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ABSTRACT

We give an introduction to the minimal supersymmetric extension of the SU{3) x
SU(2) x U{1) standard maodel of strong and electroweak interactions. In contrast to
the standard model itself, this model might have a simple and realistic grand unified

extension. Theoretical and phenomenoclogical properties of supersymmetric grand
unified theories are discussed in detail.

*Lectures given at the Theoretical Advanced Study Institute in Elementary Par-
ticle Physics, University of Colorado, Boulder, Colorado, June 6-July 2,1993.

1. THE STANDARD MODEL

in these lectures we shall discuss in detail the supersymmetric extenm'OT! of th;
standard model. I assume that through the previous lectures you are familiar u:-u.l
the structure and phenomenology of the standard model[1]. Nonetheless, mainly
to fix notations, let us review the basics of this model.

The standard model is based on the gauge interactions of the stro.ng and e-lec-
troweak forces with gauge group SU(3) % su(2)x U(1). It thus contains 12 spin 1
gauge bosons: B gluons of SU (3), 3 SU(2) weak gauge bosons and the hypercharge
gauge boson of U(1). The photon will be & particular combination of the neun:al
SU(2) gauge boson and the hypercharge boson. The fermions of the t.heory consist
of three generations of quarks and leptons, where we assume the existence -of the
top quark for which direct experimental evidence ist still lacking. The spin-1/2

fermions of a family have the following transformation properties with respect to

SU(3) x SU(2) x U(Q1):
0= (5) =
a=

()

£=(1,1,1)

3.2,1/6)

3,1,-2/3)
(3,1,1/3) (1.1)
(1s2| _1/2)

where @ = 1,2 is an SU(2) index and the first two entries in the brackets denote
the dimensions of the SU(3) x SU(2) representations while the last entry denotes
U(1) hypercharge. Electric charge is given by Q = Ty + Y. Thus the up-quark,
for example, has Q(u) = 1/2 + 1/6 = 2/3 whereas for the down quark we obtain
Q(d) = -1/3.

The so-called Higgs sector contains a scalar 5 U(2})-doublet

h= (:i) =(1,2,-1/2) (1.2) |

with potential V = p2(hth) + A(hth)? and one also introduces Yukawa couplings
for the interactions of the scalars with the fermions

Ly =g¢Uhd-+ g,LhE-l—guUh’ﬁ (13)
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in all cambinations that are allowed by SU(3) x SU(2) x U{1) gauge symmetry.
A spontaneous breakdown of SU(2) x /(1) occurs for negative 4% and the neutral

component of k receives a vacuum expectation value (vev)

<hv= '}’5 (';) (1.4)

where v = (—p2 /M2, SU(2) x U(1)y is broken to U{1}q and three gauge bosons
become massive

2%

2 (1.5)
Mz = 5”\/93 +93

where g; and g, are the coupling constants of SU7/(2) and U(1), respectively. The
U{1} gauge coupling constant is given by

=
g
1]

e = gzsinfw = g, cosOw (1.6)

where 61 denotes the weak mixing angle. The mass of the physical Higgs-scalar
is given by \/—_?417 Yukawa couplings then allow, in presence of the spontaneous
breakdown of SU(2) x U(1), mass terms for the fermions. The term gahlUd, e.g.
leads to gsvdd = mydd. The masses and mixings for the three families of quarks
and leptons are parametrized by the 3 x 3 Kobayashi-Maskawa[2] matrix.

Let us now count the parameters of the model. We have three gauge couplings
g1, 92 and g3 usually parametrized by aem., @strong and sin 8y . In the gauge sector
we have in addition a © -parameter multiplying a FHYFP¢ 00 in the action. Its
actual value seems to by very close to zero as can be deduced from the absence of
the electric dipole moment of the neutron. Nonetheless we have to treat © as an
arbitrary parameter and it still has to be understood why its value is so small.

In the Higgs sector we have introduced two parameters u? and A of which
one combination defines the scale of SU(2) x U(1) breakdown while the other
determipes the Higgs mass. The 9 fermion masses (not including the possibility for
neutrind-Majorana masses) are parametrized by the Yukawa couplings. The same
applies to quark mixing consisting of 3 angles and one phase in the Kobayashi-
Maskawa matrix, the latter giving rise to CP-violation, We do not know yet
whether there is a corresponding mixing in the lepton sector. In any case we can

conclude that the above mentioned quantities are completely free parameters in
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the standard model. Any attempt to understand their specific values will require
a generalization of the model. Apart from these questions we have eventually also
to address the more fundamental puzzles out of which T shall mention some in the
following. Why 15 the gauge group SU(3) x SU(2) x U(1), why is SU(2) broken
and why at a scale of 100 GeV and not at the Planck mass? Why is the mass of
the proton 1 GeV and is this scale related to other physical scales? Why do we
have this repetition of families, why 3 families and why does a family not contain
exotic representations of SU(3) x SU(2) x U(1) (like e.g. a 3 of SU(2))?7 Why are
neutrinos massless (are they”) and why is the electron mass so small compared to
the W_mass? These and many more related questions are the subject of discussions
of the physics beyond the standard model.

One important property of the standard model is the chirality of the fermion
spectrum. Fermion masses are protected by SU(2) < U(1), i.e. they can be nonzero
only after SU(2) x U(1) breakdown. Thus all fermion masses are proportional to
the vev of the Higgs-field (1.4} and this explains why fermion masses cannot he very
large compared to Mw . 1t does, of course, not explain why the mass of the electron
is so small compared to My and also the smallness of neutrino masses remains a
mystery. Only the top quark seems to be as heavy as allowed by SU(2} x U(1). We
will regard this chirality of fermions as a very important property of the standard
model and will therefore in the course of these lectures only discuss extensions
that share these remarkable properties.

Another important symmetry of the standard model is baryon (B)- and lepton
(L) number conservation. From the requirement of gauge invariance and renor-
malizability (i.e. absence of nonrenormalizable terms in the action) the model has
automatic B and L conservation. Among other things this imnplies the stability of
the proton. Possible violations could come from higher dimensional (nonrenormal-
izable) terms as e.g. the one displayed in Fig. 1.1. This operator has dimension
6 and therefore the coefficient 1/M? has the dimension of inverse (mass)®. M,
denotes the seale of the new physics that is responsible for proton decay. From
the long lifetime of the proton we conclude that M; must be larger than 10'*
GeV, a very large scale. For other processes, like lepton number violation, the

corresponding scale could still be in the TeV region. It is a central question in all
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Fig- 1.1: A dimension 6 operator that could lead to proton decay.

discussions of the physics beyond the standard model to isolate these new processes
and discuss the corresponding scales.

During these lectures we shall focus on the supersymmetric extension of the
standard model, In the next section we give a motivation for the introduction
of supersymmetry in particle physics and argue that the intrinsic scale should be
in the TeV.region. Later we shall also discuss the grand unified version of the

supersymmetric model.

2. THE PROBLEM OF THE WEAK SCALE

The standard model contains a dimensionful scale of the order of 100 GeV,
represented by the masses of the intermediate gange bosons. All parameters of
dimension mass in the model are related to the vev of the scalar field that is
responsible for the breakdown of SU(2) x U(1}. If this would be the only scale in
physics we could regard this scale then as the input parameter in the model and
derive all mass parameters from it. There are reasons to believe, however, that
there exist other fundamental scales in physics such as the Planck scale around 10!°
GeV related to the gravitational interactions or a hypothetical grand unified scale
of 10'® GeV in connection with the possible unification of strong and electroweak
interactions. Compared to these scales the weak scale is tiny, in fact so tiny
that one would think that one should find an explanation for this fact. Such
a reason could be a symmetry as we encountered in the discussion of fermion
masses, where chiral symmetry protected the masses. Chiral symmetry cannot

forbid scalar masses and can therefore not explain the smallness of the weak scale.
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Let us discuss this situation in detail. Recall the Higgs potential

V(k) = u2lhl* + AR (2.1)

The Higgs mass is m = J=2u? and Mw = g2 < h >= 80 GeV. Experimental
bounds on m ceme from LEP m 2 60CeV while an upper bound of 1 TeV can

be argued from unitarity constraints. Observe that the mass scale of the standard
model Mw is solely set by the parametets u? and A in the Higgs sector.

Theoretically the model is very appealing; it is not just based on an effective:

the Fermi theory of weak interactions, but it is a renor-

Lagrangian, like e.g.
malizable field theory. This has drastic consequences for the possible range of
validity of the mode!; would it be nonrenormalizable it necessarily would only be
defined with a cutoff A (of dimension of a mass) and its region of validity would be
bounded from above by A. Above A one expects new things to happen which arn
not described by the model. Since the standard mode] is renormalizable it could
however, be valid in a much larger energy range. Strangely enough this very nic
property of the model constitutes one of its problems. The mass scale of 100 Ge?

is put in by hand and there is no understanding of its origin: it is a completel,

R

EEE

free input parameter, In a more complete theory one would like to understand th '

origin of Mw in terms of more fundamental parameters like e.g. the Planck scal
Mp ~ 10 GeV, but such a complete theory would need more structure tha
present in the standard model.

A reconfirmation of the statement that My is a completely free parameter i
found in the discussion of perturbation theory. The parameter p? in (2.1) receive
a contribution due to the graph of Fig. 2.1 which is quadratically divergent. Ther
is nothing wrong with quadratic divergencies as they do not spoil the consistency ¢
the theory; we regularize them and define the theory in terms of the rencrmalize
parameters. The actusl correction to u#® depends on the regularization schqu

and the renormalized quantity is an arbitrary parameter even if we would ha\‘L

understood its value at the tree level. This is true for all quadratically diverger *

quantities. These divergences introduce a new mass scale in the theory which he
nothing to do with the scales already present; it is an arbitrary parameter whia

we can choose at our will. To understand the origin of these masses the quadrat

}
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divergencies have to be absent i.e. they have to be cut off at a larger scale by a

new physical structure. With such a physical cutoff A we would have

5u? ~ AA? (2.2)

and to understand the order of magnitude of u? it would not be appropriate
to have A of the order of the Planck mass Mp but rather in the TeV region.
An understanding of the order of magnitude of Mw would therefore require new

physics in the TeV-region.

Fig. 2.1: Quadratically divergent contribution from the scalar self interaction.

Having agreed that the standard model might have this subtle theoretical prob-
lem one has to look for ways out. The presence of quadratic divergencies is origi-
nated by the existence of fundamental scalar particles. One way out is to remove
these scalars from the theery. Since we have to break SU(2) x U(1) spontaneously
{and want to maintain Lorentz invariance) some scalar objects have to exist; they
could be composite as postulated in the technicolour approach[3]. A new gauge
interaction becomes strong in the region of 2 few hundred GeV; leading to the for-
mation of condensates and many composite bound states. This is the new physics
in the TeV-region.

