INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS

LCT.P, P.O. BOX 586, 34100 TRIESTE, ITALY, CatLt CENTRATOM TRIESTE

INTERNATIONAL ATOMIC ENERGY AGENCY | 4
{ ; UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZ ATTON E
SMR.B58 - 24

SUMMER SCHOOL IN HIGH ENERGY PHYSICS AND COSMOLOGY

12 June - 28 July 1995

G. THOMPSON
ICTP
Trieste, Italy

Please note: These are preliminary notes intended for internal distribution only.

O e 1 T TMANIN N Ta oL ANA1ET T n ARNT10Y A nmsemen Climer B

o Vie Onirmiene O Tr 224241 Tmapss 224331 T 460449



New Results in Topological Field Theory and Abelian Gauge Theory

George Thompson: thompson@ictp.trieste.it

Warning Very Preliminary

Contents

Introduction

Topological Field Theories
21 The Euler Character . . . .. .. . ... . ...

$ Duality In Maxwell Theory and Abelian Instantons
3.1 Maxwell Theory on X and S Duality
3.2 Abelian Instantons . . . . . ... ... .

A Digression on 4-Manifolds

4.1 Intersection Form . . . . . . . ..

Donaldson Theory
51 Topological Field Theory of M . . .. . . . .
52 Relationship to N = 2 Super Yang-Mills Theory . . .
5.3 Relationship with the Monopole Equations

Witten Theory
6.1 Spin and Sping Structures . . . . ... ... L
62 U(l)Bundles . ... ... .. . ... . .

6.3 Thelnvariant . . . . .. ... ... ... . .. .. ..
6.4 Bochner-Lichnerowicz-Weitzenboch Formula . . . . | .
65 Vanishing Theorems . . . . . .. . ... . ..
6.6 Kahler Manifolds

6.7 Perturbation . . . . . . .. ..

References

Introduction

1

13
14
19
21

24
24

26
27
28
29

String theory is claimed to be the theory of ‘everything'. In principle, within
the context of string theory, one can calculate any process one can dream of and

ru

e

e



also some processes, involving zero mass black holes which were previously quite
unimaginable This makes the study of string theory both fascmating and, in
general, difficult. Topolegical field thecry, on the otherhand, is the theory of
‘nothing’. This means that one does not calculate any physical transitions at all
{at least not directly). The reason for this being that there are no dynamical
degrees of freedom 1n these theories. This makes the theory, in some instances,

more tractable but, perhaps surprisingly, does not diminish its inherent interest.

Why is a theory of ‘nothing’ interesting? One aspect of the answer to this
question is that, even though there are no physical degrees of freedom, these are
fully interacting, and at first sight, very complicated field theories. It comes as a
surprise that one can solve these models exactly. Nevertheless, this is so in many
cases. Solvable gauge field theories are few and far between yet Yang-Mills theory
and the GfG coset models on a general Riemann surface and Chern-Simoens theory
and various relatives on arbitrary three manifolds are examples. We can hope in
this way to gain a better understanding of what a non- perturbative solution to a
field theory could be like

What topolegical field theories calculate are invariants. That is numbers that
are robust: they are independent of couplings or of any dynamics. These numbers
are usually the dimension of some space or an Euler character. These numbers
may be of interest to phyicists or mathematicians or, indeed, to both. An example
of interest to both parties is Chern-Simons theory [15]. The partition function of
Chern-Simons theory on a manifold of the form T x S', where ¥ is a Riemann
surface, calculates the dimension of the space of conformal blocks of the G WIW
model. For physicists this is the dimension of the Hilbert space of the theory while
for mathematicians this is the dimension of the space of sections of the determinant
line over the space of flat connections on I (somewhat of a mouthful). One can
calculate this directly in the conformal theory, as E. Verlinde did, but cne cnly
needs familiar gauge theory techniques from the Chern-Simons peint of view and
one by passes completely the conformal field theory technology.

While topological field theories are interesting in their own right some of the
interest in them is also due to their, rather direct, relationship with conventional
“physical” theories For example, one can calculate Yukawa couplings in (N = 2
supersymmetric-) string theory with the standard sigma model or with either of
the two possible tapological theories’. The topological field theories can also act
as “easier” testing grounds for ideas in physical theories. An example of this is the

! The calculation of Yukawa couplings in string theory was covered in Brian Greene's lectures.
The relationship with the topological theory comes about as one is restricting ones attention to
chiral primaries. On this restricted field set the supersymmetry charges act like BRST operators
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idea of duality in supersymmetric Yang-Mills theory in four dimensions. Suppose
there is a correspondence between the weak (strong) coupling of one theory and
the strong (weak) coupling of its dual theory. If one of these field theories has a
topological field theory hidden within it, then s does the cther as the topological
field theory will exist in both phases of the original theory. Now the form of the
topological field theory may well be different in the dual model. The equivalence of
the two descriptions of the topolegical field theories is then a necessary cendition
for the duality of the starting models. In practice it may be easier to check for
duality at the leve] of the topological field theories,

This is the situaticn studied by Vafa and Witten [9]. The twisted N = 4 super
Yang-Mills theory on a four manifold calculates the Euler character of the moduli
space of instantons. Fortwitously, the mathematicians have calculated these for
certain compact Kahler manifolds as well as for ALE spaces. Vafa and Witten
were able to confirm, using the results of the mathematicians, that indeed the
partition function of the N = 4 SU(2) gauge theory transforms in strong coupling
to the N = 4 SO(3) gauge theory at weak coupling. This provides a direct test
of the duality hypothesis.

Another example where one can use the topological theory {counter histor-
ically) to test results in a physical theory 1s provided by the cand:date exact
solution of N = 2 SU(2) super Yang-Mills theory of Seiberg and Witten. The
N = 2 theory 1s related to some rathet deep mathematics of four manifelds. As
explained by L. Alvarez-Gaume in his lectures, when one is at weak coupling dom-
inant contributions come from instantons. The bulk of the mathematical analysis
is to come to grips with the moduli space of instantons. Rather than working at
weak coupling u —+ oo one can pass to the points |u| = 1 where the physics is
given in terms of a massless monopole and the magnetic photon. This system is
Abelian and easily analysed, and should allow one, if the picture is correct, to
reproduce the Donoldson Polynomials. Witten [13] shows in fact that the theory
at this point in the u plane gives non-trivial invariants of four manifolds (it is still
a conjecture that one reproduces Donaldson theory in general).

These notes are very similar to sets of lectures presented earlier this year in
Trieste. The first was by Braam and the second by Dijkgraal. The reason for
the overlap is easy to explain, our sources are almost identical. The papers by
Taubes, Verlinde, Witten and others are very clear and hardly need etucidation
-as for background the books by Freed and Uhlenbeck ard especially that by
Donaldson and Kronheimer are excellent for the elaboration of many of the notions
presented in the cited publications. There are, however, also sorme differences in



presentation. These stem from the different audiences that we were addressing
and from the fact that I am not an expert in the field of four manifolds {whereas
the Dutch gentlemen cited are).

