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4.3 Symplectic transformations in N =2
N ,pn can be defined by .

O, F, = N6, X" (4.19)
This relation is maintained if (X*, F,) transforms under Sp(2n,IR) in the same way as

(F, uv’ ( 1. ). Remark that the Kahler potential is also a symplectic invariant:

K =i(F; X" — P, XYY =ViQv . (4.20)
Explicitly, such a transformation is of the form

XA — AI.BXB 4 B.-iBFB ,
Fy = CpXB4+DPBFg. (4.21)

When we start from a prepotential F(X), the F,, are the derivatives of F, so that the
first line expresses the dependence of the new coordinates X on the old coordinates X.
If this transformation is invertible (the full symplectic matrix itself is always invertible),
the ), are again the derivatives of an new function F(X) of the new coordinates,

- - AF(X)
Fa(X) = =527 (4.22)
The integrability condition for this statement is the symmetry of
OF, =(C + DN)(A + BN)™! (4.23)
axe '

and is thus the same as (4.8), which was the condition that & € Sp(2n,IR). Hence we
obtain a new, but equivalent, formulation of the theory, and thus of the target- -space
manifold, in terms of the function F'. Note that the argument for the existence of F only
applies if the mapping X — X is invertible.

In view of the above, the field equations corresponding to two supersymmetric Yang-
Mills actions characterized by different functions F{X), can be identical up to a symplectic
transformation. In that case the two functions describe equivalent classical field theories.

Hence we may find a variety of descriptions of the same theory in terms of different
functions F'.

Now it may happen that the new theory is the same as the old one: if

F=F+a+q X' +cipX'X?, (4.24)

where a and ¢, can be complex, but ¢y should be real. E.g. the symplectic transforma-
tions with

(3 9 =

are of this form. In these cases we are dealing with an invariance of the equations of
motion (but not necessarily of the action as not all transformations can be implemented
locally on the gauge fields). This invariance reflects itself in isometries of the target-space
manifold. (Not in (4.25), as there are no transformations on the scalars.)
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4.4 Interpretation of fields as moduli of a Riemann surface.

Riemann surfaces parametrized by n(= 1) complex moduli.
Seiberg-Witten: Landau-Ginzburg superpotential

, 1 L
0= WX,Y,Zu) = 2" + | (X' +v7) + gxlyz (4.26)

Identify
U, = (t; ::l) (i=1,...n = genus) (4.27)

of the » holomorphic 1-forms w' along a canonical homology basis:
AyNAp=0; B'nB?=0; A,nB?=-BYna,=¢6%. (4.28)

Using Griffith residue theorem (C is any cycle ad + bB)

0o (Jewy _ Jo wixyzm X NdY A dZ .99
N fe@/ 174X (4.29)
C ; ANdY ANdZ

20X,

" Ziu)
Leads to Picard-Fuchs equations on the periods. These are the same as the differential
constraints of special Kahler spaces.

Using very general techniques of algebraic geometry, the dependence of the periods
U;(u) on the moduli parameters can be determined through the solutions of the Picard-
Fuchs differential system, once the manifold is explicitly described as the vanishing locus of
a holomorphic superpotential W(Z, X,Y; ;). In particular one can study the monodromy
group ['a; of the differential system and the symmetry group of the potential I'y, that
are related to the full group of duality rotations I'p as follows:

Cw = Ip/Tn (4.30)

The elements of T';; = I'a; are given by integer valued symplectic matrices v € Sp(2n,2Z)
that act on the symplectic section U,. Given the geometrical interpretation (4.27) of
these sections, the elements v € I', C Sp(2n,Z) correspond to changes of the canonical
homology basis respecting the intersection matrix (4.28).

E.g. for n = 1, writing all connections explicitly, the differential equations that were
mentioned in the coordinate independent treatment can be written as

@-TW.+CU'=0; (8+DVW'=0. (4.31)
Combining these we have: ) .
(+L)C (8 -D)U;=0. (4.32)
Similar differential equations can be obtained from (4.29):
2u 11
2 f— —_— == .
(a = at? 41—u?)f(u) 0. (4.33)

where f(u) is a component of (4.29).
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5 Supergravity

5.1 Vector multiplets coupled to supergravity

Construction using superconformal tensor calculus
Superconformal group:

SU(2,2|N = 2) D SU(2,2) & U(1) ® SU(2)

(related : Kahler and quaternionic couplings of vector and hypermultiplets)
In Poincaré theory: dilatations, U(1) ® SU(2) are fixed.
multiplets:
Weyl multiplet: (%,%]) + auxiliary fields.
n -+ 1 vector multiplets:

(XA,)‘M,AL’}) with A=0,1,...,n.

Invariance under dilatations @ U(1):

gives action for n + 1 vectors
n spin 1/2
n complex scalars

(hypermultiplets can also be added).
r + 1 hypermultiplets:

One extra for fixing SU(2) (+auxiliaries)
sXA = ep Xt + iEAXA.

