. This is much more manageable than a full N-body calculation but still computationally

74,72 or variable step size®370,

intensive. There are ways to produce faster dynamics by using multiple-time-steps
however there are hmitations to these approaches.

In summary, the main three computational tasks of a short-range MD calculation are: finding the inieracting
neighbors, the computation of forces and the inlegration of the equations of motion. The most computational
intensive part is always the computation of forces which accounts for 70-90 % of the time in serial, vector and

parallel MD programs.

2.3.2 Direct N? Solvers and Multipole Methods.

When the number of particles to be simulated is not large, it is possible to take the direct N? approach to the
calculation of forces. Sometimes this is done for simulations of celestial objects in Astrophysics™ 7473, As part of
the Japanese GRAPE 4 project for stellar dynamics a machine with teraflop capability is being constructed™.

Systolic algorithms””7® for MDD} have been studied by Nelson et af**". Optimal parallel schemes for N-bady
simulations have been studied by Brunet el aF!#? and Greenberg et af3. Direct N-body solvers™ are also
relevant to vortex methods in hydrodynamics®®3%, Fincham®" and Schoen? have used the direct N? approach in
MD simulations. Schoen’s program was about three times faster than a link cell method for 6,912 particles®t.

In the last decade there has been significant progress in the development of techniques to approximate the
effect of long range forces. This is relevant to MD simulations where long-range electrostatics is irnportant. One
class of approximation methods is based on imposing a grid structure and dividing the contributions to the force
in two parts: an atomustic short-range piece and a interpolated long-range contribution. This approach is known
as P3M particle-pariicle particle-mesh method?. The problem of computing long range electrostatic forces for
Coulombic systems can also be addressed with the use of Ewald summation techniques®87:83:89.90.91 A (different
class of approximations is based on hierarchical methods some of them based on multipole expansions similar
to the ones used in electromagnetism®?. The best known hierarchical algorithms are the methods of Appel®3,
Greengard and Rokhlin®®, Barnes and Hut¢, Zhao®® and Anderson®”.

The Barnes-Hut algorithm is an G(N log N) algorithm based on a hierarchical spatial octree where interactions
are computed using a first order approximation. Greengard and Rokhlin’s Fast Multipole Method 1s O(N) requires



more complex data structures. The methods of Zhao, Anderson and Appel are also O(N). For examples of parallel
implementations of these algorithms see refs. 98.96,100.101. '

A tecent study of the effects of different cutoff methods for long range forces can be found in ref. 104. A
comparison of different algorithms for long range interactions has been done in ref. 105. There are also new
alternative approaches to deal with long range forces based on domain decomposition and Taylor polynomials
102,163 whick circumvent some of the problems of traditional multipole methods. The study and development of

multipole and related methods is a very active area of research.

2.3.3 Cell Partitioning Methods.

In a system of n particles interacting with a potential of range r.. and average particle density p, each particle
will interact with Ny .y ~ %n'rgp neighbors on average. If for each particle one performs a global search for these
neighbors over the rest of the system the total process will he O(N?). However, for short-range rapidly decaying
potentials, such as Leunard-Jones, the interaction is treated as zerc for particles whose separation is Jarger than
.. This reduces the computational complexity to O(N) and provides a way to restrict the search for interacting
neighbors to the vicinity of each particle. A widely used technique to do this is by dividing the physical simulation
space in cells or rectangular domains in such way that if one is computing the force acting on a given particle .
then one looks for neighbors, particles j for which |r; — rj| < rc, only inside surrounding cells. Tig. 4 a) shows
a 212 systemn in which physical space has been divided into square cells of size r.. The dark-shaded region shows
the interacting neighborhood of radius r. for a given particle i. All the interacting neighbors for the central cell
can be found inside the light-shaded region defined by the 8 neighboring cells. In b) the linear cell size is r. /2 and

then the search involves two layers of neighboring cells.

o.o :;:o.ro

Figure 4: Cell partitioning method: a) large cells of size r¢; b) small cells of size 7. /2.

The use of cells reduces the complexity of the search but does not eliminate all unnecessary computaticn. Due
to the geometrical mismatch between the rectangular shape of the cells and the spherical interacting neighbor-
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hood region, not all particles inside the cells necessarily contribute to the foree, and therefore, some unnecessary
interactions will still be considered. '

What is the optimal size for the cells ? Small cells are better to approximate the spherical shape of the
interacting neighborhood region but they also introduced overhead. The overhead is produced by the decrease
m accupation numbers, the higher probability of empty cells and the greater complexity of the search path. In
practice, most MD programs employ large cells of size r., or sometimes r./2, so the search is restricted to the
first or second layer of neighbors. This tradeoff is significant for serial programs but it is even more important
for parallel programs where the search path is partially done off processor. The goal of reducing communications
favors the choice of cells of size r.. A link lis{ data structure is often used to access a given cell’s particles from a
global array of particles®.

2.3.4 Verlet Neighbor Table Methods.

If there are on average N,.;, interacting neighbors per particle then the average number of non-zero pair forces
will be %N - Npeig taking Newton’s third law into account. If at each stage of the computation the program
maintains a table of the interacting neighbors for each particle, or alternatively a list of interacting pairs for which
the interaction forces have to be computed, a substantial amount of computation can be saved. This is the idea
behind the Verlet neighbor table method first introduced by Verlet25.

Verlet Neighbor Table Schemes

a) Array of i-j pairs:

b) Matrix of j’s for each i:
i=1 2 3

jneig. of i <

¢) Long list and index vector: i= 123

X yz

j neig. of i

Figure 5: Three commonly used data structures for Verlet neighbor tables.

The overhead for constructing this table is significant compared to the force computation, and therefore, the
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tables must be reused for several time-steps to amortize the cost of their construction. At a given time step, the
tables are constructed by finding all pairs of particles whose separation is less than r, = r. + &, where 6, 15 a
“safety” distance. The tables can be reused for as long as no pair of particles criginally further apart than r,
get closer together than r,. This is a time of order é,/v, where v is a typical velocity. In principle the table
construction is an O(N?) process but if one uses the cell method described in the previous section then the process

becomes O(N). The main difference is that in the inner loop of the cell method instead of calculating forces one
computes fable entries and saves them to be used later in the force computation.

There are different ways to represent the Verlet tables in terms of data structures. Fig. 5 shows three of the
commonly used data structures. In approach (a) the neighbor table consists of “pairs™ of indices into the particle
arrays. The force calculation is done by fetching —or vector loading— the coordinates of the particles according to
the i — j indices in the table. Another approach {4) is to have a matrix in which each column contains the indices
of the j neighbors for a given i particle. A memory efficient scheme is shown in (¢} where a single one-dimensicnal
artay holds all the indices to particles’ neighbors and an auxiliary inder array gives entry points as a function
of particle number. Scheme (@) is well-suited for fast long-vector operations (gather) but the data dependencies
could produce the lost of results when one stores the accelerations. One solution to this problem is Rapaport’s
“layers” method?21%7, In this approach one constructs “pockets” of pairs which are free from data dependencies
by restructuring the loops over cells and particles!>1%7. Scheme (b) avoids the data dependency problem of scheme
() but reduces the length of vectors to be of the arder of the number of neighbors of a single particle. Scheme (c)
is the best although it implies some amount of additional indirection. A comparison of link cell vs Verlet tables

on vector computers is dene in ref. 108.