2 Topological Field Theories

The type of topological field theories that will be of interest to us here are easy to
construct. We will want a field theory that devolves to some moduli space, that
is 1o say, that describes the space of solutions to a set of equations. Suppose that
we have a set of fields, {®,} and the equations of interest are

#(®,) =0, (2.1)

we denote the space of sclutions by M(®). A typical example is the space of flat
connections on a manifold X. In this case the fields ®, are only the gauge field A

and the equations s* are
s=F,=dA+ A =0, (2.2)

Usually cne wishes to also factor out the action of the gauge group and this would
correspond bo yet more conditions on A (a choice of gauge]. Another choice of
interest is the space of self dual connections over a 4-manifold, the context in
which Witten first introduced topological field theories of this kind and to which
we will pay some attention later in these notes

An important ingredient in the construction of a topological field theory is the
topelogical symmetry. We denote generator of the symmetry by Q. lts action on
the fields {®,} is to give a new set of fietds {¥,} which are in all ways identical
to the original set except that the new fields have opposite Grassman character.
If cune starts with a scalar field then its ‘superpartner’ is also of spin zero, but
it is an anticommuting field. If, on the other hand, the field ¢ is a spinor field
{anticommuting) then its partner ¥ will be a commuting spinor field, and so on.
This property of the set of fields {¥;} makes them more like Fadeev-Popov ghost
fields and this is insinuated when one says that the operator @ is a BRST operator.
So we have

Qe =¥, (2.3)

In order to be able to impose the equations (2.1) we also need to introduce a set
of Grassman odd fields {¥,} and Grassman even fields {B,} with transformation
properties

QY. = B. (24)
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Supose that the theory we are interested in is defined on some manifold (or
more generally some space) X. In order to fully define the theory we may need also
to use a metric on X, or some other coupling constants; denote these collectively
by ¢,. The action of interest is then, schematically,

s = [ (oo Te))
= jx (tnB.,S"(‘I’)—fuwué.!;é?)‘l"+~--)- (2.5)

The associated path integral is
7= fDYexp(iS(Y)) (2.6}
where Y denotes all the fields.

Notice that if the multiplier fields B, appear as in {2.5) then integrating over
them yield a delta function constraint on s* = 0. Hence the partition function will
devolve to a (finite dimensional) integral over the moduli space. The integration
aver all of the fields {¢"} will yield some function u(%), so that

a.rld }1(@) may be interpreted as some Imeasure on M

Remark: It is sometimes possible to write down a topological action without
the need of an auxillary set of fields. Two dimensional Donaldson theory is an
example of this.

Metric and Coupling Constant Independence

In order to write down the equations of interest or an action one may need
to introduce extraneous parameters. For example, even if one can formulate the
flatness equation without recourse to a metric, a metric is, nevertheless, required
in order to gauge fix the gauge field. Another example is the instanton equation
which requires a metric from the word go. Under suitable conditions one will be
able to establish that nothing depends on these choices. When that is so- the
name of the game is to choose the parameters to make life as simple as possible.

The variation of the partition function with respect to any of the parameters
t, (including the metric) is

g_tz,- = jDYexp(iS(Y)).i—-——a':fr}
= [DYexp(iS(Y]).i{Q,V(Y)}, (2.8)
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for some V. The righthand side vanishes by a Ward identity. Consider the obvicus
equality

fDYexp (S(YNV(Y) = [D{Y +QY)expiS(Y + QYIV(Y +QY)  (2.9)
This leads to non-trivial information if both the measure DX and the action are
@ invariant. In the topological field theory the action is @ exact, its Q variation
will be Q@ acting on something, but Q% =0, so S[¥ + @Y) = S(¥). Presume the
measure 13 also invariant {one can check that at a formal level this is the case), so

that D(Y + QY) = DY. We can now conclude that
/DYexp(:‘S(Y])V(Y)

fDY exp (iS(Y)V(Y + QY)

J DY exp iS(¥)) (V¥) + {@.V(V )} (2 10)

i

which implies that
/DYexp (SYIHQ,V(Y)} = 0. (2.11)

This establishes that the partition function in a topclogical field theory is inde-
pendent of both the metric and coupling constants, providing the theory remains
well defined as we vary the parameters. Let the parameter space be T, which,
for simplicity we take to be connected. One can get from one set of parameters
t, to another ¢ along some path im 7. Pick such a path and suppose that for all
points along the path the theory is well behaved. Now perturb the path. If only
for very special choices of the perturbation does the path go through points that
lead to an ill defined theory, one says that the partition function is independent
under generic variations of the couplings. This is good enough.

Unfortunately, it is not always the case that a generic path misses the ‘bad’
points, as we will see later, there are situations in Donaldson and in Witten theory
where the dimension of the moduli space jumps as one varies the metric and that
one cannot avoid this.

No Physical Degrees of Freedom

When dealing with any field theory, there are certain restrictions on the field
content. For example, one should have a good quadratic form. This means that,
in the present situation, up to a finite number of zero modes, there should be an
equal number of degrees of freedom in the set of fields {$} and {8}, even though
the labels are different. For example, the four dimensional Yang-Mills action (plus

a # term), may be written as
z
’D./]R‘ (B:upﬂv - %B-‘:—uB:u) ' (2‘12)
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where B, is a self dual anti-symmetric tensor The equation of motion for B,
18 algebraic, so that one can substitute this back to obtain the more usual form
of the action®. Now B,,, only has three independent components while A, has
four. We need to gauge fix and we can do so by introducing a multiplier field b
and Fadeev-Popov ghosts to the theory. Now one adds

T\-fm‘ (b3# A, +28"D,e) (2.13)

to the action. B and b together match have four degrees of freedom and se match
the gauge field, while ¢ has one degree of freedom and matches  so all is well,

This counting implies that we have a well defined action but does not tell us
what the physical degrees of freedom are. We know that in d-dimensions a vector
field has 4 — 2 physical degrees of freedom. There is a simple way of getting this
from the gauge fixed action. A gauge field has d degrees of freedom, and each of
the two ghosts has —1 degrees of freedom, giving us a total of d — 2. The B and
b fields do not count as they are 'non-propagating’, meaning one can eliminate
them algebraically.

The topological field theory has, by construction, for every field an associated
‘ghost’ field identical in every respect except that it has opposite Grassmann
parity. As every field 1s matched by a ghest, the total number of physical degrees
of freedom is always zero in a topological field thecry.

Index theory and the Dimensicn of M

We have seen that there are no propagating degrees of freedom, we are down
to the zero, or topological, modes and some of these make up the moduki space
M,. What is the dimension of M,? To simplify life let us assume that M, is
connected and smooth about most points. One way to determine the dimenion
of M,, is to fix a point ¢ € M, and then see in how many directions you ¢an go
and stay in MM, We saw an example of this argument in the lectures of J. Harvey
for the moduli space of menopoles we proceed in the same way. Hence, we want
3(¢) = 0 and if ¢ + 44 is a nearby point we alsc require s(¢ +6¢) = 0, or we look
for solutions to .

8e°(%) d¢, = 0. (2.14)

§%, R
If we are lucky the operator D = d5°($}/§¢ has no co-kernel, as in the case of the
monopoles, and the index 1s known. Then as index(D} = Ker(D) - CoKer(D)

?In the Path integral we are dealing with a Gaussian integral over B which amounts to the
same thing.



we would have the dimension of the moduli space. There are many situations
where we are not lucky. On a compact odd dimensional manifold the operator
D that is associated with the space of flat comnections (2.2) has index zero (as
the kernel and cokernel are equal). In such situations cne must look elsewhere
for a handle on the moduli space. For flat connections the equivalent description
in terms of homomorphisms of the fundamental group of the underlying manifold
into the gauge group (modulo the adjoint action of the gauge group) contains the
necessary information.