But this is not the only possible solution and we could try to insist to live with
fundamental scalar particles. Remember for this purpose the situation with spin
1 particles. Models containing spin 1 particies have usually serious theoretical
problems unless there is & gauge symmetry that makes these fundamental spin 1
particles acceptable, Observe that this gauge symmetry also stabilizes the mass of
these spin 1 particies; in the symmetric limit they have to vanish. Could we also

have such a situation for scalar masses? In the standard model, of course, such a
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Fig. 2.2: A contribution to u? from supersymmetric partners

situation is not present. We can take the limit z? — 0 and this does not enhance

the symmetry of the action.

The only known way to protect scalar masses is supersymmetry. This sym-
metry relates bosons and fermions and therefore makes bosons as well behaved as
fermions which implies the absence of quadratic divergencies. Supersymmetry pro-
vides us with the physical cutoff discussed earlier. In addition to the contribution
to u? given in Fig. 2.1 we have now a contribution of Fig. 2.2 with the supersym-
metric partner of the Higgs boson in the loop. In the supersymmetric limit these
two contributions cancel exactly. If supersymmetry is broken the masses of the

boson-fermion multiplet are split. We get a contribution
5% = M(my - m}) (23)

and we would require the quantity on the right-hand side to be in the TeV range.
If we would remove the partner with mass mp from the theory we would again
recover the quadratic divergence of the standard model. Thus to solve the Higgs

problem we have to consider new structure in the TeV-region.



3. THE PARTICLE CONTENT OF A SUPERSYMMETRIC
STANDARD MODEL

Let us now start to construct a supersymmetric generalization of the standard
model. I shall assume that the reader is familiar with the concept of global su-
persymmetry and I refer to the lectures of D.R.T. Jones [4] or a previous review
[5]-

Let us recall the particle content of the standard model. Apart from the gauge
basons G, W;, B, in the adjoint representation we have quarks and leptons in

three families with quantum numbers

@~ () =210

i =(3,1,-2/3)

d=(3,1,1/3) (3.1)
Ve

L= (e) =(1,2,-1/2)

£=(1,1,1)

together with a Higgs doublet

hO

h= (h_) =(1,2,-1/2) (3.2)

The spectrum of this model is not supersymmetric and we have to add new degrees
of freedom. There are no fermions in the adjoint representation of SU(3)x SU(2)x
U(1) and we thus have to add gauge fermions (gauginos), which together with
the gauge bosons form a massless vector superfield V = (V,,A, D). Quarks and
leptons require spin 0 partners in chiral superfields e.g. E = (2,8, Fg) where
e is a complex scalar with & quantum numbers. Next observe that the lepton
doublet has the same quantum numbers as the Higgs: could it be that o, = k~?
Unfortunately it does not work. One reason is the absence of lepton number
violation and other reasons will become clear in a moment. We thus have to add
scalar partners to all quarks and leptons. To the Higgs scalar we have to join the
pertoer spin 1/2 fermions. With these fermions § U(2) x U(1) is no longer anomaly
free and we have to add a second Higgs chiral superfield = (1,2, +1/2). In short,
every particle in the standard model requires a new supersymmetric partner and

one has to add a second Higgs superfield.

8

To construct the Lagrangian we first write the kinetic terms and the gauge
couplings in the usual supersymmetric way. We still have to discuss the superpo-
tential which contains mass terms and the supersymmetric generalization of the
Yukawa couplings. If we write the most general superpotential consistent with the

symmetries and renormalizability it will contain two sets of terms
g=9gwt gu (3.3)
Let me first discuss the term

gw = pHHE + ggL?H"éuE} +93Q?HbfanJ + 93 H.U; (3.4)

where i,7 = 1,...3 is a family index and a,b are SU(2) indices (colour indices are.

suppressed). It is not really clear whether we want 4 from a theoretical point of
view but we need it to break certain global symmetries that might be problem-
atic. I will come back to this point later. Observe that we really need two Higgs
superfields to give masses to all quarks and leptons. We can here no longer couple
the up-type quarks to h* as we did in the nonsupersymmetric case. It is then also
clear that in the breakdown of SU(2) x U{1) both Higgses have to aquire a vev to

provide masses to all quarks and leptons.

A=
Y

__-..6.._..
= W]

u
-

Fig. 3.1: Proton decay through exchange of the scalar partner of d.

Untike in the standard model where the requirement of gauge symmetry and
renormalizability automatically led to baryon and lepton number conservation we
are here not in such a nice situation. This comes from the fact that the Higgs
and the lepton doublet superfields have the same SU(3) x SU2) x U(1) quantum

9
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numbers. Consequently we have additional terms in (3.3) that we can write as
(forgetting family indices}

gu=Q% L« D+ L"EL*e, + UDD. (3.5)

These terms violate baryon and lepton number explicitly and lead to proton decay
at unacceptable rates through a process as shown in fig. 3.1 (as long as we assume
the partner of the d-quark to be lighter than the grand unification scale). The
terms in {3.5) have to be forbidden and we want to achieve this with help of a
symmetry. We can turn the question the other way around. Suppose we drop (3.5)
from the superpotential; does the symmetry increase? In fact it does. The new
symmetry is a global symmetry that, however, does not commute with supersym-
metry (called R-symmetry|[6}). Different components in the same supermultiplet
have different charges. The concept of R-symmetry can best be explained in su-
perspace. Suppose we have a symmetry that transforms 8 to e'*@; so 8 has charge

R = 1. Suppose we have a chiral superfield ¢ transforming alse with R = 1. Then
it is obvious that the scalar component transforms as

P — e (3.6)

with R = 1. But what happens to the fermion? Since R(¢} =1 we have

(88) — e'(69) (3.7)

but the phase comes already from the 8 transformation and obviously R{(y)) = 0.

The F-component of the superfield has R(F) = -1. Invariance of the Lagrangian
requires [ d28g to have R = 0 whereas d?8 transforms with R — —2. In the given
example only the term ¢? is allowed in the superpotential. So far our discussion

of the implication of R-symmetry on chiral superfields. The vector superfield is
real and consequently R = 0. From this we conclude

R(V,}=0
R()) =1 (38)

and this is a general and important statement. Gauginos transform nontrivially

under any R-symmetry. The R-symmetry, in particular, forbids Majorana masses
for the gauge fermions.
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Let us now go back to the superpotential (3.4) and (3.5). There is an R-

symmetry with e.g. R(f) =1 and
RHH) =1

(3.9)
R(Q,L,U,D,E)=1/2

which leaves gw in (3.4) as the most general superpotential. In other words this
means that if we drop the terms in (3.3) & continuous global R-symmetry appears.

"To forbid these terms in principle a smaller symmetry like R-parity
3B+ L4125
Ry = (-1) (3.10)

(where B, L are baryon, lepton number and S is the spin) would be sufficient, but

here a continuous R-symmetry appears. This continuous R-symmetry is somewhat

problematic since it forbids gaugino Majorana masses and at least for the case of
the gluino we might have experimental evidence that its mass cannot vanish. Thu,s
the R-symmetry has to be broken. Since only a spontaneous breakdown of this
symmetry is acceptable, this then would lead to an embarrassing Goldstone bosor-x.
Actually in our case it will be an axion since the R-symmetry is anomalous(7]. This
then telis us that this spontaneous breakdown cannot happen at an energy scale
like 100GeV. The breakdown scale of the R-symmetry has to be larger to make
the axion invisible(8], i.e. a breakdown scale of something like 10'° to 10 GeV.
In a simple way this can, however, only be realized if also the supersymmetr.y
breakdown scale My is large. Now remember that the splitting of the multiplets is
given by Am? ~ gM% where g is the coupling to the goldstino. We thus need small
couplings to have the supersymmetric partners of quarks and leptons in the T-eV-
range to provide us with a physical cutoff that stabilizes Mw. Theée couplings
have to be really small, compare them e.g. with the gravitational coupling constant

x. We have
§m ~ xM% = M3/Mp (3.11)

which is in the TeV-region for Ms = 10" GeV. Actually if we assume that all par-
ticles couple universally to gravity our requirement of the mass splittings implies
M5 to be approximately 10'GeV. Itis thus natursl to assume that the small cou-

pling required from our discussion about R-symmetry is actually the gravitational

coupling constant[17].
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We consider this as a hint to include gravily in our framework. This will lead
us to the local version of supersymmetry which includes gravity automatically. It
will turn out that such considerations avoid some problems connected with the
breakdown of global supersymmetry and their desastrous consequences for model
building. We shall not discuss this here in detail and refer the reader to ref. [5]
for a review,

Local supersymmetry[9] will also resolve the paradox concerning the nonzero
cosmological constant in models of spontaneously broken global supersymmetry.
We shall see that one can have Ey.. = 0 in models of spontaneously broken local

supersyminetry.

4. LOCAL SUPERSYMMETRY (SUPERGRAVITY)

In local supersymmetry the transformation parameter is no longer constant
but depends on space-time[10]. We have already acquired some experience in the
framework of gauge symmetries: the local form of ordinary global symmetries; and
for supersymmetry we proceed in the same way. In usual symmetries we had a
scalar transformation parameter A. The requirement of local invariance then leads
to the introduction of a gauge field 4, with transformation property 84, = d,A.
In supersymmetry we have a spinorial parameter ¢,. Local supersymmetry then
requires the introduction of a gauge particle ¥, (the gravitino) with transforma-
tion property 8%, = 8ue4(z). Thus the gauge particle of local supersymmetry is
& spin 3/2 particle and for reasons that will become clear in 2 moment it is called
the gravitino. These statements can also be made plausible when we discuss the
Higgs effect. In ordinary global symmetries a spontaneous breakdown implied the
existence of Goldstone bosons. In the local version these bosons then supply the
gauge bosons with the missing degrees of freedom to make them massive. In su-
persymmetry the goldstone particle is a spin 1/2 fermion. This then can provide
the two degrees of freedom in the transition of a massless to massive spin 3/2
particle: the super-Higgs effect.

The next point to discuss shows a conceptual difference between ordinary sym-
metries and supersymmetry. While in ordinary theories it was sufficient for the
local symmetry to introduce a spin 1 gauge boson in supersymmetry this is not

the case. The gauge particle is a spin 3/2 fermion and supersymmetry requires
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a bosonic partner. The construction of local supersymmetry has shown that this
partner is a spin 2 boson that has to have all the properties of the graviton. This

then implies that local supersymmetry necessarily includes gravity. We could have

guessed that already from the algebra
[e(2)Q, Ge(=)] = 2e(x)o,E(z) P @)

On the right hand side we have a space-time translation that differs from point to
point, a general coordinate transformation.