3 Parallel Molecular Dynamics.

The key issues for implementation of molecular dynamics on modern parallel computers are communication and
load-balancing. In short range molecular dynamics applications, as discussed in detail in the next two sections,
each processor handles the coordinate updates of some number of particles (typically a few hundred up to a few
tens of thousands) and a corresponding fraction of the force calculations. The amount of arithmetic needed to
perform a time step depends only on the algorithm and is regarded as the “useful” work done. By contrast,
time spent with processors idle and time spent moving data between processors or between CPU’s and memory is
regarded as overhead to be minimized.

Processors must synchronize with each other at critical points within the program for algorithmic reasons.
For example, all processors must complete the distributed force calculation before any processor can begin to
update its particles’ coordinates. The load balancing issue is whether the work to be done is sufficiently uniformly
distributed among processors that there are not significant periods spent with idle processors waiting for a slower
companion at such a barrier. At the most basic level, load balance can be achieved by distributing the particles
and force calculations as uniformly as possible. For systems which are more or less homogeneous, we can achieve
this basic level of load balancing by regular spatial partitioning of the volume among cells.

Additional load balancing considerations arise depending on how often the processors must synchronize during
the force calculation. In the extreme case of SIMD hardware, the processors would synchronize after every instruc-
tion. In a more typical implementation of the data-parallel model, they would synchronize at each communication
step. The longer the processors can run without synchronizing, the better they can average out minor variations
of execution time between them and the better the load balance.

In order to calculate forces, each pair of interacting particles must have their mutual force calculated by
bringing together the two sets of coordinates at a single CPU. This requires interprocessor communication for
those pairs of particles that are assigned to different processors. In the data parallel model, where the parallelism
is expressed at the finest granularity that is associated with the problem independent of the number of processors,
it is often hard for the programmer to conveniently distinguish the “real” communications between processors from
the virtual communications that occurs when data at the fine granularity is moved around. For this reason, most
of the efficient parallel implementations of MD force calculations use a MIMD model where the interprocessor
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Data mappings for Parallel Molecular Dynamics

0 0 o 0
o ° ° o
0 How to map ?
o Particles Processors
and
Interactions
to
Processor
Particles
to
Processor
0 o o] o]
Cell |
- SN B s EE ]
Processor B
o 1o )
O P______—«
o o |
o]

Figure 6: Three examples of data mappings for parallel Molecular Dynamics.

communication is directly visible and controlled at the top level. The programming paradigm is that of the SPMD
(Single Program Multiple Data) model. The computational model that these methods use is that of a network of
processing nodes. These nodes are off-the-shelf processors of an MPP computer or a cluster of workstations. Since
the main goals is to minimize communications costs and exploit locality, one explicitly deals with the processor
granularity rather than subsume it in a higher fine-grained model. Long data blocks are transmitted through the
network more efficiently than short blocks. The two parallel methods described in sections 4 and 5 are implemented
according to this SPMD paradigm.

In the linked-cell method used by Mel'cuk, Giles and Gould on the SIMD Connection Machine CM-2°%, the
particles were distributed among fine grained spatial cells. The number of cells used depended only on the
interaction range and was independent of the number of physical processor nodes. Each cell contained only a few
particles. During the force computations, the particles in each cell were “moved” in a regular pattern past their
neighboring cells. Between moves, all the forces involving particles in the cells are computed. Because of the SIMD
nature of the machine, all cells have to wait for the slowest cell to complete its work, and therefore the efficiency
due to load imbalance is proportional to (Recelt [ Ncell—maz )°, Where n.qy is the typical number of particles in a cell
and Meel—maz the maximum number of particles in the cell with highest density. As the number of cells grows, this
number gets smaller and smaller due to density fluctuations. Lynch and Tamayo!% observed this problem in a
CM Fortran implementation of the cell method where the program’s speed was 2.6 times slower than an equivalent
MIMD method (see Ly94 and Lo94-2 in Table I). Other studies of Data Parallel implementations have been done
by Rapaport*®, Nielsen et al!%*, and Ossadnik and M. Gyure'?". An interesting issue that deserves further study is
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that regarding the extensions to the data paralle]l programming model, for example in the direction of global-local
capabilities!'? (such as the ones offered in CMFortran and HPF), that would allow data parallel programs to call
message-passing local subroutines and in this way attain the same performance as MIMD programs.

Now we will briefly review some of the most commonly used partitioning and mapping strategies for parallel

MD.

3.1 Cells-to-processors Mapping

The most cornmeon partitioning strategy is to map spatial cells to processors. The main reason for this is because
interprocessor communicaticns costs, as measured by the latency and bandwidth, are significantly larger that in-
processor memory data transfer costs. The implication for MD simulations is that in addition te minimizing the
number of floating peint cperations —which reflect local processor-memory interactions— as in serial algorithms, one
has to organize data so as o minimize communication requirements across processors and get the most reuse out
of any data that must be sent from processor to processot, The mast natural way to achieve this is to capture the
spatial locality inherent in the problem in the computational locality of the parallel processing system by mapping
processors to spatial cells, where the granularity of the cells is related to the number, complexity and connectivity
of the processors in the machine. Particles in a given cell-processor will necessarily interact with particles in
neighboring cell-processors. Computation of such interactions requires that the coordinates of the particles be
communicated across cell-processor boundaries. Efficient MD algorithms will minimizes the net amount of data
going across cell-processor boundaries. There are different implementations of cell-to-processor algorithms. For
example one approach is to allocate the cells as dynamic arrays that change size according to occupation numbers.
Many examples of cell methods can be found in the literature: Kalia ef aff!7, Rapaport!%:13:14.46:4¢ Smith!®,
Brown et al*®, Lin et al®, Plimpton2®:2!, Plimpton and Heffelfinger!®, Form et af?, Buchholtz, and Péschel®?,
Plimpton?®:2!, Raine ¢f af4, Fincham and Smith®*, Esselink et l %%, Hedman and Laaksonen®, Ossadnik and
Gyure!??, Bruge and Forlini®?, Melcuk e? af®, Beazley and Lomdahl®®, Lomdahl et alf%%!, Beazley et a/®?, Tamayo
et aff3, Tamayo and Giles® 119, Spatial decomposition is also used in the implementation of EulerGromos!!l. The
partitioning of the computational domain in cells gives rise to some additional problerns related with initialization

schemes and randem number generation!?!,

3.2 Particles-to-processors Mapping

In this scheme one finds a partitioning strategy to divide the particles evenly across processors. This mapping is
sometimes used in combination with Verlet tables so the amount of global communication is minimized. Tamayo
el alf? developed a SIMD method in which global communications are used to send the coordinates of each particle
to its neighbors. This is done over several routing cycles by using a communication primitive that sends a message
from each processot to a destination queue in any other processor. Once that all the messages have been received
then the force computation is performed. This method is direct and easy to implement but ignores locality and
as a consequence communication times dominated the execution times®. 1t will be interesting to see if fine-
grained neighbor table methods like this can be made practical by using light-weight aclive-messages 112 o1 shared
memory schemes. For other approaches using Particles-to-processor mappings see for example the EGO program
from K. Schulten and collaborators!!3:114.115,118 Kalia ¢f qf'*7 Scott et al'!® and the atom-decomposition method

of Plimpton?!.