The index of I is sometimes called the virtual dimension of the moduli space.

2.1 The Euler Character

One of the classic invariants of a closed compact n-manifold X is its Euler char-
acter. It is defined to be

"

x(X) = T(=1)'b, (2.15)

=1
where the Betti numbers are b, = dimH*(X,R). Now there are two well known
formula for this invariant. The first, due to Gauss and Bonnet states that if Ruwna
is the Riemann curvature temsor then

The second formula, due to Poincare and Hopf, counts the number of non-degenerate
critical points zp of a function f on X with sign,

x(X) =Y signdet (8,0, f). (2.17)
P

These formulae arise naturally in the context of supersymmetric quantum me-
chanics. The aim there is to give a path integral representation of the index of
certain differential operators. The index of the de-Rham operator offers a third
representation of the Euler character. As Witten showed [11] there is a twisting of
the de-Rham operator d that interpolates between the two formulae, d = et dett.
In the supersymmetric quantum mechanics path integral one can take the limit
¢ — 0 to arrive at (2.16) or t = co to arrive at (2.17). By supersymmetry invari-
ance the path integral is formally independent of ¢ and the equality of the two
formulae is thus established.

This situation prompted Quillen [?] and Matthai and Quillen {8] to develop
a completetly classical formula that interpolates between {2.16) and (2.17). We
will give a physicists ‘derivation’ of this shortly. Before doing that [ would like to
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explain the historical relationship of the Matthai-Quillen formalism to topological
field theory. The supersymmetric quantum mechanics, alluded to above, was,
perhaps, the first example of 2 Witten type topological field theory. After Wittens
introduction of Donaldson theory it was shown, by Atiyah and Jeffery [1], that
one could re-interpret the construction as an infinite dimensional version of the
Matthai-Quillen formalism. These infinite dimensional Matthai-Quillen theories
devolve to finite dimensional Matthai-Quillen models of the type we will presently
digcuss. In the quanium mechanics context, the supersymmetric theory considered
by Witten can be viewed as an infinite dimensional Matthai-Quillen construction,
while the finite dimensional formula that it gives rise to and that interpolates
between {2.16) and (2.17} is the ‘classical’ Matthai-Quillen formula. An account of
this construction in topological field theory is to be found in [6, 4, 7, 9]. Physicists
will see that this construction is equivalent to the existance of a Nicolai map
12,7, 3]

Now back to buisiness Let X be a closed and compact manifold, and f &
map, f : X = IR, which has isolated critical points. The points at which

df =0 (2.18)

define our moduli space M;. If the critical points are isolated this means that
the second derivative of f is not zero at those points. From our discussion of the
dimension of the moduli space we should be looking for solutions to the varation
of df,
D*f

Dzrzv
If the eigenvalues of D? f{Dz*Dz” are not zero then the only solution is bzt =0,
that is the critical point is isolated.

gz = 0. (2.19)

The supersymmetry algebra is

Q= y*, Qyr =0,
Q’lap = B,u - J’vr:’m‘p“ »
1-
QB, = Bvr‘;n - E‘PNR:MV"’\V"“ : (2.20)

with @* = 0. Now we may create a topological (field) theory with the action
- . i
S = {QPuglitd,f + 3B}
Dgf i 1 TR IUNE )
m‘;‘# - ZRpum\d’ 71’ ’4'1 'V') (221)

The transformation rules have been chosen to give us a covariant action,

= 4B, f+ -;—g”,,B"B“ ~ it

9
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Notice that there is a second supersymmetry that one gets by exchanging
¥ —+ ¥ and ¥ & —%. This happens quite naturally whenever one wishes to
write down a topological field theory for an Euler character The correspondence
comes because on the space of forms Q acts like d while the second supersymmetry
charge @ behaves as d*. The construction is most easily understoed in terms of
supersymmetric quantum mechanics, which, unfortunately, there is no time to go
into here.

The partition function

_ -5
Z = __(zm f/dde’;dy’ze 1 (2.22)

is independent of smocth deformations of the parameters, as we discussed previ-
ously, since the derivative of the action with respect to either the metric or tis of
the form {@, ...} {we see this directly from the first line of (2.21}). In particular,

it does not depend on ¢, so that we are free to take various limits.

t—+ o0

In this case the entire contribution to the ‘path integral’ is around the critical

points of f. To see this send B — 1B and 4 — %1‘5,

Df

YWE S Ho
DzvDz*

An important feature of this scaling is that the Jacobian of the transformation is

unity.

S1(00) = 9" B, f — ig" Yy s ¥ (2.23)

We let {zp} = M be the critical point set and expand around each point
as r = rp+ x, Furthermore, around a critical peint we can pick a flat metric
Guv = b, for which the christoffel symbol vanishes. The integral over B, gives

(28 (8,f(z)) = (2m)" %6 (x;@,,@,,f(xp))
F
n 1 B
= (27) g 3ot ava,,né (z2) (2.24)
On the other hand the integral over the fermionic fields,
fdwd& exp (—idr 2 yr) = — (i) det 8,8, 5 (2.25)
dzv oz ¢

The path integral, therefore becomes
/Edetaaﬁf ( ) Zdetaﬂf (2.26)
x5 | det 8,8, f| |det 8,8, f|
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We can write this in the form

Z,=Yep (2.27)
P
with
ep = signdet Hp(f) (2.28)

with Hpf = 82 f/82#8z". Hpf is called the Hessian of f at 2p.

Example: Riemann Surfaces

Consider the example of a height function of a genus g Riemann surface as
given in the figure.

The critical points of the height function are marked. The bottom of the
surface, [ = Rmn, 18 a mimmum, and hence the sign of both eigenvalues of
8f5rP3z" are plus. The Hessian is therefore +1. At the top of the surface, f =
Amaz, 18 8@ maximum, both eigenvalues are negative, the determinant is positive,
and the Hessian is +1. For each hole (there are g of them) one has two turning
points. The turning points are at f = hy,.. . Ay One of the eigenvalues 1s
positive, the other negative so, at each of these points, the Hessian is —1

All in all we obtain in this way,
Z=1-1% (2.29)

which we recognise as the Euler character of the Riemann surface.

£l

In this Limit we are left only with the curvature term, so that
- fy [ 1B [ gl 3

The integrals over the fields B, 1 and v are now easy to perform, leaving us with
the Gauss-Bonnet formula for the Euler character of a manifold X,

xX) = (‘erl]"/2 fx Rl (231)

ert tions
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The form of the partition function (2.27} appears to depend quite strongly on
the function f that we started with. Yet, topological (BRST) invariance allowed
us to equate this with the form of the partition function as given in {2.31}, which
does not depend at all on the function f that we started with. There is a nice way
to see why this might be so. Consider a perturbed height function f! as displayed
in the figure.