We have now to discuss ex;glicit Lagrangians containing chiral matter and gauge
fields coupled to the (2,3)-supergravity multiplet. In general this requires a lot
of tedious calculations which I shall not repeat here. Also the general form of
the Lagrangian is quite lengthy and I refer to the literature for the complete
expression{11]. I will instead concentrate on an analysis of the scalar potential of
these theories which we need for our further discussion.

Remember that in the global case the most general Lagrangian was defined by
three functions of the superfields: the gauge kinetic terms W2, the matter field
kinetic terms S(¢" exp(gV )¢) and the superpotential g(#). In the local case the
most general action can be defined by fag(¢)W2W? (with indices a, 8 labeling
the adjoint representation of the gauge group) and the Kihler potential

G =310g (-3 ) - log(ll"). (4.9)

The kinetic terms of the scalar particles z; are then given by

GiDuz:D* 27" = %D,‘zipﬂzﬂ (4.3)

where z; is the lowest component of a chiral superfield ¢;. The scalar potential
reads

- 1,._
V = —exp(—G)[3 + Gx(G™H) G + EfO;D“Dﬂ. (4.4)
In these lectures I will use what is called minimal kinetic terms

Gl = -8} (4.5)

13
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This simplifies all our formulas considerably and allows us nonetheless to see all

the essential praperties of the potential. The Kihler potential can therefore be
written as

i 2
G= —zj'\;,, —log Lf% (4.6)

where we have explicitly written out the mass scale M related to the gravitational

coupling constant x:

” l _ MPlanck ~ 18 - -
'M_K__\/S—E 22 2.4 5 107 GeV. (4.7)
The first derivative of the Kahler potential is then given by
2" g'(zl)
G'=— -
M? giz) (4.8)

and we can rewrite the potential in terms of the superpotential g(z) as

L
V = exp (4;2)

Contrary to the case of global supersymmetry the potential is no longer semi-

2

3
- migl2 . (4.9)

i z‘l
g + m!)

positive definite. 1 still have to teil you under which conditions supersymmetry
is spontaneously broken. As in the global case this breakdown is signaled by a
vacuum expectation value of an auxiliary field. There we had the auxiliary field

F given as the derivative of the superpotential; here we have an additional term

1%

F'=g’+M29

(4.10)

where 1n the limit M — oo we recover the global result. Supergravity is now spon-
taneously broken if and only if an auxiliary field receives a vev. The supergravity
breakdown scale is found to be

Mi=<F>exp (’]';2 ) (4.11)

Observe that the vacuum energy is no longer an order parameter. We can have
unbroken supergravity with E,,. < 0 (Anti de Sitter) or E.,. = 0 (Poincare
supersymmetry) and E,,. > 0 always implies broken supergravity. The most

important observation is, however, that we can have broken supergravity with

14
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vanishing vacuum energy (cosmelogical constant}, a situation that could net o

in the framework of global supersymmetry. Here we need
3
STFPE = gl (4.12)

and we will assume this to be fulfilled. In all cases 1 know of this is an ad hoc
adjustment of the cosmological constant to zero. If (4.12) is fulfilled and i Ms # 0

the gravitino becomes massive through the super-Higgs effect
. g z; '
maluz =M EXp(—-G/Q) = ITZ— exp ('R‘IT) (413]

and we therefore have the relation
i‘dg-
men = g

valid in the case of vanishing cosmological constant.

(4.14)

Let us now discuss some simple specific models with spontaneous supersym-
metry breakdown. As a warm-up example consider one fieid z and a constant

superpotential ¢ = m3. The potential is then given by

227y [|z* 3
V =mPexp (W) [\—[‘ - ME} (4-15)

which has stationary points at z = 0 and |z] = Vv2M. At z = 0 supersymmetry is
unbroken but this is a local maximum of the potential. The minima with broken
supersymmetry and Ey,. < Dareat z = +2M.

Next we want to give an example with broken supersymmetry and E,,c = 0.

We consider a superpotential

g(z) =m*(z + 8) {4.16)

A nonvanishing vev of
dg 2 _ of,, =+ 5)) 417
T G @1

would signal a spontaneous breakdown of supergravity. The equaticn

MEyz"+2°3=0 {4.18)
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has the solutions

2= -2y SVE DL (4.19)

Since (4.18) only allows real solutions (we assume 8 to be real) (4.19) implies
that supersymmetry is broken as long as B8 < 2M. Thus we can arrange for a
supersymmetry breakdown but we still have the annoying task to fine tune the
vacuum energy. Let us therefore first consider the case # = 0in which the potential
is proportional to

(M? 4 [2i%)2 — 3M2|2)? (4.20)

which is positive definite with minimum at z = 0. Increasing 8 implies decreasing
the vacuum energy and also z aquires & nonvanishing vev. We can now increase 8
until the potential just touches zero. This is found to happen at § = (2 — V3IM
with a vev of (V3 — 1) for the z-field. The potential is semipositive definite
with E... = 0 and, since |8] < 2M, supersymmetry is broken and we have found
the desired example. The super-Higgs effect occurs. The gravitino swallows the
fermion in the chiral superfield and has a mass

2 _ 12
My = mﬂ—exp (@-) (4.21)

and the two remaining scalars have masses

m} = 2\/5’“3/2
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mi=272- \/E)mg,,. (4.22)

Supersymmetry is broken and E.\c remains zero. Observe that such a situation is
not possible in the framework of global supersymmetry. Qbserve also, that in the
present example we had to perform an explicit fine-tuning to obtain E,,; = 0.
Before closing this chapter let us discuss two more examples which we shall
need later. The first is supersymmetry breakdown through gaugino-condensation.
Consider a pure supersymmetric gauge theory, just a gauge theory with fermions
(the gauginos) in the adjoint representations of the gauge group. Such a theory
is asymptotically free, the gauge coupling becomes strong at small energies and
we assume, in analogy to QCD, that this leads to confinement and that gaugino

bilinears condense. For a detailed discussion see ref.[12]. To see whether this
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leads to supersymmetry breakdown we have to consider the auxiliary fields of

supergravity including the gaugino bilinears
1 - o
Fi = exp(=G/2)(G71)]G) + 1 fass(G DRy 4 (4.23)

where A® are the gauginos, f,s the socalled gauge-kinetic function that multi-
plies WoW# and fosx = 8fas/8z5. A nontrivial vev < A\ >%# 0 thus breaks
supersymmetry provided that the gauge kinetic function is nentrivial[13]. The
supersymmetry breakdown scale is given by

< AN >
M

MG ~ (4.24)

leading to a gravitino mass of order < A) > /M?2. Observe that the value of Ms
in {4.24} vanishes in the global limit M — oo. Models in which supersymmetry
breakdown is induced by gaugino condensation have recently attracted revived
attention because of their appearance in the low energy limit of string theories.
They are also interesting because of the fact that for a nontrjval J the value of the
gauge coupling constant g2 ~ 1/f is a dynamical parameter. In string theories it
is related to the vev of the dilaton field(14].

Up to now we have for the sake of simplicity only discussed models with minimal
kinetic terms for the scalar fields. Models with nonmininal kinetic terms can have

interesting structure. Consider e.g.

G = 3log(¢ + ¢*) - logg|* (4.25)

and take a constant superpotential. If you compute the potential as given in (4.4)
you will find that it vanishes identically. Nontheless the quantity

S
e”™ = G+ (4.26)

does not vanish and supersymmetry is broken. Such so-called no-scale models[15]

might also have applications in the low energy limit of string theories.
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5. LOW ENERGY SUPERGRAVITY MODELS

As we discussed in chapter 3 we should consider models that consist of two
sectors: a hidden sector and an observable sector which are only coupled weakly
through gravitational interactions. The observable sector consists of the fields
discussed in chapter 3 which we will collectevely denote by y,. The hidden sector
is responsible for the breakdown of supersymmetry at a scale Mg ~ 10" GeV and

leads to a gravitino mass in the TeV region. Its fields will be denoted by z; and
we chose a superpotential

§(z:,9) = B(2.) + g(va ). (5.1)
Let us parametrize a general hidden sector by assuming that at the minimum
<z >=0bM
< h > =mi? (5.2)
<h > =< 8hf8z; >= a}mM
while all abserable sector fields Ya

should have vanishing vev's. In the example of
last chapter we had eg. b=+v3—1. The potential is given by

V= exp (-"—Aj}ﬁi'_“) “h.+;ﬁ C s 12 2~%L«il”]- (53)
The vacuum energy vanishes provided that
Z lai + 8i|* = 3 (5.4)
and the gravitino mass js given by
ma = o (3617 ) m, (55)

thus m sets the scale of the gravitino mass. We furthermore define{16]

A=b(a; + b) (5.6)

which will turn out to be an important parameter besides the gravitino mass.

In the previcus example we had 4 = 3 — /3. The potential given in (5.3) is
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complicated but we have m « M and we can sunplify the expressions enormously
by neglecting subleading terms. Formally this means that we take the limit Af —
oo keeping, however, my,» fixed. We then replace the hidden sector fields by there
vev's and obtain the following potential for the observable sector fields

9

+(4-3)g+he]. (
0y

41
-1

2
v= '(;3_9 +mi g ival’ + map |va
Ya

Thus the spontaneous breakdown of supergravity in the hidden sector manifests
itself as explicit breakdown of global supersymmetry in the low energy limit of
the observable sector. The ﬁrst term in (3.7) is the usual potential of a globally
supersymmetric theory while the other terms are soft breaking terms.

The second term gives universal scalar masses to all the partners of quarks and

leptons. The supertrace formula is here given in general by[11]
STrM? = 2(N = 1)m] (5.8)

where NV is the number of chiral superfields. This avoids the mass relations ob-
tained in the globally supersymmetric models and its desastrous consequences for
medel building. The universality property of the mass terms is needed to ensure
the absence of Aavour changing neutral currents. It appears here because of the
choice of minimal kinetic terms for the scalar felds.

The term (A - 3)g is of equal importance since it breaks all R-symmetries of the
model. This implies that there are no problems with potential axions and that also
gaugino Majorana masses are allowed (recall our discussion in chapter 3). This
breakdown of R-symmetry is a direct consequence of the coupling to gravity.