3.3 Interactions-to-processor Mapping

In this approach the partitioning is done by distributing the interactions across the processing nodes. Mapping
interactions to processors is usually done for relatively small systems. See for example the force-decomposition
methods of Plimpton®®?'. For larger systems it is better to map particles-to-processors or cells-to-processor.
Sometimes the interactions-to-processor approach is combined with the use of the replicated daia method which

we describe in the next paragraph.
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3.4 Replicated Data Method

Particles coordinates are replicated in each processor, usually by doing a broadeast operation, and then each
processor computes a subset of the interactions. The problems with this scheme are its lack of scalability and
how to obtain good load balance. This method is often used to simulate systems of a few thousand particles
that can fit in a single node’s memory. It has been used successfully in several molecular modeling and simulation
programs such as CHARMM'??, where a hash coding scheme is used to achieve load balance, and GROMQS124:128,
Variations of this method have been studied by Smith and Forester'®:3%:51 and by Plimpton?%2%,

The use of parallel multi-color algorithms for internal forces constraints have heen investigated by Miiller-Plathe
and D. Brown'23,

4 A Parallel Cell Method: Los Alamos’s SPaSM.

In this section we will describe and analyze a representative parallel cell method. This method is based on the
SPaSM MD program developed at Los Alamos Natl. Lab 39 60.61,62,126

16 Node Parallel

Computer
7 T

tr s
T

Figure 7: SPaSM: Processor and cell assignment.

4.1 Basic Description.

We illustrate the algorithm in 2D but the method naturally extends to 3D. Let us start by describing the data
structures. We consider space to be a rectangular region with periodic boundary conditions. This region is then
subdivided into large cells which are assigned to the processors. Particles are assigned to processors geometrically
according to the particle’s coordinates. For a 16 processor machine, space would be subdivided as shown with
solid lines in Fig 7.

The numbers in each region indicate the processor that would be assigned to that region of space. Points
correspond to a sample set of particles. For solids, the particles are usually uniformly distributed and each
processor could be assigned hundreds to hundreds of thousands of particles.

For a large set of particles, the region assigned to each processor will have dimensions significantly larger than
the interaction cut-off distance, .. In general. there will be a large number of particles on each processor that
do not interact with each other. We seek a method to organize the particles so that a particle’s neighbors can be

quickly located for the force calculation and so the number of interactions calculated is minimized. To solve the
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Figure 8: SPaSM: Force calculation.

problem, the region on each processor is subdivided into a large collection of small cells. Each cell created 1s chosen
to be shightly Jarger than the interaction cut-off. Particles are then assigned to an appropriate cell geometrically
as before. It is important to note that number of cells created depends only on the size of the region and the
interaction cut-off, r., not on the number of processors available. For large simulations it is possible to subdivide
the space on each processor into thousands of cells. In Fig. 7, the dashed lines indicate the smaller cells ereated
on each processor. In this case, 16 cells per processor are being used. Each cell has dimensions larger than the
cut-off distance. The same number of cells are created on every processor.

This cell structure forms the foundation of the algorithm. For storage, each particle consists of a C language
structure containing the position, velocity, force, and a particle type. For memory management, associated with
each cell is a small block of memory where the particles are stored sequentially in a list. This method of storage
is important for the communication aspects of our interaction calculation since we communicate entire cells, not
individual particles. The sequential nature of the data allows us to easily communicate the entire contents of a
cell by simply sending a small block of memory. In our early implementations, we fixed the size of each block.
Recently we have have added a dynamic memory management scheme that allows variable block sizes.

With the cell structure now in place, interactions can be effectively calculated. The calculation of forces on a
single particle only involves the particles in the same cell and neighboring cells. The calculation of forces for all of
the particles in a cell is a two step process. First, all of the forces between particles in the same cell are calculated.
Next, forces from particles in the neighboring cells are calculated by following an interaction path%® that describes
how we compute the interactions with neighboring cells. In 2D the path is as shown in Fig. 8.

Forces are being calculated for the particles in cell (a). Interactions between all particles in cell (a) are first
calculated. Interactions with particles in neighboring cells are then calculated in the order shown (b-e). Once

interactions with cell (e) are calculated, the process is complete. As we calculate {forces with the neighboring
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cells the total force is accumulated by the original cell and the cells along the path (using Newton’s third law).
To caleulate all forces. this proceduse is carried out on all cells on all processors. Cell (a) will accumulate the
interactions from its lower neighbors when they calculate their interactions.

On each processor, the calculation of forces proceeds sequentially through all of the cells. This process then
oceurs in paralle] on all praocessors. Globally, the processors are assumed to be operating in a loosely-synchronous
mode where each processor is calculating the forces for the same internal cell at approximately the same time.
For most cells on a processor, all of the neighboring cells are on the same processor. This allows most cells to
calculate interactions without any communications. However, for cells along the edge of each processor, we must
calculate interactions between cells on different processors. When this occurs, message-passing communications
are utilized. Particles are sent to neighboring processors and received from other processors. When communication
is necessary, all of the processors synchronize and participate in a send-and-receive type communication. Since
each processor has the identical cell structure and is operating on their cells in the same order, when one processor
needs to calculate an interaction with particles on another processor, all processors will have to do this. Each
processor sends the particle data for the cell to the appropriate processor and simultaneously receives particles
from another processor. The force calculation then proceeds with each processor operating on the particles it
received. The key idea is that whenever a processor boundary is crossed along the interaction path, all proces-
sors participate in a synchronous communications step and the force calculation continues. It should be noted

that synchronization only occurs in message-passing. At all other times, the processors are running asynchronously.

Interaction Algorithm (Executes on all processors simultaneously)

Variables:
Cells(Xcells,Ycells) : 2d array of cells on the processor.
Path[PathLength] : Array of increments describing interaction path.
CellBuffer : Temporary storage for a single cell
CurrentCell : Pointer to the cell for which interactions are being calculated.
PathCell : Current cell on interaction path. Can be on a neighboring precessor.
InteractCell : Same as PathCell except with periodic boundary conditions.
ReceiveCell : Pointer to where incoming particles are received during communicatijons.
HomeProcessor : The address number of this processor.