The difference between this and f of figure is the addition of a ‘hill’ and of &
valley. Now, the apex of the new hill is a maximum, so the Hessian there is +1.
On the otherhand the bottom of the valley is a turning point with Hessian —1. So
we see that the addition of the Hessians for f' at these two critical points cancel
out, and the sum reverts to that of the other critical points where f' agrees with
f! One can easily convince oneself that whenever a valley is added then sois a
hill (when you dig a hole you get a mound of dirt) as well as the converse, and
the contributions of the Hessian always cancel out .

This takes care of the undulations but what happens when we hit a plateau?
Such a situation is depicted in the figure for a height function g.

This situation means that the moduli space, i.e. the solution set to dg =0, is
not made up of just isolated points. In the current situation there are two ways
out. The first, is simply to note that the geperal formula (2.22), works in this
instance as well. Indeed there are two different limits that can be used. One can
take the ¢ = 0 limit without fear. Altermatively, away from the plateau, one may
use the the ¢ = oo limit, and as one approaches the plateau, revert to the t = 0
limit. The second way to proceed, which will be of importance later, is to perturb
the function g to a new function g'. The perurbation ¢’ — g need only be ever so
slight and then the critical points are isclated again. The perturbed equation is

dg = ev (2.32)

where v is a vector field (essentially dg' — dg). As long as € > 0 there are only
isolated solutions to this equation. One can construct a new action which takes
its values at {2.32),

{Q,¥"(dg — ev,)}, (2.33)
{all reference to the metric has been dropped, as it plays no role here, we have
taken the t —+ oo limit). The partition function function once more, gives the
Euler character of the surface, and the ¢ & 0* may be taken with impunity.
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Invariants and Zero Dimensional Moduli Space

Quite generally (up to certain compactness requirements) given a system of
equations
$2($) =0 {2.34)

with isolated solutions {¢}, the signed sum of solutions
e {2.35)
!

where ¢, = sign det §2s/5¢d¢, is a topological invariant.

To be continued

3 S Duality In Maxwell Theory and Abelian Instantons

In this section we will study two different aspects of four-dimensional Abelian
theories. The first is a study of S duality in the Abelian context. M. Bershadsky
has described, in his lectures, a relationship between § duality in four dimensions
and T duality in two dimensions, for non-Abelian theories. Why the interest in the
Abelian case? From the lectures of Harvey and Alvarez-Gaume we have seen the
important part role played by the breaking of SU(2) down to U/(1) in the N =2
supersymmetric Yang-Mills theory. The effective theory, at strong coupling is a
U(1) theory.

There have appeared in the last month two very interesting papers on § duality
in Maxwell theory, which go in different directions. E. Verlinde [10] has studied
the § duality of Maxwell theory and its relationship to T duality, string theory
and higher dimensional {free) field theories. E. Witten [12] has used it to probe the
modular properties of the partition function sc as to fix some of the 7 dependence
of the N = 2 theory on arbitrary four manifolds.

In the following I will give a ‘bare bones' description of § duality for Maxwell
theory which I hope, though it does no justice to the above works, will nevertheless
entice the reader to look into the references.

The second subject will be a quick tour of Abelian instantons and the con-
structicn of a topological field theory that describes the moduli space. That model
should not be taken too seriously- [ have included it 80 as to explain how a topo-
logical field theory may contain '7' dependence and to introduce some ideas that
we will need later on.

13
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3.1 Maxwell Theory on X and $ Duality

The usual action for pure Maxwell theory with a theta term is
1 . f
S=—2[FA*FA+I—',1]FAFA. (31]
gt ix 8n? Sx

The partiticn function is a function of both r and ¥ where

8 4

= ) 32
I t_qv2 (32)

What we would like to know how the partition function behaves under the action
of SL(2,Z) on r. That action is described by

ar +b
-3
cr+d

(3.3)

where the constants a, b, ¢, d are integers and obey ad — bc = 1 (so that one may

a b
(c d) (34)

which clearly defines the group SL(2,Z2) ). One can generate SL{2,7ZZ) by the

transformations
g0 (3.5)
= _; 4 .

11
T=(0 1) (3.6)

From these we see that T(r) = r + 1 (just substitute inte (3.3) the values a =
b=d=1and c = 0) or § =& &+ 2r. If the partition function is invariant under
T then we are saying the physics is periodic in € with period 2r. Likewise the
action of § on 7 is S{r) = —1fr, or g*f4m — 4r/g®. The label § is thus apt for
it has the effect of exchanging weak and strong coupling.

group them together into a matrix

and

It is strange to talk about weak and strong coupling for a free theory! The
context in which strong-weak duality has been discussed in the school isin theories
with monopoles. Now one cap mimic the presence of monopoles by allowing
for manifolds with non trivial two-cycles then the ‘Dirac quaxntization' condition
applies or, put ancther way, the integral of Fy over such a surface must be 2n
times an integer. A small surprise is that for some four manifolds the partition
function transforms well under T and S? but not under §. We will find that the
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partition function is a modular form of particular weight (see below), of SL(2, Z)
or a {finite index) subgroup thereof.

We can now check for the properties of the partition function under both
r—+7+aand T2 —ifr.

rTr+lorr—a1+2

T — T+ o 18 easy to check as it corresponds to 8 ~+ 8+ 2ma. The action shifts
by
o
!E[XFAFA. (37)

Now we know that Fy = da + 2rn'y, where a € (X, IR) and v, is a basis of
H*( X, R) dual to a basis of (X, R), ie. j,h v = b,;, and that the n* are integers
This decomposition is due to the, by now, famitiar magnetic flux condition

f Fu = 2rn'. (3 8)
T
With these conventions (3.7) becomes

inan'Q,J—n" (3.9)

where @,; = [x[EJ[E;] More on the matrix @ later. If 2. Q n is even then
exp(—5) 1s unchanged for o =1, § —+ & + 2=, while if . Q.n 15 odd one needs to
take & = 2, # = 8+ 4, to have an invariance. There are general results that tell
us that for manifolds on which fermions are defined n? must be even. One says
that there 13 a spin structure. For manifolds which do not admit a spin structure
there is no condition on n?. Lets turn to some examples.

.X:Elng

We know that we can have spinors on Riemann surfaces so in this case we
would expect that n.@.n is even. First we have to decide what the available
harmonic two-forms are. We can use the Kunneth formula HP(X, x X;) =
DI S HO(X,) @ HP-9(X,) and set p = 2. To simplify matters I will
do the case of X = 5% x S? and leave the genral case as an exercise. Let
us denocte the basic two forms by wy and w, of the first and the second §*
respectively. Kunneth tells us that these two span the second cohomology
group of §% x 52 The w, are normalised by

;= by 3.10
forwi =8 (3.10)
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and the only non-zero components of ¢ are

Cru=0Cn = /s ,wiwa =L {3.11)

2 % 5
Then we have
nQ.n=2n'n’ (3.12)
whick is even, as promised.
s X = CP?
The second cohomology group of CIP? has only one generator which we
denote by w. The harmonic part of Fy is therefore proportional to w

Fy = 2nnw (3.13}

and consequently n.@Q.n = n? which can be even or odd. When discussing
Witten theory we will see that indeed CIP? does not admit a spin structure.