One more technical remark. In general we will deal with a superpatential g =
g3 + g2 where g; denotes the trilinear and ¢, the bilinear terms. The last term
in (5.7) then reads Amgzjag: + (A — 1)m3p292. Apart grom the gaugino mass my
we find that my;, (which sets the scale for the soft scalar masses) and A are the
important parameters parametrizing the effects of supersymmetry breakdown in
this class of models. In some cases one can also consider a new parameter B as
the coefficient of the bilinear terms in the superpotential. In the simplest example
B = A -1, but this need not be the case in general.

A remark about the mechanism of SUSY-breakdown is in order here. The
example of one scalar fleld with superpotential (4.16) should, of course, only be
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considered as a toy example and existence proof for such a mechanism. The true
mechanism of SUSY-breakdown will certainly lock different, already because of
the fact that the scale of 10!! GeV has to be put in by hand. Nowadays the
most discussed mechanism for SUSY-breakdown is based on the mechanism of
gaugino condensation[12]. Here the SUSY breakdown scale can be understood
dynamically as a consequence of a new strong gauge coupling, in a similar way
as we can understand the mass of the proton through the scale of QCD. One
should also remark that a model based on SUSY breakdown through gaugino
condensation initiated the construction of hidden sector models based on broken
supergravity(17]. Later it was found that such a mechanism fits very well in
the framework of models derived from heterotic string theory[18]. Therefore this
mechanism of SUSY-breakdown is very popular at present.

Let us now discuss the superpotential
g=yHI?+gsHLE+gDHQﬁ+guH'Q[7. (5.9)

The parameter 1 has to be different from zero since otherwise we would have
problems with a light higgsino (the supersymmetric partner of the Higgs-scalar)
or axions. The value of y is not directly related to the supersymmetry breakdown
scale but one can construct models [19] where p is related to my; and we shall
assume that also p is in the TeV range.

Let us now address the question of SU(2) x U(1) breakdown. We have two
Higgs multiplets and members of both have to receive nonvanishing vev's to give

masses to all quarks and leptons, according to (5.9). The relevant part of the
Higgs potential reads[20]

_ _ _ 2 2
V = m2A[? + m3A[ + mi(hh+ A7R) + g‘—;f—?Z(th — B2)? (5.10)

where the last term corresponds to the SU(2) x U{1) D-term and ¢, and ¢1 denote

the respective coupling constants. From (5.7) and (5.9) we obtain

2 _ 2 2 2
my=my=my,+4

mg = —Bﬂﬁ‘lglg (511)
B=A-1
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The potential consists of quadratic and quartic terms. The quartic terms have
a positive coefficient such that the potential at infinity is well behaved, with the
exception, however, of a flat direction for || = |h|. To have the potential bounded
from below we therefore have to impose a constraint on the coefficients of the

quadratic terms
m? + m} 2 2imi}. (5.12)

Next we have to discuss the requirement of SU(2)} x U(1) breakdown. Since there
are no trilinear terms in {5.10) a stationary point at h =k = 0 has to be un-
stable, i.e. the mass matrix at this point has to have a negative eigenvalue. The

requirement for a nontrivial SU{2) x U(1) breaking absolute minimum is therefore
Ima]* 2 mim3. (5.13)

With the input parameters (5.11) we observe now that the constraints (5.12) and
{5.13) can only be fulfilled in the limiting case

m§/z + u? = Bumg, (5.14)

i.e. at most we can arrive at a flat direction where SU(2) x U(1) breaking and

nonbreaking minima are degenerate. We would then have to look for radiative
corrections to see whether SU(2) x U(1) breaking minima can be reached at all
within this approach. This is actually a nice feature of the model. It tells us
again that we have not put in SU(2) x U(l) breaking by hand. Instead this
breakdown will be intrinsically related to the supersymmetry breakdown and the
dynamnics of the model. But we still have to see whether it works. In addition
we have to observe that all our input parameters are defined at a very large scale
M. The value of the parameters in the 100 GeV region has still to be computed
using renormalization group improved perturbation theory in the same way as we
have to compute the evolution of the gauge coupling constants in a grand unified
model. This we would have also to do if our input parameters would already
allow a SU(2) x U{1) breakdown at the tree level. In the evolution from M to
100 GeV the parameters will change substantially and it would not be clear at
all whether SU(2) x U(1) could not be restored. Before we do this calculation,

however, let me give you a simple argument how an SU(2) x U(1} breakdown can
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c) d)

Fig. 5.1: Corrections to scalar masses. Wavy, dashed, solid and wavy-solid

lines correspond to gauge bosons, scalars, fermions and gauginos respectively.

be induced by radiative corrections(21]. This argument is not complete and has
later to be backed up by the real calculation but it exhibits the essential points of
the mechanism quite nicely.

Let us therefore look at the radiative corrections to the masses of the scalar
particles. One way to see whether there is a chance to have SU(2) x U(1) break-
down is to see whether a m? of a Higgs scalar can become negative and at the
same time the m? of all others scalars in the theory should remain positive. The
contributions to the masses of the scalar particles can be classified as in Fig. 5.1.
The sum of the two gauge contributions as well as the scalar self interaction con-
tribution are positive, In the supersymmetric limit these contributions are exactly
cancelled by the remaining graph in Fig. 5.1 which contains a gauge fermion ex-
change. So if supersymmetry is exact nothing happens. Let us now suppose that
supersymmetry is broken and for definiteness let us take m, {a gauge fermion
mass) as the only source of supersymmetry breakdown. With this mass the con-
tribution of the last graph will be suppressed and the cancellation will no longer

be complete. Since a negative contribution is suppressed all scalar particles in the
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theory will receive a positive contribution to their m?. For the partners of quarks

the dominant contribution comes from the strong interactions
§m? ~ aym} (5.15)

where a3 denotes the SU{3) coupling constant. Higgses and partners of leptons

will receive a smaller contribution
ém® ~ awm; (5.16}

where aw denctes a combination of SU(2) x U(1) coupling constants. No in-
dication for an induced SU(2) x U(1) breakdown whatsoever. But let us look
more closely. With these corrections in particular the partners of quarks become
heavy and this will reduce the contribution of the graph with the scalar quadri-
linear interaction. This now leads to an asymmetry between the mass corrections
for Higgses and for the scalar partners of leptons. Going back to (5.7) and {5.9)
we see that the partners of quarks couple to the Higgses but not to the partners
of leptons. The suppression of this positive contribution then gives a negative

contribution to the Higgs mass and in total we have
dm? ~ awml — ay(azm?) (5.17)

where ay denotes the Yukawa coupling responsible for the Higgs-squark quartic

interaction. The corresponding quantity for the partners of leptons is
ém? ~ awm} — ay(awm]) (5.18)

and will under reasonable circumstances stay positive. The partner of quarks were
already heavy encugh in the first case. With a large enough Yukawa coupling
(but still small enough to trust perturbation theory) the contributions in (5.17)
‘could become negative and thus induce a breakdown of the weak interactions. A
candidate for such a Yukawa coupling would be the one that is responsible for the
mass of the heaviest particle in the model: the top quark. We can thus conclude
two things from this simplified discussion of radiative corrections:

1} SU(2)=U(1) breakdown can in principle be induced in a desirable way. Observe

that it is nontrivial to have the situation that only the m? of a Higgs becomes
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negative while other scalars keep positive m?, i.e. everything could go wrong

but it does not;

2) the mass of the top-quark myp, i.e. the top-quark Yukawa coupling is a cru-
cial input parameter in the model {unlike in the standard model where it just
parametrizes myop). Knowing myop would tell us a lot more about the model
and its predictions.

So far our qualitative discussion of these issues. We have now to go on and
compute. As we said already, the parameters in (5.11) are defined at a large
scale and we have to compute their evolution down to a scale of something like
100 GeV to discuss SU/(2) x U{1) breakdown. For the whole model this then
requires the integration of some 25 coupled renormalization group equations{22
and you can imagine that this cannot be done analytically. Let us first specify
our boundary conditions. We should actually start our evolution at a scale i =
M ~ 2 x 10"GeV, but we do not really know the spectrum of this theory at
such large scales. There could be a grand unified sector and this could change the
results, Let us therefore assume that the input parameters as given in (5.11) are
valid at a scale 3 = M, ~ 3 x 101%GeV where M, is the grand unification scale
in our model. If we assume that below this scale our model gives the complete
spectrum we observe that the SU(3) x SU(2) x U(1) couplings constants gi, g2
and g;, once properly chosen at a scale g ~ 100 GeV meet at the scale i = M,
with magnitude a(M,) ~ 1/24. This we will then take as our starting point.
Let us now look at some of the renormalization group equations more closely and
the most important ones are certainly those for the masses of the scalars. Here
I will give you the equations for h, ¢, and ;7 (the partners of ¢ and f-quark) in
the approximation that only the top quark Yukawa coupling (g, } is different from

zero, In the calculation the effects of the other couplings have also been included

.0 3
p?mi = Eﬂ_—zgf(m% + mf,‘ + m'fl‘,r + m§,,|,4l[z
“ 1 3 ) (5.19)
- Ew—glzlﬁizl’gg + 4l I?4i]
am?, = orgi(m} 4 md, +md, +ml| A
aﬁ vi 87f2 L] wvr (520)

1 4,. 4 _
- -2-;;[§im3i’g§ + §|mllzgf]
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Rgame. = S—LQE(mi +md +ml +mi A )
L4 2. 3. .. L (5.21)
- Z—Tr;[gimsl g3 + mezl 92 + g lmlay]
where the 1; denote the SU(3) x SU(2) xU(1) gaugino masses respectively and A,
is the A parameter that comes with the term in the superpotential that contains the
top-quark scalar. Observe that although we started with these A’s to be universal
they will no longer stay degenerate once we include the radiative corrections.