ComputeAllInteractions()
For i = 0 to Xcells

For j = 0 to Ycells {
ComputeInteractionsSameCell (Cells{i,j})
CurrentCell = Cells(i,j)
PathCell (i,3)
InteractCell = (i,]j)
For X = 1 to PathLength {

PathCell = PathCell + Path[k]
" InteractCell = InteractCell + Path[kx]

If (Processor{(InteractCell) '= HomeProcessor) {
Destination = Processor{InteractCell)
(1) Source = Processor({Xcells,Ycells) - InteractCell}
(2) If (Processor(PathCell) = HomeProcessor)

Then ReceiveCell = Cells(i, )
Else ReceiveCell = CellBuffer
SendAndReceive{CurrentCell-->Destination, Source-->ReceiveCell)
(3 CurrentCell = ReceiveCell
(a) InteractCell = InteractCell mod {Xcells, Ycells)
}
ComputeInteractions(CurrentCell, InteractCell)
}

}
end(ComputeAllInteractions)

ComputeInteractionsSameCell(C)
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For T = 1 to (NumParticles(C) - 1)
For J = I+1 t¢ NumParticles(C)
F = ComputeForce(Particle(I), Particle(J))
Particle(I).Force = Particle(I).Force + F
Particle(J).Force = Particle(J).Force - F
end(ComputeInteractionsSameCell)

ComputeInteractions(Celll, €ell2)
Fer I = 1 to (NumParticles{Celll))
For J = 1 to (NumParticle={Cell2)}
F = ComputeForce(Particle{Celll,I), Particle(Cell2,J))
Particle(Celll,I) .Force = Particle{Celll,I).Force + F
Particle{Cell2,J).Force = Particle{Cell2,J).Force - F
end{ComputeInteractions)

(1) The source processor corresponds tc the processor on the opposite boundary as the destination processor.

(2) I the path leaves the processor, particles will be received from a neighboring processor and are stored in CellBuffer.
If the path reenters this processor, particles that were sent out earlier are being sent back and are stored in their original
location Celifi,j). Forces that were calculated with particles on nearby processors are returned with the particles at this
time.

(3) This switches the processing to the proper set of particles after communications.

{4) This imposes periodic boundary conditions on the interaction path. When particles are received from a neighboring
processor, this forces the interaction path to wrap around to the other side to work with the received particles. In one

sense, this processor takes over the interaction path from the neighboring processor.

The main feature of this algorithm is that each processor must simultaneously manage it3 own cells and cells
received from its neighbors. To do this, two separate interaction paths are utilized (these are described by the
variables PathCell and InteractCell}. One path (PathCell) is used to manage the particles that belong to this
processor. It may leave this processor when processor boundaries are crossed, but always keeps track of where
particles are located at any particular time in the algorithm. The second path ([nteractCell) describes the actual
computations that need to be performed by this processor. The path is identical to the first path except that
we impose periodic processor boundary conditions. When the interaction path crosses a processor boundary, new
particles will be received from a neighboring processor across the opposite boundary. With processor periodic
boundary conditions, the second path will properly describe the required interactions with the received cells and
cells on this processor.

It was noted earlier that the particles on each cell are stored sequentially in memory. This allows us to send
all of the particles in a particular cell by simply sending a block of memory through the data network. This type
of sending is faster than sending one particle at a time that would be required if the particles in each cell were
scattered throughout memory. On each communication we send particle positions, accumulated forces, and types.
The velocity of each particle is not needed to calculate forces so velocity data are not sent. The selection of the
data to send is done by breaking particle data into two data structures {one used for communications and one that
is only used locally}. Each cell actually has two regions; the particle data which is communicated to neighboring
processors and the particle data which i1s kept locally.

Our algorithm can also be viewed as a compromise between sending individual particles and a minimal message-
passing scheme. In this latter scheme one could imagine all outgoing particles in a given processor be buffered and
only sent when all particles tagged for a given destination processor are ready. However. such a scheme would be
significantly more costly in terms of local memory and would probably prohibit runs with 108 particles.

After each force calculation, particle positions and data structures must be updated. This involves moving

particles hetween cells and processors if necessary. Moving particles between cells on the same processor is
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easily performed by copying data. When particles move between processors, one can use either asynchronous or
synchronous message passing strategies. Asynchronous methods allow each processor tc both send and receive
particles from the network while checking all of the particle ccordinates. This method is faster. but it can cause.
severe problems with network traffic and can introduce randemness into the propagation of round-off error (which
can cause a program to generate slightly different results on “identical” runs). Synchronous methods require
coordination between processors and run between 4-5 times slower. However, they eliminate all of the problems
associated with an asynchronous approach while making it easier to perform dynamic memory management.

4.2 Scaling Properties and Performance

Suppose, for the purpose of analysis, that the particles are uniformly distributed and that the region assigned to
each processor is square. Further suppose that this square region is subdivided into a collection of square cells of
equal area and define the following variables.

N = Number of particles on this processor.
¢ = Number of cells in each direction.

We first determine the approximate number of interactions. The number of particles in each cell is given by
N, = N/c2. The number of interactions calculated by each cell is then given by I, = No(N, — 1)/2 and I, = 4N?,
where I, is the number of interactions from particles in the same cell and I, is the number of interactions
calculated from the 4 neighboring cells during the force calculation. The total interactions per cell is then given
by I, = 9N2/2 — N./2. Summing over all of the cells on the processor and substituting for N. the total number
of interactions calculated is given by )

I;:cQIc:%%;——%. (11)

Next, we determine the amount of message-passing required by the force calculation. We examine the interaction

path and count up the number of times a processor boundary is crossed. The right edge contributes 2(¢ — 1)

passes, the top 2(c—2), the left 2(c~ 1) and the two top corners contribute 7 passes. The total number of message
passes is given by

M, =6c-1. (12)

The amount of data being sent on each message-pass depends on the size of each cell. The number of bytes per

cell is given by D, = N.3 = Nf8/c* where J is the number of bytes per particle. The total amount of data sent 1s

Y
(Gc—czﬂ—ﬂ. (13)

The total interaction time can now be approximated. Define the following variables :

D1 = (6C bt ])Dc =

« = Interaction time (sec/interaction).
§ = Data transfer rate (bytes/sec).
y = message-passing overhead for each send (sec).
# = bytes per particle,
The total interaction time is given by the following
D
T = I,a+M,7+T‘ (14)
9N? N NS

All the constants can be defined in terms of machine architecture specifications such as the Flop rate and network
transfer rate. They can also be determined empirically.

A 3D scaling model can be developed in the same was as the 2D model. The corresponding 3D equation is
given by

T - 9TN? N NS
- 2c3 2 cld

“_}a+(16c2—3c+1)[—+7] (16)
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It is interesting to notle that the amount of message-passing is now a quadratic function of ¢. This indicates a
dramatic increase in the amount of message-passing involved over our 2D simulations.

The choice of the number of cells has a dramatic effect on the overall performance. Looking at equation (5)
for the total number of interactions. we see that the number I, decreases inversely as the square of ¢. This alone
suggests that we should have as many cells as possible to reduce the number of interactions calculated. The
minimum number of interactions occurs when the ceil size is exactly equal to the cut-off distance (if the cells are
smaller than the cut-off the force calculation will be incorrect).

Figure 9: Molecular Dynamics impact simulation with 11.3 million particles using SPaSM. The small block impacts
the larger plate at approx. 80 % of the sound velocity. The small block (projectile) contains approx. 1 million
atoms and the larger block (target) 10 million atoms. Both have initially an FCC lattice structure.

Increasing the number of cells by increasing ¢ causes the number of message-passes to increase linearly, but
the amount of data sent decreases as 1/e¢. Generally the transfer time is significantly longer than the overhead
of setting up a message-pass sc it is an advantage to increase the number of cells in this case as well. If the
overhead for initiating a message send is extremely high, then it may be a disadvantage to increase the amount of
message-passing. This does not seem to be the case on the CM-5.