T -1f7

In order to check the modular properties of the partition function under r -+
—1/7 we need to re-write the action. Censider instead of (3.1) the action

S(F.V) = 4—1;[): F(iRer + Imr«)F — ﬁjx dVF (314)

Here V is to be understood as a connection on a non-trivial bundle, in defining the
path integral we should sum over all such lines, and F is an arbitrary two-form.
We can write

Fy = dV = dv + 2rm'[T]. (3.15)

Firstly lets establish that the theory defined in this way is equivalent to

Maxwell theory, also summed over all non-trivial line bundles. The partition
function is

2,7 = %, [ DFDue S, (3.16)
F may be decomposed as F' = »dB + da + ¢'[E;] where the §* are real numbers.
The integral over v gives a delta function constraint setting dF = 0, which implies

B = 0. We are left with the sum

Y exp (im'Q,;¢') (3.17)
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which is a periodic delta function which forces ¢/ = ?mn?. So the requirement
that F, after integrating out V', is F, fixes the coefficient of the dV F term in the
action {up to a sign). This establishes that the partition function agrees with the
Maxwell partition function.

Now we integrate out F instead of V. This is a simple Gaussian integral (and
[ leave it as an exercise) giving

-1 Y
2(r,7) = EI]Duexp (ij Fy Fy - ;@-[x FVFV) (3.18)

where

47 Imr ¥ Rer

PR =i (319)
These equalities correspond to 7 = —1/r. Notice that we have not shown invari-
ance of the partition function but rather described its ‘covariance’.

In checking the duality transformations we have not at all worried about the
normalisation of the path integral measure. We will certainly have to worry about
this if we want to be sure of the complete dependence on 7 of the partition function.

‘Semi-Classical Expansion’

In order to perform the path integral over gauge fields with non-trivial first
Chern class {(monopole number) we write the field strength as

Fy = 2mn'(Z,) + da (3.20)

and let the path integral be an integral over the globally defined vectors a, though
they may have non-trivial harmonic 1-form pieces, as well as a summation over the
n'. It is worth remarking that the split (3.20) is a standard one we often employ
in field theory, namely a split into a classical configuration plus a quantum part.
A classical configuration in Maxwell theory is one that satisfies

deFy=0 (3.21)

while all F4 satisfy dF4 = 0. This tells us that F4 € H?(X,R). The monopole
quantization condition tells us that indeed F,/2r € H*(X Z), so that classical
configurations take the form F = 21n*[5,].

Substituting (3.20) into the action (3.1} we see that the classical and quantum
configurations do not talk

1 47% ;8 ;
S§= g—zfxdatda+—yTn Gyjn +izn'Qyn’ (3.22)
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where
G, = [ [E1=[%) (3.23)
is the metric on the space of harmonic two-forms, Consequenttly we may split

the path integral into a nroduct of the 7 dependent classical part Z. and the lmr
dependent quantum part Z,

Z(r) = Z(7)Zq(r) (3.24)
with
247) = Lexp- (‘%gn"G-,-n" + f%n'oun"). (3.25)
and ' 1
Z,r) = f Da exp (_F jx da « da) (3.26)

We see that, with some definition, the + dependence of Z, is only in the form of
Imr. Witten gives us a way to fix this dependence. The dependence is of the form

Zy(r) ~ (Vimr)" (3.27)

Lets have a look at some simple examples.

*+ X = CP?

We know that the classical part of Fs = 2rnw. Furthermore, the metric is
such that =w = 1 Hence

Z{7)opr = 3 exp (-:'rr?nj). (3.28)

Notice that this is only invariant under 7 = 7+ 2. To discover the behaviour
of Z.(7)ge under 7 — 7 we use a small trick. We rewrite Z.(7)ep as

3 exp (—{w?n’) =3 /m dy exp (—iwy2?+ 21riym) {3.29)
nEX meL " "™

and the equality holds because the sum over m will give zero unless y is an
integer. Now we can integrate out y to cbtain
Zdr)ep = S=2d-7) (3.30)
T = —=Z[-— .
e\T/CP \/;; T P

which tells us that Z.{r)gp is a modular form of degree (0,1/2).
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¢ X =TP

The only difference between CIP? and CIP~ 1s an reversal of orientation, so

that in this case *xw = —w, and
2{r) g = 3 exp (—inTn?). (3.31)
This 15 a modular form of degree (1/2,0).

e X = 5% x §?

From our previous discussion we know that Fu = 2rn'w; + 27ntw; The
only thing we need to specify is the metnic . We do this by setting

l
= Ry,  kwp = T (3.32)

which satisfies »* = 1. Z, for such configurations is

Z(T)srus2 = n%;] exp (-—igr(nlﬂ - Tl_Rz); + 1%?(1:11% + %]2) {3.33)
which has a form familiar from the study of the R — 1/H symmetry in
string theory for a boson compactified on a circle of radius R (what the
partition function lacks are the propagating modes).

At this paint there are various lines of investigation available One is to estab-
lish the 7 dependence of Z,, see [12]. On the otherhand the similiraity between the
partition functions obtained here and those of string theory lead one in another
direction [10]. Instead we turn to a topological field theory.

3.2 Abelian Instantons

One may wonder what the space of solutions to the Abelian instanton equation
is. We would like to solve

F;, =0, {3.34)

We know that, by the Bianchi identity, dF = 0, and as F' = «F this also implies

d"F =0, or that FF € H?(X,IR). Actually, as the flux of the gauge field through

any two-surface is quantised, (F/2r) € H?(X,Z). If F is a solution to (3.34)
then (F/2r) € H?(X,R).

One important observation is that the space of solutions is metric dependent.

Indeed on any 4-manifold X with 8§ > 0, after a small perturbation of the metric,
there are no Abelian instantons except flat ones (so that if X is simply connected
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as well the only solution to (3.34) is the trivial gauge field A, = 0). The reason
for this ja that, as we have seen, F must lie on a lattice, however it also lives in
H?(X,R), which will generically lie off the lattice.

To see how this could be so consider 5% x 5% with the two generators of
H¥ X &) described previously, b = b5 = 1. The metric was taken to satisfy

Wy =Wy, ¥ = o, (3.35)
so that # = 1. In this case any w € H¥(S5? x S?, Z) can be expressed as

w = mw + nreun
n; + 1 np - ng
Wy W
2 2 '

(3.36)

where wy = (w) tw;) are the generators of H2(5?x 5% IR). From these expressions
one sees that H? intersects the lattice at ny = —n,.

Now we are going to perturb the metric a little. Let

wwp S Awy,  %wp = lw;, {3.37}

A
where A can be close to unity. With this metric the self-dual anti-self dual basis

is
wr = wy £ Awg, (3.38)

and evidently H*Z) n H?(IR) = {0,0). The situation is summarised in the
diagram.

Consequently, for a generic metric, the only Abelian instantons are flat con-
nections. On S? x 57 there are no flat connections so generically the moduli space
is empty. We are also furnished with an example of how one cannot avoid a jump
in the dimension of the moduli space along a one parameter family of metrics on
X when 3 = 1. X parameterises the relative volume of the two spheres. If one
follows a path in the space of metrics with A > 1 to 1 > A then one cannot avoid
passing through A = 1 at which point there are solutions to self dual equations.
We summarise this as follows
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This is a persistent problem for both Donaldson theory and Witten theory.

The argument above breaks down if 8F = 0 as then H2(X,R) is the entire
vector space (8o, in particular, the lattice lives there). For simply connected X,

this can only happen if x = 2 — ¢. One manifold for which this equality holds is
TP’ In this case by = by = 1.