We can now look more ciésely at these equations and recover the qualitative
behaviour we found in the simple example discussed above. The first term in
{5.19) has a positive sign. This implies that the mass of k decreases if we lower a
from M; down to 100GeV. If the top quark mass {i-e. g4} is large enough we could
even imagine m?l to become negative, a sufficient (but not necessary} condition
to have spontaneously broken SU(2) x U(1). But a lot of things could go wrong.
The evolution equations of the partners of the top quark also have this first term
with a positive coefficient and the m? of these particles should remain positive
to keep SU(3)colonr X U(1}e.m. unbroken. The reason why the mode] works is
that the coefficients of these terms are 3: 2 : 1 in (5.19-21). Observe that these
coefficients are not free parameters which we can choose arbitranily. They are an
intrinsic property of the model and if they would have come out differently (like
€g. 1:2:3) there would be no way for this model to be correct. The second
terms in (5.19-21) depend on the effects of gaugino masses. They have a negative
coefficient and so increase m? with decreasing . At first sight they therefore do
not favor an induced breakdown of SU(2) x U(1) (remember our simple example
above). But indirectly they help. The terms in (5.20) and (5.21) contain the
gluino contribution with the strong coupling censtant g3 which is not present in
(5.19). When we now lower i this could give a big contribution to mZ, _ but not
to m?. The equations, however, are coupled and these large contributions enter
the first term in (5.19) and speed up the evolution of mi to small and possibly
negative values. This is exactly the behaviour we had already guessed from our
simplified discussion above. The discussion, however, also shows that it will be
difficult (tcchnica.lly) to arrive at quantitative results. We have to solve all these

coupled renormalization group equations numerically i.e. equations for the gauge
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couplings, gaugino masses, Yukawa couplings, scalar masses, A-parameters etc..
We have also to determine e.g. the value of the Yukawa couplings at M such that
at i ~ 100GeV they have the correct values to parametrize the masses of quarks
and leptons.

The parameters relevant for the breakdown of SU(2) x U{1) have been identified
before. They are myp, 1, ™o, 4 and g;. They have to fulfill one constraint to
give SU(2) x U(1) breakdown with the correct value for Mw and Mz. To give
you a feeling about this relation let me first discuss a simplified situation in which
p = mg = 0[{23]. We know already from our discussion before that a model with
# = 0 has problems but here we just want to exhibit the mechanism in a simplified
case. In addition this case will illustrate what happens in models where g is small.

Fig. 5.2 shows the result of a numerical integration of the renormalization group
equations in this simplified case p = mg = 0. Only a part of the parameter space
in A, my,y and Mo can lead to a breakdown of SU(2) x U(1}), as we had to expect
from our discussion above. Before we discuss the figure in detail, let me mention
that with g = my = 0 the sign of A is unphysical, only |A| matters. The allowed
region for SU(2) x U(1) breakdown is bounded at the left-hand side in Fig. 5.2,
because Muap (i.e. g¢) is simply too small to drive m} negative enough to induce
the breakdown. The actual value of this lower bound for m;,p, depends on A and
in general large A atlows smaller m,;. Nonetheless we obtain a significant lower
bound for myep in this configuration g = mp = 0 of something like 100 GeV. We
will later see that large myop 13 usually required in models with moderately small
p (at least compared to mg and m3;;). The bound on the right hand side of Fig.
5.2 cannot yet be understood from our discussion up to now. It simply comes {from
the evolution equation of the Yukawa coupling g,

ﬂ%y: = g?r;yf - §:F59‘ (gyi + ggi + ;—gyf) : (5.22)
This shows that for large m,, we need a large Yukawa coupling at M.. U g, is
large, however, the first term in (5.22) will be dominant. It has a positive coefficient
and will reduce the magnitude of g, when we lower . This then gives us an upper
bound on my,, of 200 GeV. Even if we choose g, at M. to be infinitely large the
evolution {which goes with g3} will reduce it to a "small” value at s ~= 100 GeV.
Of course, the approximation on which (5.22) is based will break down for large g
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Fig. 5.2: Breakdown of SU{2) x U(1) for p = mo = 0 from ref.[23].

but we see that in the minimal model m;op is bounded from above by something
like 200 GeV, the number depending on the exact value of &,.

Last we have to discuss the bound in the upper part of Fig. 5.2 related to
the parameter A. We have already seen that large A makes it easier to induce
the breakdown of the weak interactions, i.e. the breakdown is possible for smaller
values of rmy,p. This comes from the sppearance of |A|? in the first term in (5.19).
One could actually think that by increasing A sufficiently one could induce the
SU(2) x U{1) breakdown for arbitrarily small myop as long as ged, stays large
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enough. This is true, but for large A other unpleasant things happen and we have
to discuss this now in detail[24]. For this purpose consider again the potential

(5.7) but for simplicity with just one Yukawa coupling:

a 2
V= ‘%\ +mi g (1R + loel® + lpef®) + Amajo0p (hpewe + hic). (5.23)

We also dropped the 1 D? term because it is irrelevant for our discussion. For small
A it is evident that the minimum of this potential will be at h = p, = oy = 0
with ¥V = 0. For large A the trilinear terms dominate in a certain range and
the minimum will be at A = , = p; # 0 breaking weak interactions but also
electromagnetic and strong interactions and this has to be avoided. Thus A has
to be small enough. In the special potential (5.23) (as well as in the general case

(5.7) with universal 4) the critical value is A = 3 because in this case the potential

reads:
2

V= 20 (5.24)

99 .
3_5'n + masy,
and we need A < 3. Including the radiative corrections in our model the A's will

no longer stay universal and there will be separate bounds on A4 required by the
absence of SU(3) x U(1)e.m, breaking minima:

m} 4+ m? 4+ m?
A% <3 (___._._" e e (5.25)

LY

and similar expressions for Ap, Ay and all three families separately. These ques-
tions have to be carefully checked in all models explicitely.

Curves similar to Fig. 5.2 can now be produced for arbitrary values of the
parameters to explore the phenomenological consequences of the model. Apart
from the parameters my, ™3y, A and y, we have seen that the value of my,, is
very important, Since we know by now that my,p is quite heavy let us give another
illustration of the behaviour of the model in this part of parameter space (fig. 5.3),
where we have chosen mj2 = 100 GeV. There is an approximate scaling law. If
you want to know the behaviour for different values amy,;, just scale mp and p
by the same factor a while A should be scaled by a~! (at least in large parts of
parameter space). The masses of the supersymmetric particles, of course, depend

strongly on these parameters. Although they have to be computed in the explicit
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Fig. 5.3: The situation in the case of large top quark masses.

models under consideration one can use as a rule of thumb that the mass of the
photino is ~ 3my while the mass of the gluino is larger: approximately 3mq. The

masses of the quark partners are given by

ml xm} g, +74mg (5.26)

while the lepton partners are less sensitive to the gaugino mass
m} x m,y +0.14m}. (5.27)

Of course, the masses can be computed exactly in & given model once the set of

input parameters is specified.

Let us now discuss the spectrum more thoroughly and start with the Higgs
system[20]. The model contains five physical Higgs bosons, two charged and three
neutral ones, one of whichisa pseudoscalar. The mass of the charged Higgs bosons
is given by

mi=m§+m§+M&, (5.28)

thus heavy since m? + m? has to be positive. The mass of the pseudoscalar is
m%s = mg + m% (5.29)
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while the mass of the scalars is given by

2 1 2 2 1 2 247 2 2 (v? - vi)?
me = §(mPS+MZ)i§\/(mPS+MZ) "4mPSMZW (5.30)
which gives the only absolute prediction of the minimal supersymimetric extension
of the standard model. One Higgs scalar is always lighter than the Z boson. The
bound is reached in the case where the ratio of the vev's of the Higgs fields is very
large. If in contrast v; = v; we see that one of the scalars is massless. A crucial
experimental test of the modél will therefore come from Higgs searches. The above
formulae and bounds are only valid at the tree level. Radiative corrections could
change these results(25). These corrections depend strongly on the mass of the
top quark and become large{26] if miqp exceeds a value of 130 GeV. For such high
values also the limit on the mass of the lightest Higgs-boson moves up beyond the
Z-boson mass.
Let us next consider the gauginos. The gluines only feel my with m, & 3mg.

The so-called charginos are combinations of charged gauginos and higgsinos with
mass matrix

( 2 ‘/iMW) (5.31)

VaMyy 2 Iz
and the spectrum depends strongly on mp and i Observe that one of the states
is massless in the limit 4 = 0 since there also one finds v; = 0. The neutral
gauginos W9 B° mix with the neutral higgsinos leading to a complicated mass
matrix which we shall not discuss here in detail[5,27). Among these particles one
usually expects to find the lightest supersymmetric particle (LSP) which is stable
as long as R-parity remains unbroken. This could be (and is over a wide range of

parameter space) the photino
¥ = sin fw WO — cos §y B° (5.32)

but there remain other possibilities, like a higgsino if u is small or e.g. also a scalar
partner of a neutrino in the case where My is small compared to mg and .
The masses of the scalar partners of quarks and leptons are essentially deter-
mined by mj;; and my (see (5.26-27)) with squarks feeling a stronger influence of
mo. One would then conclude that the righthanded slepton is the lightest of these
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particles, but this is not necessarily true. There could be an influence of guark
masses m, on the squark masses 1, in case of a large A
(mfv +m§ A;nqm,qz) (5.33)
Amgm,, mp +my

and it could very well be that one of the partners of the top-quark is the lightest
squark. So far our first discussion of the minimal supersymetric extension of
the standard model {also called the minimal low energy supergravity model). It
depends on several parameters, those in the superpotential (u and the Yukawa
couplings) and those parametrizing the breakdown of supersymmetry (mj2, mq
and A). The magnitude of the dimensionful quantities is supposed to lie in order

of magitude in the 100 GeV to TeV region.

6. SUPERSYMMETRIC GRAND UNIFICATION - BASICS

The general idea of grand unification has already been discussed at this school
and we shall assume that the reader is acquainted with the subject. We shall
therefore concentrate here on those special points that are important in the super-
symmetric case. This concerns the scale Af;, a discussion of the superpotential,
the question of the triplet-doublet splitting and proton decay via dimension 5 op-
erators. We shall exclusively stay within the SU(5) framework, with 5 + 10 for a
quark-lepton family.

In this first chapter on supersymmetric grand unification we give the basic
structure of these theories. A more careful discussion of the models including the
results of recent precision measurements will be postponed to the next chapter. If
we very roughly assume a value of a3 ~ 0.1 and & = 1/128 at a scale of 100 GeV
we obtain in the nonsupersymmetric model a scale M, of approximately 5 x 10’4
GeV and desastrous proton decay. The supersymmetric model, however, has more
light particles and as such the evolution of coupling constants changes[28]. The
most important contribution comes from the gauginos implying a slow-down of
the evolution. As a result we observe a larger M, ~ 3 x 10'®* GeV roughly 60
times larger than in the corresponding nonsupersymmetric model. Since proton
decay is suppressed with the fourth inverse power of M, there are no problems

with proton stability in the supersymmetric SU(3) model. For a long time the
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experimental uncertainties concerning the value of the gauge coupling constants
did not allow a distinction between the supersymmetric and nonsupersymmetric
models. But more recently this situation has changed. In fact, when I was here
at TASI90, Paul Langacker showed me the result given in Fig. 6.1. A precision
analysis of electroweak data indicated that the supersymmetric model (with two
Higgs doublets and a supersymmetry breakdown scale in the TeV-region) gives,
in constrast to nonsupersymmetric SU(5) the correct prediction for sin? 8y (M)
[29]. Now three years later we have, of course, even more precise experimental

results. These will be discussed in the next chapter.
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Fig.6.1: sin? @iy versus m, and the predictions from grand unified models{29].