Weyl weight: [XA] =1;
to form an action : [F(X)] = 2.

F' is holomorphic function,
homogeneous of 2nd degree in X*

When coupling n of these so-called vector multiplets to supergravity, one again has a
holomorphic prepotential F(X), this time of n + 1 complex fields, but now it must be a
homogeneous function of degree two [6].

In action —3i(X*Fy — X*Fr)eR

Gauge for dilatations:

(X Fy — XAFy)=1. (5.1)

The physical scalar fields of this system parameterize an n-dimensional complex hypersur-

face, while the overall phase of the X* is irrelevant in view of a local (chiral) invariance.
Only ratios \\—(: occur —

The embedding of this hypersurface can be described in terms of n complex coordinates
z' by letting X" be proportional to some holomorphic sections Z*(z) of the projective
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space PC'"*' [17]. The n-dimensional space parametrized by the z* (i = l,...,n)is a

Kahler space; the Kahler metric g;; = 8,8, K(z, z) follows from the Kahler potential
K(z,Z) = —log [z’Z‘\(é) F\(Z(2)) —1Z%(2) F\(Z—'(E))] ,  where (5.2)
Xt =e"Z2Mz), XN =eMZM2) .

The resulting geometry is known as special Kihler geometry (6, 8]. The curvature tensor
assoctated with this Kahler space satisfies the characteristic relation [18]

Ry = 856 + 8180 — KW W (5.3)
where )
8ZM2)8Z%(2) 8Z1(2)

8z 0z 82k

A convenient choice of inhomogeneous coordinates z* are the special coordinates, de-

fined by

Wik = Faxn(Z(z)) (5.4)

2= i=1,...,n, (5.5)

or, equivalently, 7
Z(2) =1, Z(z)=2z". (5.6)
The kinetic terms of the spin-1 gauge fields in the action are proportional to the
symmetric tensor

(Im FA[“)(IIII F}:{})X[‘X“

Nas(z,2) = Fayp + 2 (Im Fop) XEXT

(5.7)

Positivity domain: g,; > 0 and e % > 0.
We give here some examples of functions F(X) and their corresponding target spaces.

SU(1,1)

F=d[(X°) - (X' NOR (5.8)
F=(X'y'/X" ————Sg((ll’)l) (5.9)
F = JXo(X1)p ——5[;,((11’)” (5.10)

: : SU(1,n)
F =iXpc X* STm) @ U(0) (5.11)
F=dpc X' X¥X¢/ X" ‘very special Kahler’ (5.12)

The first three functions give rise to the manifold SU(1,1)/U(1). However, the first one
is not equivalent to the other two as the manifolds have a different value of the curvature
(22]. The latter two are, however, equivalent by means of a symplectic transformation.
In the fourth example % is a constant non-degenerate real symmetric matrix. In order
that the manifold has a non-empty positivity domain, the signature of this matrix should
be (+ —---—). So not all functions F(X) allow an non-empty positivity domain. The
last example, defined by a real symmetric tensor d.pc, defines a class of special Kahler
manifolds, which we will denote as ‘very special’ Kihler manifolds. This class of manifolds
is important in the applications discussed below.
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5.2 Coordinate independent description

_ X‘.\ n+2
V= (F,\ ) e ¢

function of n complex variables z'.
Constraint:

V., Vy=viav = .

Covariant derivatives have U(1) connection, e.g.
1
nx_(a+;axﬂx.

where K(z,z) will be the Kahler potential.
Symplectic sections are covariantly holomorphic:

V = eK/Q'u(z) .
Constraints:
U,' = D,V = (D,‘XA,D,'LA)
D,‘UJ‘ = ?:C,'jkgkig{
D.‘I—Ij = gijV
DV = 0.
leads to )
gi; = WU, Uy}

5.3 Symplectic transformations

The same principles which were explained in rigid supersymmetry also work here. The
duality group on the vectors is Sp(2(n + 1),IR). Again the relations from supersymmetry
remain valid if we simultaneously transform the vector (X?, F}).

Therefore

o If F(X) is the same function (or F(X) = F(X) + cax X2 X*):;

proper symmetry
(and isometry of scalar manifold)

e If F(X) is different function:
pseudo symmetry
(symplectic reparametrisation)
(Cecotti, Ferrara, Girardello)
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5.4 Examples
Example 1: F = (X')}/X°

1 0 0 0
S (A B) (0 0 0 1/3
¢ D 0 0 1 0
0 -3 ¢ 0
leads to F' = —4,/ X(X1)?
is a Symplectic reparametrisation.
On the other hand
1+ 3¢ 7 0 0
g A I+e€ 0 2u/9
0 0 1—3¢ —A
0 —6A - 1—€

for infinitesimal €, u, A leaves F invariant:
SU(1,1) isometries.
8z = A — 2ez — puz?/3.
Domain: Im z > 0:

SU(1,1)
U(1)

Example 2 : F' = XX

¥e
_fr= 0
N*(o 1-;;;)-

e, = _iRe [z (F;,U)2 — 3z (F+1)2]

in action:
1 e

As ‘50(4) formulation’ of pure N = 4 SG.