Moduli Space

The moduli space of Abelian instantons is taken to be the space of solutions to
the instanton equation modulo gauge transformations. When Abelian instantons
exist it is not difficult to describe the moduli space. We may as well demand that
b3 (X) =0, then any Abelian instanton is described by

Fy = 2rn,{8] + da (3.39)

where d » da = 0 (as d x Fy = 0). We also must fix the gauge, so we dc this by
demanding d * a = 0. Now the restriction that d =da = 0 implies

fad*dc.:o:fxdmda:o:,da:a (3.40)
X

We now have the conditions that da = d*a = 0 or that a € H'(X, R). The gauge
mvariant description of the points in the moduli space is to consider [, a.

Actually this is not guite the end of the story as there are large gauge transfor-
mations to take into account. Roughly these arise as follows: a gauge transforma-
tion can be thought of as a map g : X — U(1), these maps fall into different classes
because we can map the different I-cycles non-trivially into U/(1). For example,
consider a non-trivial one cycle -y with coordinates 0 < ¢ < 2, then one has non-
trivial maps g = exp (ing). Under such a gauge transformation ¢ — a + g~'idyg
one finds that [ a ~+ [ a + 27m so that these points of the moduli space are
defined up to periodicity, they lie on a torus. In genera] one has that the moduli
space 1s indeed the torus

HYX R)/H'(X, &) (3.41)

This is the moduli space for fixed first Chern number.

3.3 Topological Field Theory for Abelian Instantons

We will now construct a topological model for Abelian instantons. Even though
in general they do not exist we will take the topology to be on our side, namely,
we will work with manifolds for which 63 = 0.

The fields that we will need are; the gauge field A, its super partner ¥,
{Grassmann odd), and a scalar field ¢ on the one hand (these encode the geometry)
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while on the otherhand one needs a self dual tensor field BY,, its super partner
X (also self dual but Grassmann odd) and a pair of scalar super partners ¢ and
n {the first Grassmann even the second odd}. All the fields are matched except
¢ (but its superpariner is the ghost field that one gets on gauge fixing 4,, and

which 1 have supressed).

The transformation rules are

QAp=¢'ux Q¢P=a#¢l Q¢’=0|
Qx}, =B, @QBL =0, (3.47)
Qd=n,  Qn=19,
Notice that Q? = Ly, where Ly acts on the fields as a gauge transformation. This
means that, even though @? # 0 acting on a gauge invariant function it will give
zero. With this in mind we take the following as our action on any four-manifoid

X

n
it

Q. [ xX*Fat dd x4}

fx(B*F'A —xtd +ndx Y+ ¢l = d). (3.43)

This action is inadequate because of the presence of zero modes. Clearly there
is one zero mode for each of ¢, ¢, and 5 (the constant mode; by = 1 on any
manifold). There are also b, zero modes each for A and i, while there are b zero
modes for B* and for x*. We fix on a manifold with % = 0, so that we need not
worry about zero for either By or x4+. We can, by hand, simply declare the zero
modes of ¢ and 5 to be zero. One may also declare that the zero modes of ¢ and
the Faddeev-Popv ghost field are also zerc (though this is less natural). One can
do this in a BRST invariant manner [?]. We also do not have to worry about the
zero modes of the gauge field since they lie naturally on a torus and integrating
over them will give some finite factor. We are left with the zero modes of ¢ to
worry about. However, we can soak these up by inserting operators of the form
J, ¥ into the path integral, where ¥ € Hy(X,IR). Nolice thal these are BRST
invariant operators. Everything is now more or less under control-but what does
it mean?

Interpretation
Firstly the B, integral tells us that we are cn the moduli space

Ff=u¢, (3.44}
(providing we also gauge fix). The x4 integral enforces
(14 *)dy =0 (3.45)
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This equation tells us that ¢ is tangent to the moduli space. To see this we note
that if a is an abelian instanton and a + éa is alsc an abelian instanton then
(Fa— Fasysa)t = 0 and consequently (1+=)da = 0, which is the equation satisfied
by . From a geometrical point of view such a ¢4 would correspond to a tangent
to the moduli space providing we also impose that d * é4 = 0. One really only
wants tangents which do not lie in the gauge directions and the integral over
imposes that ¢ has no components in that direction, i.e.

dxyp=0. (3.46)

Indeed as 9 is Grassmann odd it is most naturally thought of as a one-form
on the moduli space, and ¢ then has the interpretation of being the exterior
derivative on M. How many such ¢ are there? We can answer this with a simple
‘squaring’ argument. From (3.45), using the same argument as above for the gauge
field, we can conclude that

dy =0 (3.47)

Taken together with (3.46) this equation implies that ¢ is harmonic. We can
expand ¥ = A'v, for A* Grassmann parameters and v, a basis for H'(X,R). The
¥ probe the tangent space to the torus and there are as many of them as the
dimension of the torus.

Relationship with Maxwell Theory

To make some contact with Maxwell theory we note that we can write the
action (3.1) as

2 T
== [ Ftrr '--[ . _
§=5 fx 1FE+ic [ FuFs (3.48)

An equivalent thecry is thus cbtained on using

.2 1 .
IF'/X B+FA+§/X B+B++14waxFAFA (349]

as the action. There is a relationship between topological theories and physical
theories that comes about by ‘twisting’. This will be decribed in the next section,
but one part of the relationship that we need is that the actions of the topological
and physical theories are, at first, equivalent. This means that what we really
wish to consider as the action of the topological theory is not just {3.43), but
rather {3.49). This differs from the bosonic part of (3.43) by a topological piece,
the theta term, and by a BRST trivial piece B2,

[ Q. xsBe) = BB, (3.50)
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One can, therefore, use (3.49) as the bosonic part of the topolegical action and
maintain topological invariance. Our general arguments tell us that, in principle,
the addition of B3 does not change the results.

The upshot of this is that one calculates, within the topological theory

exp (—i% /X FAFA) (1‘[ f, ¢) (351)

This automatically gives us

2(7)iep ~ 3 exp (—imn'Qn?). {3.52)

To be continued

4 A Digression on 4-Manifolds

The basic invariants of any manifold are the homotopy and homology groups.
The Hodge star operator  squares to unity in four dimensions; »? = .

If a two-form o € 2*(X,R) is self dual then we may refine the Hodge decom.
position somewhat. Let
a=dA+=dB + (4.1)

where A and B are one forms and v is a harmonic form. Aanti-self duality, or
(1 4+ *)o = 0 means that

a= ~wa=~dB — xdA — =y (4.2)
or, as the Hodge decomposition is unique, that
A=-B, wy=—7. (4.3)
This means that we can write for any (anti) self dual two-form
a=(1-«)dA+~ (4.4)

with v = —,

4.1 Intersection Form

Just as in two dimensions, there are surfaces in cur 4-manifold that cannot be
contracted to a point. A simple example is that of X = 5% x §?, it is clear
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that neither of the $? factors is contractible to a point. The homology groups
H,(X IR} are a measure of noncontractible surfaces of dimension p in X. Let X
be a compact, oriented simply connected 4-manifold. If o represents a class in
Hy(X, Z) then, by Poincare duality, we can identify it with a class in H*(X,Z),
which I will also denote by a. Given o, € Hy(X, Z) we can define a quadratic
form, (a b; X b; matrix),

Q H{X,Z)x Hy( X, Z) = 7, (4.5)

by
f af=af. (4.6)
X

@ enjoys the following properties.

o It is unimodular {det @ = +1). This follows from the fact that it provides
the Poincare duality isomorphism between Ha(X) and H?(X).