A change in density will cause the number of particles per processor to fluctuate. From our formula. we see
that the total time will vary as N2 with a density fluctuation. The effect of changing the number of processors can
also be measured here. Suppose that the number of processors is doubled while the cell sizes remain fixed. The
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effect of this is to chop the region assigned to the original processor into two equal rectangles with half as many
cells as hefore. The number of interactions on each processor is then cut in half. Since the interaction calculation
tends to dominate the overall iteration time. the effect of this is to cut the iteration time in half.

In summary, the model tells us that we should make as many cells as possible on each processor. It also tells
us that doubling the number of processors will cut the iteration time in half. These observations will be analyzed
further with cur actual timing results.

The scaling model should give reasonable results regarding the behavior of the algorithm if the constants can
be determined. The constants can be determined using fixed hardware performance specifications and empirical
observations. For a CM-5 without VUs, reasonable values of the constants are given below :

= 9 x 10~¢ sec/interaction

e’
& = 7 Mbytes/sec
v = 100pusec
il 60 bytes

a is the most difficult constant to determine. QOur determination involved measuring the calculation rate in
Flops for our code, and determining the average computation speed of each processing node. The number of floating
point operations per force calculation is then determined and the time per interaction can then be approximated
from this data. We obtained speeds of approximately 1.8 GFlops on the full CM-5 with approximately 16 floating
point operations per interaction. These quantities were used to determine the value of a given above. The transfer

rate of 7 Mbytes/sec was also a measured quantity.

Table 11. Update times for 2D SPaSM simulations on 1024-nade CM-5.

Particles | Actnal Scaling Model
16384 | ¢.0057 0.0040
65536 0.016 0.013

262144 0.053 0.047

1048576 0.19 0.17

4194304 0.69 0.67

16777216 2.56 2.63

67108864 8.83 10.42

Using these constants, we compare the scaling model with actual results for various 2D runs on a 1024-node
CM-5. For the model, one sets N to the number of particles/processor. In this case, the number of particles is
divided by the number of nodes. The results are shown in Table IL

Table 111 shows the performance of the 3D version of code on both a 1024 processor CM-5 and 128 processor
Cray T3D. For the timings, the atoms have been arranged in an fec lattice with reduced density p = (0.8442 and
reduced temperature 7 = 0.72. A Lennard-Jones cutoff of r. = 2.5¢ was used. '

In both cases, there is a near-linear relationship as the simulation sizes are increased. All simulations were
performed in double precision except those runs denoted by (SP) which were performed in single precision. These
runs were performed using a recently developed dynamic memory management scheme for allocating cells. This
has allowed us to substantially increase the simulation sizes beyond those reported in 39:.60:61:62.138 without a
significant loss in overall performance.

SPaSM is been used in large-scale fracture, crack propagation and impact computational experiment. Fig. 9

shows a typical impact simulation with 11.4 million particles.
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Table 111. Update times for 3D SPaSM simulations.

N Nown machine / Time/Step [secs] Time/Part-Update
Num.of procs. | Tioree Teomm  Iredist Tiorai [usecs]

1040000 376 CM-5/1024 0.25 0.12 .02 0.39 0.39
5000000 4883 CM-5/1024 1.16 0.33 0.11 1.60 0.32
10000060 9765 CM-5/1024 2.29 0.48 0.21 2.98 0.30
30000000 48825 CM-5/1024 11.26 1.83 1.11 14.20 0.28
100000000 | 97650 CM-5/1024 23.7 2.50 1.99 2819 0.28
150000000 | 146484 CM-5/1024 34.8 3.52 2.94 41.26 0.27
300800000 | 293750 CM-5/1024 78.17 5.45 6.97 90.59 0.30
300800000 | 293750 | CM-5/1624 (SP) | 102.34 17.14 343 12491 0.41
600000006 | 5835937 | CM-5/1024 (SP) | 201.37 29.78 10.58  241.73 0.40
160000 781 T3D/128 0.066 0.021 (.006 0.093 0.93
500000 3906 T3D/128 0.307 0.056 0.024 0.387 077
1000000 7812 T3D/128 0.62 0.G5 0.05 0.72 0.72
5000006 39062 T3D/128 2.96 0.61 0.29 3.86 0.77
10000000 78124 TaD/128 5.80 0.64 0.49 6.93 (.69
30000000 | 390623 T3D/128 28.06 2.51 2,52 33.09 0.66
75000000 | 585937 T3D/128 42.02 1.14 3.79 46,94 0.63

5 A Parallel Verlet Table Method: Boston University-TMC’s MD
program.

In this section we describe a representative parallel Verlet table method. It is an improved version of the Boston
University-Thinking Machines Corp. MD program which was first introduced in ref. 64. The original program is
written in C (3200 lines} with message-passing calls using the CMMD CM-5 library.

5.1 Basic Description.

The use of Verlet neighbor tables inside each processor allow us to save the computation of pair-interactions not
needed for the force calculation. The cost one has to pay for this savings is the additional memory to store the
tables and the additional complexity of the code to build them. The method divides the computational space
in spatial domains that are assigned to each processor (cell-processors) and subdivides the space inside the cell-
processors with internal sub-cells to optimize Verlet neighbor table construction. The sub-cell and cell-processor
layouts are simmlar to the algorithm described in the previous section. At any stage of the algorithm, each particle
1s “owned” by a cell-processor. Particles are distributed in such way that each cell-processor is associated with a
rectangular volurme of space and the particles it owns are those contained in this “proper” volume as is shown in
Fig. 10. We will assume that the processor cells are large enough that the cell length in each direction is longer
than the cutofl distance (v, < I}. Every particle inside the interaction range of a given particle lies in that particle’s
own cell or one of its 26 neighbors. An “extended” space is defined to include the particles in neighboring cells
lying within an interaction range from the boundary. If a particle’s coerdinates do have to be communicated from
one cell-processor to a neighboring one, it is likely that they will be needed far more than one pair-interaction.
This gives means to minimize the data flow required to go from cell-processor to cell-processor by using a block
mode communication. This block communication can be implemented with standard message-passing functions.
Similar communications schemes have produced very good results in other unstructured problems such as cluster
labeling in Monte Carlo simulations'?”.