Let us here first examine the superpotential and the question of SU(5) break-
down. We denote the quark superfields X;(10), Yi(5) ¢ = 1,2,3 and the Higgs
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superfields H(5), H(5) and ®(24). The superpotential can then be writen as

g = gininH + h.‘j.’(iyjﬂ + J\IH‘I)E + f\iq’a + M'I’l + I"{'HH

(6.1)

where g,; determines the masses of up-type quarks and h;; those of down-type
quarks and leptons. The discussion of the spontaneous breakdown of SU{5) is

similar to the one in nonsupersymmetric SU({5) models. The auxiliary fields
—Fy = MHA +3%8 +2M8
~Fjy = AH + M'H + ¢;; X X;
—F;; = M3H + MH+ h,‘jX,‘Y:,'

read

(6.2)

and a minimum with SU(5) broken to SU(3) x SU(2) x U(1) can be found with

<Ho=c Ho=< X;>=<Y;,>=0,

100 0 0
010 0 O
<®>=v|0 0 1 0 O
000 -3 0
000 0 -3

(63)

and vanishing vacuum energy. Since we have not discussed here the breakdown of

supersymmetry there are degenerate minima with gauge group SU(5) and SU(4) x
U{1). Also the breakdown of SU(2) x U(1) has finally to be induced by the effects

of supersymmetry breakdown along the lines discussed in the last chapter.

'

e

re

Again a fine-tuning has to be performed to keep the Higgs-doublets light. Here e

it amounts to

3
J\'I‘ = '2'UA|.

(6.4)

This is similar to the nonsupersymmetric case but here we could argue that the

fine-tuning concerns only parameters in the superpotential and is therefore not

disturbed by radiative corrections. If we now would be able to find a reason why

(6.4) should be valid at tree level we could claim to have solved the fine-t

uning

problem. There have been several interesting attempts in this direction. As a first

we discuss the mechanism of a sliding singlet[30]. Take a gauge singlet superfield

Z and add a term AHZH to the superp‘otential. The H auxiliary field read
_F = AME+ A2+ M)
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(6.5)
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In the full theory, including supersymmetry breakdown, the doublet component of
the scalay of H should receive a vev (in contrast to the SU{3)-triplet component).
The vev of Z is undetermined and it can adjust its vev to have F' = 0 for the

doublet component, thus it slides to make
3 '
—3A1v+/\z+ﬁl =0 (6.6)

and the Higgs-doublet remains light. This looks nice, but also this mechanism
has some problems. We do not understand why the allowed Z? and Z* terms are
absent and also we cannot rule out the possibility that the absolute minimum of
the potential occurs for large vev's of both the triplet and the doublet. Moreover,
there are usually problems with a small supersymmetry breakdown scale in the

presence of light singlets{31].

A second mechanism to be discussed here is the one of the missing partner. H
and A contain (3,1} +(3,1) and (1,2) + (1,2) of SU(3) and SU(2) respectively.
Try to find now a new representation which only contains a (3,1} but not a (1,2).
The former could then pair up with the (3,1) in H while (1,2) would remain
massless. A simple example[32) is a 30 of SU(5). It decomposes with respect to
SU(3) x SU(2) as (6,1} + (8,2} + (1,1} + (3,2) + (6,3) + (3,1) and as a cross
term in the superpotential we could imagine 50 x 3 x 75 with 75 = (1,1} +(3,1)+
(3,2)+ (3, 1)+ (3,2) + (6,2) + (6,2) + {8,1) + (8,3). Fortunately a vev of 75 can
break SU(5) to SU(3) x SU(2) x (1) thus avoiding the presence of & in (6.1).
Instead we choose now for the superpotential

g = AT5 x 75 x 75+ M75 x 75+ A 50 x 75 x 50

_ . _ (6.7)
+ X250 x 75 x 54+ X350 x 75 x 5 + M50 x 30

and as a mass matrix for the triplets we obtain

(.\(:v ,\J:_IU) (68)

(where v is the vev of 75), while the doublets remain light. Of course, one still has
to explain why we have omitted a direct 5 x 3 mass term in (6.7) and the question
of a complete solution of the fine tuning problem remains open.

We had seen at the beginning of this chapter that M; is quite large in super-

symmetric grand unified models and that therefore proton decay via gauge boson
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Fig. 6.2: Proton decay through dimension-5 operators,

exchange is sufficiently suppressed. This, however, is not the last word about
proton decay in supersymmetric grand unified models. Remember, that in the
supersymmetric version of the standard model we already had to suppress proton
decay via dimension-4 operators by introducing an R-symmetry (see chapter 3).
Here we have to worry about proton decay via dimension five operators(33] leading
to proton decay as shown in Fig. 6.2. The first step couples two fermions to two
bosons (therefore the name dimension-5 operator) and has a propagator suppres-
sion of 1/M; and the second step involves only light particles. Instead of 1/M?
in the amplitude we have now 1/M; Mw and there is a potential danger of fast
proton decay. A careful investigation of the dimension S-operators has therefore
to be performed. Out of the possible terms we need only consider those which are

invariant under the R-symmetry discussed earlier and these are the two F-terms

(QQQLYr and (T DE)p . The latter reads in components
UiaUjp DicEre®™ (6.9)

where a, b, ¢ are SU(3) indices and 1, j, k, | are generation indices. All fields
above are scalar superfields and should obey Bose-statistics. The two U’s are
antisymmetrized in a and b and therefore 1 # j and one of the U's has to come
from the second generation. Since the charmed quark is heavier than the proton the
presence of the term in {6.9) does not constitute a problem. The other possibility
reads

Q%@ Q5 Liucapce™ ™ (6.10)
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where T, s, 1, u are SU(2)-indices. Here we can have i = j = 1 but then we need

k el 2 Whicll leads to
k4 ¢ u

thus ce or sv. Proton decay therefore is only possible with the (udsv)F operator
The dominant decay mode is proton to K+ and antineutrine, a quite unique
prediction of supersymmetric grand unified models. The rate is faster than the
one from dimension-6 operators but it is not desastrously fast since p— Ktp
involves Yukawa couplings in graphs like Fig. 6.2 as compared to gauge couplings
in the process with dimension-6 operators. At the moment p— K*5 seems to be

at the border of observability and further experimental results are eagerly awaited.

7. SUPERSYMMETRIC GRAND UNIFICATION
RECENT DEVELOPMENTS

In figure 6.1 we had already seen that according to the data available in 1990
coupling constants in the standard model did not behave in a way consistent with
grand unification. There is an indication that the grand unified supersymmetric
extension of the standard model, however, gives the correct prediction for the weak
mixing angle sin’ 8w, provided that the mass scale of the supersymrnetric partners
is in the 100GeV to TeV region. Meanwhile with more data this trend has been
confirmed as shown in fig. 7.1.

A more artistic view of this result is displayed in fig. 7.2. Comparing fig. 6.1 and
7.1 we observe that precision has increased within the last three years and we also
see that nowadays the mass scale of the supersymmetric partners Msygy appears
to be at a somewhat lower scale. To understand this evolution it is important to
know that the uncertainties in these plots are dominated by the experimental stror
bars in the determination of the strong coupling constant &, {which is obvicus from
fig. 7.2). In addition as we shall see soon in detail, the value of a, is correlated
with Msysy: larger a, implies smaller Msysy. And this has happened in the
last three years: we have now a more precise value of a,, but the central value
has increased. While in 1990 one considered central values o, (Mz)} = 0.108 now
values could be as high as 0.125. See Fig 7.3 for an update[36].
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Fig.7.1: sin® 8w versus m; and the predictions from grand unified models[34].

There is still a debate concerning the evolution of a, below Mz in the standard
model. This might lead to a revival of the light gluino hypothesis[37] and we need
more precise data to settle these questions. We do not have the time to discuss
this in detail in these lectures. We are here more concerned with the evolution of
the coupling constants above Mz. There you should remember that large values
of &, imply smaller values of Msysy and vice versa.

We have now to take a closer look at the definition and the role of Mgysy. It
is understood that between Mz and Msysy one should use the renormalization
group equations of the standard model while above Msysy the evolution equations

of the supersymmetric extension of the standard model should be applied. If we

re ™

e

. . inos,
consider e.g. » model where all the supersymmetric partners like the gaugin R
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Fig.7.3: The strong coupling constant measurements|36].

the higgsinos, the squarks and the sleptons are degenerate with mass m, then
Msysy = m; this in fact would then mean, that Msysy =m = Mz.

A more realistic spectrum of supersymmetric partners, however, might look
different. We have seen in the earlier chapters, that usually the gluino is heavier
than the photino or the sqarks heavier than the sleptons; in any case one would
expect a nondegenerate spectrum. Some averaging proceedure should then be
performed. It turned out that strange things happen in this proceedure. It was
observed([38] that even with nondegenerate partners all in mass above Mz the
effective scale Msysy can become smaller than Mz. We shall therefore (following
ref.[39]) call this effective scale Tsusy and still keep the notation Msysy for the

physical mass scale of supersymmetric partners. The relation between the two
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parameters is in spirit similar to the relation between temperature and wind chill
factor. In fact in the degenerate case (no wind) Msusy = Tsusy-

This effect of the averaging proceedure for a nondegenerate spectrum has been
explained in ref. [34]. Let us here follow this discussion and use the evolution
equations at the one-loop level. The qualitative features are valid also if we in-
elude the two-loop contribution, but the formulae become too complicated to be

discussed here. Here we obtain the following relation:

M.
19log Tsusy = —25log M +1001og M ~56log { —~ ), (7.1)
Mz Mz Mz Mz

where M), M; and M; in some way represent the average mass of particles with
U(1), SU(2) and SU(3) quantum numbers, respectively[34]. At the moment it is
not necessary to understand these masses in detail; we will shortly give a more
detailed explanation. It is important to realize first that in fact the whele spectrum
can be described by one effective scale Tsysy that represents all information about
these threshold corrections for the supersymmetric particles. Secondly we observe
that the right hand side of (7.1) contains positive as well as negative signs. And
here we now understand the strange behaviour mentioned above: if we increase the
mass of the gluino {contributing only to M3) while keeping all other masses fixed
we lower the effective scale Tsysy. This also makes clear that it is possible to have
Tsusy < Mz. The threshold effects that take place above Mz and which might
come from a complicated spectrum can be summarized with this one effective scale

Tsusy.