¢ It is symmetric. This is a trivial consequence of the fact that two form
commute, i.e. aff = fo whenever either of a or # € H}( X, R).

Examples:

1. The four sphere S* has trivial H; 50 all the intersection numbers vanish.

2. Let X = 8% x §7. There are two basic two forms, w; and w; dual to the
second and first % respectively. We have

Qe ug) = /qusz Wiy = [51"{?] w = f{p}xs? wy = 1. (4.7

With this we see that
01
Q= ( . ) . (48)

3. Consider a product 4-manifold, X = I; x I, where the T, are Riemann
surfaces of genus g,. In this case

01
Q_,,§+,®(1 o)‘ {4.9)

4. The manifold CP? has by =1,s0Q = 1.
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5. The K; surface has by = 22! This means that Q is a 22 x 22 matrix. Indeed,

01
Q =3( . ) ® 2—Ey), (4.10)

where Eg is the Cartan matrix of the exceptional Lie algebra e,

2 -1 ¢ 0 0 0 0 O
-1 2 -1 0 0 O

Ey (4.11)

Lo T T e B o S o N
o o o O o

To be continued

5 Donaldson Theory

Donaldsons original motivation for studying the modul space of instantons over
a compact closed and simply connected four manifold X was to get a handle on
the possible differentiable structures that one could place on X. The dimension
of the moduli space of instantons, for SU(2), is

3
dimM = 8cy — §[X + o)
= 8¢y 3(1 = by +b7) (5.1)

For ¢; = 1 and by = b = 0 the formal dimension is dimA = 5. The space looks
like this,

The sharp ends are the reducible connections. These are self-dual connections
for which the gauge group does not act freely. That is there are non-trivial solu-
tions to d4¢ = ¢ This happens precisely when A is an Abelian connection living,
say, in the 3 direction of su(2) and ¢ constant also lying in the 3 direction. We
saw before that we could avoid Abelian instantons ezcept when 67 = 0. Of course
not all self dual Abelian gauge fields are allowed, they must satisfy

_—Ij tr FaFy
7t Jx
FyFy4
A=

1

(5.2)
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the notation being that in the first line one is dealing with the su(2) matrix

FA 0 3
0 —Fa ) (5.3)

How many solutions are there? The answer is 2b; As H? = H? we have for a
basis [X,] of H*( X, Z)

[ (2115 =4, (5.4)
but as they are all ant1 self-dual «[Z,] = —[E,] we cbtain
SRS = -6, (5.5)

One expands Fy = 27n,[2'] and so the constraint becomes mn® = 1. All vectors
of the form (0,...,%1,...,0) satisfy this and in a vector space of dimension b,
there are 2&; such vectors.

The other end of the moduli space is a copy of the criginal manifold X Recall
that ST/{2) instantons on R* (or §*) are parameterised by their positicn and their
scale. This is alsc true on a compact manifold (thanks to some work of Taubes).
When one shrinks the scale down to zero (almost) they are parameterised only
by their position on X. Saying that backwards: X paramsterises the zerc size
instantons and hence appears at the end of the moduli space.

All of this was the original motivation Later Donaldson realised that one
could work with all sorts of instanton moduli spaces (of various dimensions). One
could then define cohomology classes on those spaces which, under goed condi-
tions, would be ‘topological'invariants that one could associate with the underly-
ing manifold X. It turns out that Wittens topological field theory gives a ready
description of these classes and so we turn to that.

5.1 Topological Field Theory of M

In order to write down an action that devolves te an integral over the moduli
space of instantons we adopt the same field content as in the U/(1) case, except
the fields all take values in the adjoint representation. In a nutshell

QA=¢ Qv =dad
Q§+ =By @By = [X+= ¢] (5.6)
Qé=n Qn=[¢¢

with @* = £4. We can now write down the action
5 -
§ = [X{Q, (X+FA + ’2'X+B+ + tpdy = ’P)}
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= fx (B+F+ = X+da¥ + %B+B+ - %X+[x+. ¢+ tndany
+t§ds xdad + {1, x¢}) . (5.7)

The observables of the theory can be obtained by the descent equation

(@-d)Tr(Fa+y+4)" =0. (5:8)

5.2 Relationship to N = 2 Super Yang-Mills Theory

To establish the relationship between the topological theory and a physical theory
one needs the notion of twisting. It is easiest to start with the N = 2 theory. From
various lectures we have seen that the theory is described by one N = 2 chiral
superfield with components
Al‘
A7 (5.9)
¢

The N = 7 theory has for global symmetry the Lorentz group SU(2). x SU(2)x
as well as an internal SU(2}; which acts on A = (A!, A?), thus exchanging the two

supersymmetries. The quantum numbers of the fields under SU(2); x SU(2)g x
SU(2); are

11
A (530)
(D)
v (bl
11
Al 0—-)
('2’2
@t (0,0,0) (5.10)

Twisting amounts to redefining the Lorentz group to be SU(2); x SU{(2)w
where SU(2)g is the diagonal sum of SU(2)g and SU{2);. The transformation
of the fields under SU(2); x SU(2)g are

11
4 (33)
- 11)
A (2'2

Ao (0, 1)e(0,0)
¢ o (0,0) (5.11)
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We are now in a position to match these fields with those in the topological theory.
The gauge field is of course the same in either theory as is ¢ = (¢, ¢). Al is now
a vector and is what we called ¢, in the topological theory. A? is now a sum of
a scalar and a self dual two-form and hence corresponds to (x4, n). Notice that
nothing in sight can be identified with B,; this is no cause for alarm as B, is a
multiplier field and may be eliminated algebraically.

One can also determine the new weights of the supersymmetry charges. Orig-

)

), (5.12)

inally these were
1
I B _
% (3
% (o

and after the twisting become (1/2,1/2) and (0, 0) & (0, 1) respectively. The (0, 0)
component is a scalar supersymmetry charge and is what we have been calling Q.
The charges may be denoted by Q,, @F, and Q.

To be continued

BRI} b =

0,
!
7

o The topological action is guaranteed only to be invariant under Q for ar-
bitary parameters s and t.

¢ One can twist the N = 2 action and this will correspond to (??), for certain
values of s and ¢, up to theta terms.

¢ The NV = 2 action in twisted from will be invariant under @,, @}, and Q.

5.3 Relationship with the Monopole Equations

Donaldson theory, as described above, is related to N = 2 super Yang-Miils the-
ory. Indeed the usual way to relate the correlation functions in the field theory
to the Donaldson invariants is at weak coupling in the ultraviolet. This corre-
sponds to u ~ oo in the quantum moduli space, as explained in the lectures of
Alvarez-Gaume. The beauty of the topological theory is that it is coupling con-
stant independent and so if one could also evaluate the physical theory at strong
coupling (in the infrared) one would get a different, though, equivalent, description
of the Donaldson invariants.
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Seiberg and Witten found that the infrared Limit of the N = 2 theory in the
infrared is equivalent to a weakly coupled theory of Abelian gauge fields coupled
to ‘moncpoles’. In the u plane this region corresponds to the vicinity of the points
|u| = 1. Away from these points only the Abelian gauge field is massless while at
the degeneration peints u = %1, the menopeles alsc become massless.