A regular time step of the MD simulation consists of a communication step followed by the force computation and
finally tniegration of the equations of motion. Belore sending particle information to a neighboring cell-processer
the relevant particles’ coordinates inside the exfended space near the boundary, that we will call “own-shared”,

are gathered in a buffer as determined by a list of pointers corresponding to that extended space region. Then
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Cell-Processor Layout
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Figure 10: Proper and extended volumes for parallel Verlet neighbor table method.

each cell-processor sends them to a neighboring cell-processor using send and receive “blocking” message passing
functions., At the other side the neighbor tables of some particles will include pointers to this buffer of particles
that we will call “visitors”. A set of own-shared particles in one cell-processor became the visitors in another cell-
processor after communication and exchange of particles has taken place (see Fig. 11). A full exchange of particles
involves 26 message-passing calls: one for each neighboring cell-processor. This procedure reduces overhead by
eliminating intermediate storage and minimizes communication calls. A simple pseudo-code deseription of the
communication step is as follows:

Communication Step (Executes on all cell-processors simultanecusly)

Variables:
Source : Neighboring cell-processor sending data
Destination : Neighboring cell-processor receiving data
Cutput_Buffer, Receive Buffer : Buffers for own-shared and visitor particle coordinates
Communications()
For directjon =1 to 26 {
Copy_U0wn_Shared_to_Output_Buffer{direction}
Source = Processor_Neighbor(negative_direction)
Destination = Processor_Neighbor{direction}

Send_And_Receive(OQutput_Buffer —-> Destination, Source --> Receive_Buffer)
Copy_Receive_Buffer_to_Visitors(direction)
b

end (Communications)

Once each cell has received the 26 buffers from the neighboring processors then the forces can be computed using
the Verlet neighbor tables. The result is the fotal force on all own parficles. To perform the force computations
four basic data structures are maintained in each cell-processor:

i) An array of own particle coordinates and velocities. These are, on average, p-I° own particles initially in the cell.
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Cell-Processor and associated data structures
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Figure 11: Cell-processor layout and data structures.

it) An array to hold the coordinates of visiting particles which are particles owned by one of the 26 neighboring cells but
lving within an interaction range of a face (extended space). There are on average p{{l + 2r.)* — I*) such particles.

iif) A Verlet neighbor table with pointers to each ewned particle’s neighbors. This table includes oun-own and own-visifor
interactions but not visilor-visitor interactions.

iv) 26 arrays of poiniers to oun particle coordinates to be sent to each of the neighboring cell-processors. These data
structures are represented by rectangles in Fig. 11.

The computation of the forces requires to fetch the particles’ coordinates according to the Verlet neighbor

tables, evaluate the distances and the Lennard-Jones forces, and finally, accumulate the resulting accelerations.

An explicit implementation of this procedure is shown below.

Force Computation (Executes on all cell-processors simultaneously)

Variables:
N_own : Number of particles in the cell-processor
x_cwn[N_own] : Array of particle coordinates (NOTE xyzxyz storage mode)
Index[N_own] : Array of entry peints into Verlet neighbor table
Number_of_neig[N_own] : Array which contains the number of neighbors for each particle
Verlet_own_own[N_own_own] : Verlet neighbor table with own-own interactions
F_own[N_own] : Array of particle accelerations {NOTE xyzxyz storage mode)
E_potential, LJ_range_2 : Potential energy scalar variable and potential cutoff (squared)

Compute_Forces()
E_potential = 0.0
For 1 = 0 to N_cun {
For j = Index[i]l] to Index[i] + Number_of_neig[i] {

n2 = Verlet_own_own[j]

dx = x_own[i] - x_own[n2]

dy = x_own[i+ 1] - x_own[n2 + 1]
dz = x_own[i+ 2] - =x_own[n2 + 2]
r_sqr = dx*dx + dy*dy + dz=dz
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}

If ( r_sqr < Ll range 2 ) {

r_2 = 1.0/r_sqr

r_6 = r_2%r_2#%r_2

force = 24.0%xr_2%r_6+(2.0*r_6 - 1.0)
E_potential = E_potential + 4.0%r_6*(r_6 - 1.0)
F_ownfi] = F_ownli] + force*dx

F ownli + 1] = F_ownl[i + 1] + forcexdy
Fownf[i + 2] = F_ownl[i + 2] + forcexdz
F_own[n2] = ¥_own[n2] - force=dx
F_own[n2 + 11 = F_own[n2 + 1] - forcexdy
F_own[n? + 23 = F_own[n2 + 2] - force=dz

end (Compute_Forces)

This code segment corresponds to the own-own interactions. The own-visitor interactions are computed in a
similar way, using the own-visitor part of the table, but Newton’s third law is not used for these interactions. After
the forces have been calculated each cell-processor integrates the equations of motion to obtain new velocities and

positions for all the own particles.
Now we turn our attention to the construction of the Verlet neighbor tables. In a similar way as in the case
of any serial Verlet neighbor table algorithm, the tables have to be reconstructed from time to time. The flow of

control of the full program locks like this:

Main Time Loop (Executes on all cell-processors simultaneously)

Variables:

Max_iterations : Number of time steps

N_update : Frequency of update for Verlet tables
Main()

Read_Parameters()
Initialize_Particles_and_Geometry()
For time = ¢ to Max_iteratioms {

}

if (time mod N_update = 0}) Build_Verlet_tables()
Integrate_Positions ()

Communications()

Compute_Forces ()

Integrate_Velocities()

end (Main)

Building the Verlet tables adds some complexity to the code but saves precious computation time. The neighbor
table construction can be summarized by the following operations:

i)

A commurication step as in the force calculation to update the positions of the visitors in each cell-processor. After
the exchange each cell-processor scans through all particles (owned and visitors) and keeps only those particles that
still reside in the proper volume of the cell-processor. If there has been no error, i.e. no particle has moved more that
&, this is gnaranteed to place all the particles in the correct cell without a global resorting. An error can be detected
by simply counting particles at this stage.

A communication step to sent the particles’ velocities to neighboring cell-processors.

A search of own-shared particles to define the 26 lists of pointers to particles that ate near the boundaries. Once
the lists have been constructed their sizes are sent to the appropriate neighboring cell-processor. This allows each
cell-processor to allocate memory for the visitors it will receive in the 26 blocks of incoming data at every regular
time step.

A communication step to send the newly defined own-shared particles’ coordinates.

Verlet neighbor table construction. Each cell-processor sorts the own and wisitors particles according to the particular
sub-cell they belong to, and then scans the coordinates to produce new own-own and own-wvisitor tables. These tables
take into acconnt Newton’s third law only for the own-own section.
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The memory for the Veriet neighbor tables can be allocated dynamically as needed. In the next section we will

see how to compute initial estimates for the table sizes using an approximate scaling model.
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Figure 12: Scaling model: communication and computation times.

5.2 Scaling Properties and Performance.

In order to model the performance of the algorithm, we must estimate the number Nt of own-own inter-
actions per processor, and the number N37! _,. .. = of own-visilor interactions per processor. Assuming uniform
average density p these are related by: 283+ N2t L= ZN Noyn, where Nown = pl°, 1 is the linear
size of the cell-processor region and N, = pri.

We can calculate N3t directly frem:

NG e =t [ #2[ Fge(i-gisr) (an
cell cell
The double volume integral gives,

ABxrd 3Par? 815 of

(18)

3 2 5 6
from which we deduce:
Nown—.shared = Slvc + 12 J?V-.':% J’Vawn% +6Nc%Nowﬂ% (19)
rint _ _‘NCQ 4 ‘VC% A’rown% 3 NC% Nown % ks 2 .Nc ivawn T

J\oun—oun - 19 5 - 4 + 3 (20)
. N2 OBNI Nownd 3N Nounta

A}rtnt o — < 4 cwn z swn 91
oun-~visitor 8 5 + 9 ( )
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These are the basic formulas we will use to build an scaling model for the timings. When we compare these
formulas with real simulation data we can see reasonably good agreement as shown in Table IV. For large systems
the values predicted by the formulas fall within 4 % of the measured values.

Table IV. Comparison of values of Nown- shareds Ninb_oun and Ni5L_ . ... predicted by the formulas (Eq. 19-21)
and simulation data for a typical simulation of a homogeneous liquid (64-node CM-5E).