Let us now examine more closely the effect of the various particles on Tsysy:

—18log (_—_Tﬁsy) = 3log (———-—-—M';L‘,}‘“k’) + 28log (_G_M,\;Iim)
z z z

_ =Hglepion _ Mwino
3log (_Mz ) 32log (——Mz ) (7.2)

—12log (-——-——Mt;}"i“) - 3log (—-—--—M;;“') .
z Z

which allows you to compute Tsysy, once you know the masses of the particles
in the supersymmetric standard model. It is clear that even with all the super-
symmetric partners heavy, still Tsysy might be small. Observe also, that the

contribution from squarks and sleptons cancel if they are degenerate. The terms
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with the gauginos have quite large coefficients. If one considers models with a
universal gaugino mass at the large scale, there is also the tendency that the
winos partially cancel a big gluine contribution. In general, however, threshold
corrections due to the nondegeneracy of the supersymmetric spectrum are quite
important. This remains true after the inclusion of two-loop effect in the evolution
equations which we have not discussed here. An account of the difference between
one- and two-loop results on these questions can be found in [40].

As can be seen from fig. 7.1. the experimental values of a,, mys, and sin® By
are consistent with grand unification for a large range of values for Toysy in the
desired range. More detailed information can only come from new experimental
input. Remember e.g. that a more precise value of &, would lead to important
restrictions. As we have seen the value of @, is strongly anticorrelated with the
velue of Tsysy. Another parameter which we could learn something about in the

near future is myop which is strongly correlated with sin? §w as discussed in {34}
sin® 8 (Mz) = 0.2324 + 0.0003 — 1.03 x 107"GeV~*(m?,, — 1387GeV?), (7.3)

Le. large myyp corresponds to rather small values of the weak mixing angle. Thus
knowledge of Myap would help a lot.

In fact, the question concerning fermion masses turns out to be more interesting
than expected. We remember that a discussion of the quark and lepton masses in
the standard model as well as its supersymmetric extension usually consisted of
the statement that cne has to adjust the Yukawa-couplings to obtain the correct
spectrum. In grand unified models, however, due to the larger gauge symmetry we
also have to consider Yukawa coupling unification. In our example based on the
group SU(5) we have, according to equation (6.1), only one Yukawa coupling for
the charged leptons and the down quarks, as long as we assume that they obtain
their mass through the vev of the same Higgs-scalar. The complete fermion mass
matrix is very complicated, and in order to understand it completely one would
most probably need more than just one of these scalars. It is, however, tempting
to assume that for the heaviest generation just one scalar is responsible for b-quark
and r-lepton mass. This then implies h,(Mx) = hs{Mx) for the b- and r-Yukawa-

couplings at the GUT-scale. Of course, at low energies, &, and h; differ because
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of the renormalization effects. The one-loop equations for the Yukawa-couplings

are given by (assuming h, » hy, b, )

.0 1 3 3
FZ?T&-h' =gl (5913 + 59?) (74)
i Dby = ok (S 4 202 Lo?) 4 k2 (7.5)
Koa T TR P3N TR TR ) T 1 '
.0 1 8 3 13 3
“a_,&h' = -Fh' (593 + §9§+ ﬁhz) +§r—2hf (7.6)

in the notation of chapter 5. Since the b-quark has strong interactions in contrast
to the r-lepton hy evolves faster than A, giving rise to a larger b-mass at low
energies in agreement with experimental results. This is 2 well known result and
it was considered a great success that the my/m, ratio could be explained by this
fact[41]. In [42] it was pointed out, that for a large value of k. (comparable in size
to the gauge coupling constants) its effects could be quite important. This comes
from the last term in (7.5) with the opposite sign, thus reducing the my/m, ratio.
This ratio thus depends strongly on e, and k. For a long time a, was so poorly
known that no conclusion could be drawn from these facts. With the more precise
value of a, and the knowledge of the my/m. ratic now, however, we can obtain
information on the size of the top-quark Yukawa coupling b, [43]. This leads to
the statement, that hy should be close to its infrared quasi fixed-point [44] which
is obtained in case of a vanishing right hand side of (7.6), thus with ¥; = A% /4x

8a,(m,) ~ 9Y;(m,), (1.7)

evaluated at the low energy scale, here chosen to be the mass of the top-quark.
This value of h, close to the infrared quasi fixed point leads to rather large values
of the top-quark mass:

my(m,) = hi(m.)vsin 3, (7.8)

where tan 5 is the previously defined ratio of the vevs of the two Higgs-fields. We
have already seen in chapter 5 (compare (5.22) with g = h¢} that at this fixed
point the tcp-quark mass obtains its largest possible value within this framework:
(M1 )max = 200 GeV. The exact value depends, of course, on the exact value of a,.

We also observe that (7.8) implies a strong correlation between m, and tan 3. Up
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to now we have neglected the effects of a nonvanishing hy in these calculations.
For large values of tan # they become important. For an example see fig. 7.4.
Observe also, that in models with radiative symmetry breakdown one has
tan? > 1 and thus m; > 140 GeV approximately. The assumption of Yukawa
coupling unificetion for the b—r system gives strong re_strictions on my. A detailed
discussion of these and related questions can be found in the literature{39,45].
More detailed restrictions from grand unification can be obtained in specific
models. For example in models with a light gluino one has a bound 0.123 £ a, <
0.132 with my,, > 145 GeV[4'6]. Such models are only consistent with LEP results
for small tan 8 € 2 and there is a similar bound on e, for this range of tan 3 even

in the case of a heavy gluino.
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As we discussed in the last chapter there can be constraints from proton decay
via dimension-5 operators. The graph in fig. 6.2 contains e.g. the down-gquark
Yukawa coupling and given the d-quark mass we see that this coupling is pro-
portional to tan 3. The experimental results might therefore lead to an upper
bound[47] on tan 3, but the exact value of this bound is still under debate[48]. If
proton decay via dinension-5 operators is not found one might also consider mod-
els where some discrete symmetries{49,50) (as alternatives to R-parity) prohibit
this mechanism. In these cases we would, however, expect new sources of lepton
number violation. .

An upper bound on tan 3 might become important in those models based on
an SO(10) grand unified gauge group where the heaviest generation receives a
mass from a single Higgs representation. There h, = hy at Mx and therefore
tand ~ 60. These issues will certainly be covered in the lectures of L. Hall in
these proceedings.

The simplest supersymmetric grand unified model is consistent with the value
of sin® fy. Given this success, we can thus test more specific models, like the
assumption of Yukawa-coupling unification discussed above. Another more specific
scenario is the one based on the induced radiative breakdown of SU(2) x U(1).
Here we obtain strong restrictions on the parameters{51], especially in models that
also exhibit Yukawa coupling unification[52]. At the moment we can just try and
study the full parameter space of the model. New data has then to decide which
part of it might be selected. A lot of work has been done in this field recently
which we do not have the time to present in detail. For more information and a

more complete list of references I refer the reader to existing reviews[53-57).

We should, however, be aware of the fact that in all grand unified models there
are inherent uncertainties at the grand scale that we cannot control. These are
e.g. threshold corrections due to heavy particles. While in minimal § U(5) they are
usually rather mild[34], they could become quite important in more complicated
models like those with a 75-representation discussed earlier[58]. Other uncertain-
ties include heavy thresholds in the evolution of Yukawa-couplings, the presence
of nonminimal gauge kinetic terms[59] or just a more general set of boundary

conditions for the soft breaking terms at the grand scale.
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This brings us to the central question: should we believe in the reality of su-
persymmetric grand unified theories? After all some ten years ago many people
believed in normal grand unified theories. Then proton decay was not found and
now we also know that the coupling constants in a nonsupersymmetric theory do
not match at a single scale. Could history repeat itself? Of course, we cannot
answer this question. Nonetheless it might be useful to keep this possibility in
mind. If the GUT idea were true, however, we could then ask the question how
well we can determine the grand unified scale My with our present experimental
knowledge. That seems to be easy: just take the precisely known values of o)
and oy at Mz and then determine the value where they cross. This would give
something like Mx ~ 3 x 10'%CeV. But we cannot control heavy threshold effects
and they might strongly influence the value of Mx. In fact, grand unified models
with a complete description of the fermion mass spectrum turn out to lead to a
complicated spectrum of heavy particles[60] and significant heavy threshold effects
might be a genuine property of realistic grand unified models. Also Mx tends to
be only two orders of magnitude smaller than the Planck scale. How sure can we
be that Mx € Mplunck since gravitational effects might also influence Mx.

We cannot answer these questions at the moment and one way to proceed is to
compare SUSY-GUTs with alternative models. One of them is the embedding of
the supersymmetric standard model within the framework of string theory, called
siring unification. Such theories contain one scale Myrring = 1.7 x 1018GeV related
to the Planck scale. Many heavy particles can act as sources for threshold effects.
There is usually a fixed relation between the gauge coupling constants but they
need not necessarily all coincide at a single scale. The models in general do not
contain a grand unified gauge group like SU(5) or SO(10) although such groups
might be present. This could relieve somewhat the problem of splitting doublet
and triplet in grand unified SU(5) since the Higgs-doublet does not neccesarily
have an SU(5) partner. It also implies that Yukawa couplings like hy and h, need
not be equal at the grand scale.

Let us now examine string unification in more detail. At the tree level the gauge

¢ouplings are determined by the vev of the scalar disaton field:

k3gg = kig; = klg? = glztring = 92 (79)
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where the coefficients &; (the so-called Kac-Moody levels) are rational numbers.
One could now try to see which choice for the k, leads to models consistent with ob-
served values of the coupling constants. From the experience with model building
we know that it is very hard to obtain realistic models with & # 1 for nonabelian
gauge groups and one would choose k3 = ky = 1 leaving k; as a free parameter.
In SUSY-GUTs the relation between the coupling constants would be fixed, but
My would be the free parameter while in the other approach My is fixed through
Mauing. For a discussion see ref. [61]. The usual normalization of the U{1) gauge
coupling corresponds to k; = :5/3.

The evolution of coupling constants requires a loop-caleulation and apart from
the usual evolution the gauge couplings become moduli-dependent (i.e. a function
of scalar fields T;) and this can be understood as the influence of heavy particles.
In simple models such a functional dependence can be estimated [62-65] while in

more realistic models such a caleulation turns out to be quite complicated]66].