1 0 0 0
. . 0 0 0 -1
Symplectic mapping § = 00 1 0
01 0 0
Transformation 1s
X'=Xx" X' = -F = —iX"
FU - FU ﬁl - Xl .

Non-invertible : o
No coord. transform. between z = X'/X" and X", X'
Also F = 0. However, A + BA is invertible

N = (C + DN)A + BN)™ —iX'(X")'1.
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So now
(performing only symplectic transf., no diffeomorphism)

e'L, = 1Re [ (Fio)' - 2z (FJ})Z]

As ‘SU(4) formulation’ of pure N = 4 5G.

—= there are formulations one can not directly obtain from a superspace formulation
with a function F.

Similarly for matter couplings in model

(only factorised special Kahler manifold !)

SU(1,1) $0(r,2)
U1y © SO(r) ® 50(2)

First formulation with F = dagcX 1X7XC

X0
(very special)
New formulation with:

XA‘I]A);XZ:O; FA:ST],\EXE

has full SO(2,r) as invariance of action.

6 Real and quaternionic special spaces; homogeneous
and symmetric special manifolds

€ map

special Kahler to special quaternionic

(reduction d = 4 to d = 3).

from n complex to n + | quaternions.
r map

very special real to very special Kahler

reduction d = 5tod =4

from n — 1 real to n complex

real — Kahler —  quaternionic
n—1 rmap T ¢ map n+1
homog. —  homog. — homog.

We now consider the so-called ¢ map [2] from a special Kahler to a quaternionic
manifold. It is induced by reducing an N = 2 supergravity action in d = 4 space-time
dimensions to an action in d — 3 space-time dimensions, by suppressing the dependence on
one of the (spatial) coordinates. The resulting d = 3 supergravity theory can be written
in terms of d = 3 fields and this rearranges the original fields such that the number of
scalar fields increases from 2n to 4(n + 1}.

The notion of special Kahler manifolds induces also a notion of ‘special quaternionic
manifolds’, which are those manifolds appearing in the image of the ¢ map. Similarly,
very special real manifolds are the manifolds defined by coupling (real) scalars to vector
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multiplets in 5 dimensions (characterised by a symmetric tensor digc). Very special
Kéhler manifolds are induced as the image under the r map {dimensional reduction from
5 to 4 dimensions) and very special quaternionic manifolds as the image of the cor map.

These very special manifolds contains all known homogeneous non-symmetric quater-
nionic spaces. The homogeneous {and symmetric) special manifolds are listed in table 4
and table 5.

Table 4: Symmetric very special manifolds

real Kahler quaternionic
5U(1,1)]2 50(3,
L{-1,0) SO(1,1) S AM(SU(”;)“P
SO(P+1,1 SL{1,1 S0{P+2,2 SO(P+4,4)
L(0, P) 50(1,1) @ S(_E(PH)) {.Jf((l)) @ sr)(PJ(rz)@;S(%(z) .S()(1’+(~4)®S()(4)
L(1,1) 56(3,R) Sp(6 Fy
) 500 T{3) 7 5p(61R5U(2)
L(2,1) 5€(3,.C} 50‘&3,3) o
’ SU(3) SUB)RSURU{L) SU{6)sU(2)
L(4 1) SL*{6) S0*(12 £y
! S5p(3) SU{6)@1/(1) .90(12)5®SU(2)
L(8,1) £y > S — Ls
’ Fi Ee@U(1) E:@SU(2)

Table 5: Homogeneous manifolds. In this table, g, P, P and m denote positive integers
or zero, and ¢ # 4m. SG denotes an empty space, which corresponds to supergravity
models without scalars. Furthermore, L(4m, P, P) = L(4m, P, P). The horizontal lines
separate spaces of different rank. The manifolds indicated by a * were not known before
our classification, except for the cases L(0, P, P)

real Kahler quaternionic
L(-3,P) 7] sﬁé’ﬁiﬁf&f&ﬁ @)
SG, G ST
L(-2, P} (J(I};(-I{,I‘})-é‘lli)(l) SU(Pfg)S;S-IEf(gg@U )
SG; Je ot ST ST
L(~1,P) | g * *
L4m,P,P)| = x *
L{g, P) X(P,q)  H(P,q) V(P,q)

7 Summary

¢ Special Kihler manifolds are those defined by couplings of vector multiplets in N = 2
SG.
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o Have n vectors (SUSY) or n + 1 vectors (SG) and n complex scalars.

e Usually defined by a holomorphic function; in SUSY: F(X*)
in SUGRA: F(X") homog. of 2! degree ‘

e Symplectic transformations lead either to isometries or symplectic reparametrisa-
tions.

¢ Relation with special quaternionic and very special real.

e Relation with moduli of Calabi-Yau surfaces, useful for non—perturbative results of
effective string theories.
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