N Nou"n l\lown—shared Nc':?utn—own Nc'aatn—we:tor
Model (Eq. 19) Sim. Data | Model (Eq. 20)  Sim. Data | Model (Eq. 21) Sim. Data
32000 500 1815 1920 12923 12416 12968 12677
256000 4000 5483 5749 127755 123140 54995 53723
4000000 | 62500 28489 29698 2247928 2170347 355777 347413

Now we can extend the scaling model to predict timings. We express the time per step as a sum over four

terms,

Tiotal = Tiaste + Tfnrce + Teomm + Ts'n'l (22)

where Tigpie is the time to construct the neighbor table; Ty.pee the time to perform the force calculation; Teormm
the communications time, and finally, Tin; the time to integrate the equations of motion. The scaling of Tiqs1e and
Tine 18 simply a linear function of Nyyn,

Ny

Twe = 7 (23)
update

Tint = wi¥oun, (24)

The coefficients ¢ and w, which can be obtained from a test simulation, characterize the effective time to
compute a table entry and to integrate the equations of motion for one particle respectively. fupdute i the table
update frequency. The fact that we use sub-cells te build the neighbor table implies that o is of the form 27N aqauie
where a¢gp is the time to compare two particles’ distance and produce a table entry if it is less than r,. The time
to perform the force calculation is proportional to the total (own-own + own-wisitors) number of palr-interactions,

Tforce = (Nol.‘:li'tﬁowrl + N;E;—visiiora)a (25)

where o characterizes the time te compute one pair interaction. If we assume that to evaluate the Lennard-Jones
force one requires nr; floating point operations, for example nr; = 32, and a will be equal to nry/(flop-rate).
Tyorce has a complex functional form involving different powers of Nyy, and then it is desirable to simplify the
scaling model by taking only the leading term for Ni2} _ ...,

2
Tforce = gNemaNown. (26)

The communication times scale with the number of own-shared particles,

Teomm = QNown—aharedg (27)

where 3 is just the number of bytes per particle and 6 the effective communications rate for message-passing
exchanges. Here again we simplify by taking only the leading term,

1 2
T = 2 6N3 %N;wﬂ (28)

which is equivalent to disregard “corners” and “edges” and consider communications on the “faces” only. The
facter of two accounts for the bi-directional nature of the communications.
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Taking these approximations into account the scaling model becornes,

. 2 . , v .‘3 .3 T z ¢
Tiotat = ( z +w+ Ti\'c"'rﬂ’) Nown + 12N7 - Neoyn = ANgun + BNGun (29)
fupdﬂte 3 b

[

Where we define A = o/fypaare +w + 2N 7 /3 as the “computation” coefficient, and B = 12/ '61/3;3/6 as the
“communication” coefficient. Their numerical values will depend upon the particular machine and implementation.
The scaling behavior of the algorithm is basically determined by two terms: a “bulk” term that accounts for all
the internal cell-processor computation and scales linearly with Ny, and a “surface” term representing particle
exchanges across cell-processor boundaries and scales with Nn%m. Tig. 12 shows the scaling model: T}, ... and
T preer compared with actual measured timings for the program. We have parameterized the model with values
of a, 4§, ¢ and « measured in one of the simulations with Ny = 32, 000 running on a 32-node CM-5E:

a = 2922x107°% computation rate in secs/interaction {(30)
= 7x10°% effective cne — directional communications rate[Mbytes/sec]
o = 5x107* table construction time in secs/particle

w = 5x107% integration time in secs/particle

These numbers allow us to estimate A = 0.000111 secs., B = 0.000145 secs. and B/A = 1.31.
The other (fixed) parameters of the simulation are,

# = 32 number of bytes per particle (31)
p = 0.8442 density : number of particles/unit volume
r, = 2.5 potential cutoff distance
& = 0.3 secunty distance
fupdate = 25 table update frequency

As one can see in Figs. 12 and 13, the scaling model describes reasonably well the behavior of the measured
data except for small values of N,y n. Asymptotically for larger values of Npyn. the scaling model converges to the
measured timings. In the figure we also show the values of the more exact times T.omm and Ty,rc. which fit the
data better as expected. The total times, shown in Fig. 13, include the scaling of Tiase and T3, parameterized
with the values of ¢ and w shown above.

The scaling model also provides a way to estimate the sizes of the Verlet neighbor tables. For example, if
one has a homogeneous system one can estimate the initial allocation size of the tables with the leading terms of
Nin'l and N:’nt

own—own pwn-—visitor?

i 2
1V;,1.zne_ swn  — E.NC NownT (32)
T3ize 3 '.;7 %
own—visitor — §‘Nc Niinw. (33)

These formulas overestimate the sizes slightly. If during the simulation more table entries are required, then
the program increases the table size in fixed chunks.

The speed-up S, of a parallel algorithm characterizes the effective number of processors being used by the
simulation. It is defined as the simulation time on one processor divided by the time on p processors,

Tserial‘

S, =
p .
T‘iotai'

(34

28



=

1000 - I\-i" T TTTTTS T wl\l\l\i T -TT IH‘ T \HIFIIT
o B4—node PN CM-5E

; = 32 PN CM-5E
100 'E— - - BScaeling model

™

10 a

Total tirnes

T TIHﬂli
a

0.1

0.01

Time [secs]
[ 4
B
-]
[}
"
IJIIH& | Il]llit\. 1 LllUilLJ_LLU_U_[I_LLlJ.LLU.I_l_I_ﬂJ_LU

Li!llll | LLHHFI | ILILIHI L JlJl!||| [

100 1000 10000 100000 10°
Nown = Ntotal/p

Figure 13: Scaling model: total times.

For our scaling model the speed-up is then given by,

AN, ANgw
Sp = - A total - = - 4 ounl . (35)
ANpwn + BNGun  ANgun + BNGun
and multiplying numerator and denominator by (ANyyr)~! we obtain,
Sp= —F—r (36)

= —.
1+ ENe
Now we can compute the efficiency E, = S;/p,

1

= ——— (37)
L+ S Nwh

Ep
One obtains a very simple scaling picture for this algorithm: for a given value of the ratio (B/A), the relative
speed of communications to computation, the efficiency is a universal function of Npwn. If one plots values of E}
for different system sizes (N;), and number of processors (p), as a function of Noyn; all the data should collapse
onto a single curve. To test this behavior we plot K, and compare it with actual efficiency data in Fig. 14. The
agreement is better for larger Nyyn as expected. This universal behavior can also be seen in Fig. 2.
Assuming the communications network is scalable, the scaling behavior is completely determined by the number
of particles per cell-processor Nyywn. The smaller the ratio B/A and the bigger Ngwn the better the efficiency.
In addition one tries to make A and B as small as possible to reduce absolute timings. The SPaSM program
described in the previous section has very similar scaling behavior. Table V gives detailed timings for different
| system sizes.
‘ It is common to plot the speed-up as a function of total system size and number of processors Sn(p). Fig. 15
shows Sn(p) for three systems sizes N = 128,000, 1,750,060 and 7.000, 000.
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To conclude this section let us add that the method described here is general and can be implemented easily
in almost any paralle]l MPP machine or cluster of workstations!?®. By using Verlet tables in combination with
coarse-grained processor cells it attains secalability and efficiency in communications and computation even with
large numbers of processars. The absolute performance per processor is high as can be seen in the last colummns of
table 1. The price to pay is an increase in the number of data structures {memory) and operations to support the
Verlet neighbor tables. The increased complexity makes this method more difficult to implement than a purely cell
based method; however, the effort to implement it is comparable to the one of many other typical computational
science problems (hydrodynamics, plasma simulations, multigrid solvers, etc.).