One can write
1622 _ 1677
92(s) " Gauriog

+ bo log( M2 /%) + A, (7.10)

where in the simplest cases[64) the threshold A ~ log[ImT(n(T))!] is a function of
one modulus T which is related to the overall size of compactified space and M is

chosen in such a way to be closest to a point that could play the role of the grand
unified scale[63]

M = (27)"? exp[(1 - 7)/21873* Musing = 0.216Myeping ~ 3.6 x 1017GeV. (7.11)

Thus M turns out to be a factor of 20 larger than My. If we now, hypothetically
take M as the unification scale and assume that all the particles lighter than M are
those of the minimal supersymmetric standard model we can determine sin? 8y =
0.218 in conflict with the measured value. This caiculation, however, is purely
academic, since such a string model might not exist. Usually such models contain
more particles below M and thresholds might be important. Just consider A(T) in
its simplest form with a value of T = 10**GeV: one could have effects big enough to
reproduce the correct value of sin® 8w (67). Of course, also such a calculation might
be academic since this simple threshold function is valid only in very simple models

with unbroken E¢ gauge group. It indicates, however, the potential importance
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of heavy thresholds. This is confirmed in more realistic models; see ref. [66]
for a detailed discussion. One way to distinguish string unification and grand
unification could be related to the guestion of Yukawa couplings. While in many
grand unified models with a simple Higgs sector we expect also some group theory
relations between Yukawa-couplings (like e.g. hy = kh.), this needs not necessarily
be the case in string theory. We have to see how the experimental situation

develops, hefore we can make some more definite statements.

8. THE x-PROBLEM

In this chapter we want to look more closely at the Higgs mass term in the

superpotential:

uHH, (8.1)

As we have seen in the earlier chapters one usually argues that the parameter y is of
the order of M3z, the scale of supersymmetry breakdown in the observable sector.
Such a term, however, is allowed by supersymmetry and one might therefore ask
the question why this term should be small compared to Mx or Mpignck. The
lack of a theoretical argument for small p is called the y-problem. In grand
unified theories this problem is obvicusly related to the question of doublet-triplet
splitting.

According to our notion of naturalness we can split the discussion into two
steps. In a first step one should find a reason that explains why ¢ vanishes, e.g.
if the term in (8.1) is forbidden by a symmetry. The second step would then be
the generation of a small u-term of the order of the soft SUSY-breaking terms.
Let us start with the minimal supersymmetric extension of the standard model
and consider the case u = 0. In fact the model has an additional U{(1) symmetry
which, however, is anomalous. Vanishing u then implies the presence of a Peccei-
Quinn (PQ) symmetry[7). Of course, 4 = 0 has phenomenclogical problems and
just imposing this PQ-symmetry cannot be the final answer, but it could give a
hint for a solution. In a situation where the strong CP-Problem is solved through
the PQ-mechanism|[68] we would expect a relation to the g-problem.

One simple way to generate u could be achieved through the introduction of a
singlet field § and a term SH H in the superpotentiall16]. If § receives a nontrivial
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vev this would generate a u-term. This, however, just rephrases the problem. We
would then have to understand why § has such a small vev and not a vev of
the order of Mpy, k. A possible solution to the y-problem might come through
a mechanism that links the y-problem to the strong CP-problem{19]. Consider
a model with an invisible axion[68]. Astrophysical and cosmological arguments
lead to an axion decay constant in the range f, = 10'® — 10'2GeV{69]. This scale
coincides with the scale Mg = 10" GeV of SUSY breakdown as discussed earlier.
Remember that the gravitino mass is given by m3s2 ~ M%/Mpianck. To implement
an axion within the supersym:metric framework one could introduce a singlet field

S with a term

1 -
——S§*HH 8.2
MPhnck ( )

in the superpotential, whereas terms like pHH and SHH would be forbidden by
the PQ-symmetry. A vev of S of order of 10"'GeV would then simultaneously
solve the two problems. f, =< § > would be of the correct order of magnitude
and p =< § > /Mpunx ~=TeV, as desired. A consistent model along these
lines has been constructed in ref. [19]. Note that in this model we were forced
to introduce an intermediate scale at 10!!GeV, but this has to appear in any
model based on spontaneously broken supergravity in the hidden sector. The
presence of the small number Ms/Mppanck /= 107% is crucial for the solution of the
problem. The model has been generalized to the case of a dynamical breakdown of
supersymmetry, avoiding the introduction of singlets(70}. In a model where SUSY
is broken through gaugino condensation < A} >= A one in general obtains an

effective coupling

<A > HE (8.3)

M inex
which also leads to 4 ~ my;, and a composite invisible axion. For details see [70).
As we have seen, a solution of the u-problem requires:
® a reason why u =0,
o the generation of a small u.
The actual value of p is then related to the scale of breakdown of that symmetry
that would enforce ¢ = 0. In the previous example the symmetry was a PQ-
symmetry spontaneously broken at the scale of fa ~ 10'GeV and i was generated

by 2 (nonrenormalizable) term in the superpotential. In supergravity thecries there
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are of course various other types of nonrenormalizable terms. Ref. [71] investigated
a situation where heavy {-) and light (y) fields couple in nonrenormalizable kinetic

terms:
Az 2wy + (D(z,275y) t he), (8-4)

where ' = ¥ cm(z,2")y™. The presence of these terms could lead to an effective
superpotential at low energies g(y) = ¥ (y) + py?, where for vevs of z of order
of the Planck mass one obtains g ~ mjyj2. This would be another possibility
to generate an acceptable p-term. One difficulty with this approach might be
the fact that now the PQ-symmetry is broken spontaneously at the large scale
< z > Mpiapex with the well known cosmological problem([69). Reducing the
vev of z to the allowed window around 10''GeV leads to a very small value of
# ~ 107%m;;,. One should, however, keep in mind that there again could be
nonrenormalizable terms in the superpotential {1/Mpiancx)2? HH that would lead
to g % Mplanc for a < z > of order of the Planck scale. Thus the contribution
of the nonrencrmalizable terms in the kinetic terms can be safely neglected with
respect to the nonrenormalizable terms in the superpotential (unless one finds a
reason why the latter might be forbidden).

The consideration of nonrenormalizable terms is of crucial importance in con-
nection with any discussion of the y-problem. If one considers only renormalizable
terms or picks certain specific nonrenormalizable terms one should make sure that
they give the leading contribution to 4. Otherwise one has to require that the
dangerous leading terms are forbidden and this is then just a reformulation of the
problem.

In string theory one might argue that a term uHH does not appear at the
tree level. It was argued that in a theory with a trilinear superpotential g(a) one
might then consider additional nonrenormalizable terms 9y H H in the superpo-
tential{72]. As we have learned earlier 2 vev of the superpotential < g3y >= Mz,
leads to a g of the same order of magnitude. In this approach some SU(3) x
SU(2) x U(1) singlet fields receive large vev’s and it remains to be understood
why a coupling of these fields to H 1 in toilinear or quadrilinear terms should be
forbidden, since these terms would give the dominant contribution to u.

In grand unified theories the u-problem is, of course, closely related to the

doublet-triplet splitting. The missing partner mechanism as discussed in chapte
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6 (with superpotential as given in (6.7}) might provide a solution. There might be
more explicit examples of the mechanism [73] and the following discussion will be
independent of the special group theoretical details.

Actually here we could consider two choices of such a model. A first possibility
might use an exact symmetry {continuous or discrete) that would forbid the p-
term. We would then have the problem to understand the breakdown of that
symmetry in order to generate a nonvanishing 4. A second possibility would
consider a more accidental reason for i to vanish. Again we can distiguish between
two cases. In a first case we just put g = 0. This would mean that we ignore
the p-problem. With unbroken supersymmetry, the nonrenormalization theorems
would assure a vanishing ¢ in any order of perturbation theory. In the case of
broken SUSY one would expect a nonvanishing p proportional to the size of SUSY-
breakdown in the observable sector. The second case might consider an accidental
symmetry valid for the renormalizable terms in some part of the theory. As an
example one might consider a theory where the (renormalizable) superpotential
has a higher symmetry than the full theory[74]. This symmetry might forbid a
p-term or such a symmetry might be spontaneously broken, leading to a massless
Higgs-doublet as a Goldstone boson. Since this symmetry is not a symmetry of the
full theory one expects & generation of 2 in those cases, again proportional to the
SUSY breaking terms for the same reason as above. The question remains, why the
superpotential should have a higher symmetry than the full theory. An accidental
symmetry is not so easy to achieve if one considers also nonrenormalizable terms
in the superpotential. These higher terms might induce large p values, if some
heavy fields receive nonvanishing vacuum expectation values.

All in all it seems that a satisfactory solution of the y-problems requires the
introduction of a small parameter in the theory. In the example with the axion this
parameter was f, /Mplanck ~ 1072 and a satisfactory u term was generated through
nonrenormalizable terms in the superpotential. It worked because f, ~ Mg thus
giving u the desired order of magnitude. Of course, another solution of the p-
problem would be to ignore it!?
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9. QUTLOOK AND CONCLUSIONS

We have seen that the supersymmetric model provides an interesting framework
for physics beyond the standard model. In contrast to the standard model itself
it might even have a simple grand unified extension. Unfortunately up to now the
model remains a theoretical dream. No sign of supersymmetry has been detected
yet. We did not have the time here to discuss the experimental limits for the
various superpartners. Such a discussion can be found in [75] with the yearly
updates given in the big conferences. Of course, still plenty of parameter space
remains unexplored and we have to keep in mind, that also the Higgs boson of the
standard model has not been found. So we have to wait and see.

On the more theoretical side there could come some progress as well. I had
1o time to discuss these developments in the lectures at this school and will give
an mccount of these issues elsewhere[76]. Among the much discussed subjects
is the embedding of the supergravity models in the framework of string theory.
This might lead to more detailed information on the nature and the size of the
soft breaking terms, also in connection with the mechanism of supersymmetry
breakdown via gangino condensates. Stringy symmetries like so-called targed space
duality could play an important role in this process. For review and a list of
references see ref. {77,78].

In these lectures, I concentrated on the simplest model with an exact R-parity.
This leads to a stable particie that might have cosmological relevance. You have
heard about that during this school. But there are alternatives[79]. Of course,
such models then necessarily will have some amount of L(epton-number)-violation
in dimension four operators and it is not clear whether we would like to have
those. Alternative choices of discrete symmetries might avoid a possible problem
with the dimension-5 operators in grand unified models [49,50] at the expense of
L-violation. May be this could be relevant in connection with the solar neutrino

problem{B0] as well as many particle physics and cosmological phenomena.
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