6 Perspective: Quo Vadis Molecular Dynamics 7

With the capability to simulate faster, larger and more complex systems, we have the possibilit’y to address a
number of novel research problems in Statistical Mechanics, Material Science, Chemistry and Biology. In this
section we briefly review some of the problems and specific areas in which short-range parallel MD algorithms,
such as the ones discussed in this paper, can make substantial centributions before the end of the decade (many
of them within the lifetime of a graduate student !).

Simulatlions of materials ai the alomic level Macroscopic properties of materials (strength, hardness ete.) are
determined by the properties and structure of their atomic structure. The use of atomistic computer simulations
is very important in the study/analysis/design of current and new models for materials. For example, the study

of crack formation in tensile experiments!?%130-131; ¢hear-stress relaxation'®3, shock waves propagation!?134

13

and

3: simulaticns of molecular indentation for elastic and plastic
13

their interactions with defects in crystal structures

deformations!3%:137; the elastic properties and collision behavior of fullerenes!'®®; and hydrogen embrittlement in

metals!d
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Table V. Boston University-TMC 3D simulation timings.

N Nown | Machine (procs) Time/Step  [secs) Time/Part-Update
T!able chrce Tcomm rI—:nz ﬂotal {musecs]

8192 256 CM-5E (32) | 0.008 0.027 0.016 0.001 0.052 6.321
16000 300 CM-5E (32) | 0.021 0.051 0.017 0.002 0.091 5.705
65536 2048 CM-3E (32) | 0.054 0.196 0.036 0.010 0.299 4.562
128600 4000 CM-5E (32) | 0.102 0.369 0.053 0.020 0.549 4,286
281216 8788 CM-3E (32) | 0.193 0.812 0.083 0.044 1.141 4.058
432000 13560 CM-5E (32) | 0.300 1.235 0.107 0.067 1.724 3.990
1024000 32000 CM-3E (32) | 0.642 2.914 0.178 0.159  3.%30 3.838
2000000 62300 CM-3E (32) 1.172 5.635 0.271 6.310 7.457 3.728
3456000 ; 108000 CM-5E (32) | 1.931 9.693 0.382 0.539 12.66 3.664
7023616 | 219488 CM-5E (32) | 3.776  19.587 0.582 1.080 25.26 3.597
16384 256 CM-5E (54] 0.007 0.027 0.012 0.001 0.048 2.926
32000 500 CM-5E (64) | 0.01% 0.030 0.017 0.002 0.089 2.786
131072 2048 CM-5E (64) 0.052 0.196 0.036 0.010 0.297 2.266
256000 4000 CM-5E (64) | 0.102 0.369 0.052 0.020 0,548 2.140
362432 8788 CM-5E ( 4) | 0.188  0.811 0.083 0.044 1135 2.018
864000 13500 CM-5E (64) | 0.290 1.228 0.106 0.067 1.706 1.974
2048000 32000 CM-5E (64) 0.625 2.909 ¢.177 0.161 3.909 1.908
40000400 623500 CM-5E (64) | 1.153 5.632 0.270 0.311 7.434 1.858
6912000 | 108000 CM-5E (64) 1.912 9.703 0.377 0.531 12.640 1.829
128000 500 CM-35E (256} | 0.013 0.048 0.022 0.002 0.087 0.679
1769472 6912 CM-5E (256) | 0.123 0.620 0.089 0.035 0.875 0.494
3456000 13500 CM-5E (256) | 0.289 1.201 0.142 0.067 1.714 0.496
7023616 27436 CM-5E (256) | 0.476 2,434 0.207 0.136  3.283 0.467
43904000 | 171500 CM-5E (256) | 3.430 14.77 0.623 0.832 19.65 0.448

Stmulation studies of homogeneous crystallization, nucleation, crystal structure and phase separation. A com-
prehensive understanding of these complex processes is still missing despite their potentially important industrial
applications. Many fundamental questions remain open: what is the dynamics of early crystal growth and what

is the relevant droplet definition!3%:142:332 2 What is the structure and dynamics of phase separation, domain

114 145

growth'?3 melting!?? and coexistence phenomenal#® 7 How important are finite size effects!46:45 2

Ergodic properiies, relazation and diffusion. There are many problems in the dynamical foundations of Statis-
tical Mechanics which are related with the structural behavior of materials. For example, stochastic transitions

and structural relaxation in supercooled liquids and glasses!?%:138:119 and the scaling of time-dependent diffusion

coefficients!®3.

Dynamics of Polymers. The understanding of the Physics of polymeric materials is of great interest from
the point of view of fundamental Statistical Mechanics and for its technical applications in industrial processes.

Large scale simulations bridge the gap between experiments and theory and allow the building and testing of

mode]sl5°*151’152

Atomistic Hydrodynamics simulalions. Large scale MDD simulations offer a novel approach to the study of

153,154

hydrodynamic flow instabilities and patterns and a powerful tool for the analysis of the intermediate region

between hydrodynamic and kinetic behavior!®®.

The Physics of granular assemblies and complez fluids. The study of granular flow, friction and dilatancy

157,158,159 js very important for many geophysical phenomena such as rockslides and earthquakes. MD

160

transitions
provides a tool to study complex structures such as fullerenes and Si-clusters®™ and to simulate complex flows

161 (0il and water) and complex fluids in general!®? is important for the Oil

The modeling of surfactant behavior
and Environmental industries. For more information about granular dynamics see Ristow’s review in vol. 1 of this
series.

As we can see there is no lack of important, interesting and challenging problems that can be addressed by

parallel MD algorithms. Now that we know of efficient and scalable methods for parallel short-range MD can
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Figure 15: Speed-up as a function of system size and number of processors.

we go home and have a beer 7 Perhaps, but there are outstanding problems on the table: load balance for
non-homogeneous problems has to be addressed; long range and more realistic potentials have to be incorporated
using multipole or alternative methods; the simulation of stow diffusive molecular processes is still a big challenge
even though the gap between the time-space scales in the simulations and those analyzed in real experiments has
been reduced. The wide range of time scales 1s still a formidable problem for the simulation of glasses, polymer
blends, biomolecules and proteins. The simulation speed for small systems (1000-10,000 atoms) has not improved
as dramatically as in the case of large systems. There is a clear need for better methods because even taking into
account the doubling of speed of the computer hardware every two or three years, not all the remaining problems
will be solved by just faster computers. This is 1n part a fundamental problem of the MD approach.

We have come a long way from the MANIAC days but we still have a long way to go as the editor of this
series, a seasoned Monte Carlo veteran, reminds us: “Nature is still far ahead, if we look at the 10?® molecules in
a glass of beer®® ” Cheers Mr. Editor, and with this sobering note we come to an end.
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