As the theory is weakly coupled at |u| = 1, one is tempted to twist the physical
theory at those points to get a different description of the Donaldson polynomials.
At those points there is the photon plus an N = 2 hypermultiplet (also called a
scalar multiplet) of two Weyl fermions, ¢ and §' and complex bosons, massless
‘monopoles’, B and B'. We put them into a diamond:

B Bt . (5.13)

Once more the 5U/(2); symmetry acts on the rows and thus non-trivially only
on (B, BY) If we twist, ¢ and ¢' remain Weyl spinors, however, B and Bt
transform as {0, 1/2), that is, as spinors

To be continued

6 Witten Theory

The equations that we will be studying in this section are

Pt o= —%Ha,,.,M,
DM = 0 (6.1)

where M is a Weyl spinor, satisfying vwM = M, M, its complex conjugate. The
gamma matrices satisfy {¥,, 7.} = 2§ and 7, = 3[v,, 7] In order to define the
covariant derivative of a spinor on an arbitrary 4-manifold we need to introduce

a spin connection w:° with this in hand one has

. 1
D,y=0,+id,+ szbaab- (6.2)

A complete set of conventions for y-matrices, spinors, the spin connecticon and
vierbeins is given in the appendix.

There are a few points that we cught to check about these equations. Firstly
the i factor on the right hand side of the first equation in (6.1) is needed as the
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gauge field A, is taken to be real. Secondly, as the self dual part of F,, appears
on the left hand side, only the self dual part should appear on the right hand side.
This is indeed the case. With cur definitions

0'“,,“,45 = EEJWKACI") (63)
so that,
—_— 1 AT
Mo, M = e Moo M
1 L1 1 L3
= 5 (5'"(5: + EE"“’ A) MU,AM (6.4)

which is self dual®.

The sign on the righthand side of the first equation in (6.1) is important as
well. We will see, shortly, that with this choice of sign strong restrictions can be
placed on the solution set?.

QOur next objective is to analyse these equations in more detail and to see what
they imply for 4-manifolds, but first a digression.

6.1 Spin and Sping Structures

There 15 a {would be) catch to writing down these equations. The bad news is
that on many manifolds there are topological cbstructions to defining spinors.
The good news is that spinors can be defined on any smooth compact orientable
4.manifold if they are coupled to gauge fields that satisfy a certain restriction.
We will firstly review the obstructions and then proceed to the coupling te gauge

fields.

6.2 U/(1) Bundles

To be continued

6.3 The Invariant

The Dimension of

3Had we changed the sign of 75 we would have found this combination to be anti-self dual
4One can flip the sign if one takes M to have opposite charge, ie. M € (5, @ L77).
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Let (A, M) be a solution to the monopole equations. For (A + 64, M + dM) to
be an (infinitesimally) nearby solution, we require
(A = (6.5)
The number of linearly independent (6.4, §M) tells us the dimension of the moduli
space.
The virtual dimension is, therefore

_ix+30

d= +e(L)?. {6.6)

When 0 > d there are generically ne solutions to the monopole equations. More
interesting for us 1z when d = 0. Let z = —¢;(L?) = ~2¢,(L), then W vanishes
precicely when

’=2x+3e. (6.1

Generically, when z satisfies x* = 2y + 30, there will be a set of . isolated
solutions to the monopole equations (up to gauge transformations). Label these
points by P, i = 1,...t,. We can now define

Witten Invariant

Fix an z that satisfies (6.7) and to each F,. associate a sign ¢,, = £1- the
sign of the determinant of T. Our discussion of the Euler character of a Riemann
surface has prepared us for the following definition. The Witten invariant, n,, 18
the integer

ny = Ec.,,, (6.8)

Under certain conditions

Perturbations
We have seen that the formal dimension of the moduli space is
1 1
d= i (2x(X) + 3o(X)) + ZCI(L)-C](L) . (6.9)

In these notes we will be interested in the case where d = 0. However, this is
the vanishing of the formal dimension. What we would really like is to have that
the formal and true dimension of M coincide. To achieve this one may have to
perturb the equations. We do this by passing to

F:; = —%ﬂa,,M+p,,.,,

PM = 0, (6.10)
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with p some real self-dual two form. Here is a nice fact due to Taubes.

Fact: Let X beacompact, oriented, 4-manifold with b > 1 and with a symplectic
two form w, then the space of solutions to (6.10), AM(p), will be a smooth manifold
for a generic choice of p with dimension (6.9).

In this situation we are in the same position as we were for the calculation of
the Euler character previously. When d = 0, for a judicicious, though generic, p,
and with 8 > 1, M(p) is a finite union of signed points and the Witten invariant
is the sum over these points of the corresponding +1's.

When we come to considering Kahler surfaces one can be very explicit about
the perturbation. Indeed, following Witten, we will give a thorough description
of the perturbed moduli space.

6.4 Bochner-Lichnerowicz-Weitzenboch Formula

Given a set of first order equations, like the monopole equations, there is a tech-
nigue for extracting some very useful information. The idea goes back to Weitzen-
boch, but was used most effectively by Bochner. In the context of the Dirac equa-
tien, it was Lichnerowicz who first derived In the complex domain, Kodaira has
also put this idea to good use. For reasons that will become apparent shortly, 1
will simply refer to this as the squaring argument.

Py = v D.D,

1 1

fully P Y il AT

(2{7 Y }+2["r .T})D,.Du

= D'D,+ %a‘“’[D“, D.)
1 R
- DnD#+§g#va_T (6.11)

This formula holds irrespective of the dimension of the space that we are working
on.

Let .
s = Fly+ sHo, M k" = (PM)* (6.12)

and using the above formula we have

1 1 -
[ ava (5168 + ) = [ dtev5 (300 P spem+ Fuk?) =0, (613)

The aim is to cast this identity into a useful form. In crder to do this we look at
the seperate parts that appear and simplify them.

n
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Notice that

[X &'z GPMPM = - jx d'z. GIP DM
= - fx d'oGM (D“D,. + %a“"F,,,, - 2—2) M

il

—j Az /TM (Dw,, + 50" F) - g) M, (6.14)
X

b

the last line follows as we know the combination Mo M is self dual

One more relationship that we peed is by way of a Fierz identity,

67 = 1 (8263 + T + ()il
H
~ (oo™ = (110) 3 ) (6.15)

Multipy this equation with MQM,H‘BA_J‘ and recall that the spinor M is Weyl to
chtain
1— TF v 1 p— a2
~ gMo, MMo" M = 5 (MM) (6.16)

Putting all the pieces together, one arrives at
1

4 (_ 7 2)

[ =3 (Gl + 18

1 1 1

= [ d25 (§|F+|’ + gD M.DM + M|+ ;RIMI’) L (6.17)

x
Notice that the cross terms, F*+MaM, which are present in both [¢|* and [k[®

cancel in the sum. This is why the sign in the first of (6.1) is important.

6.5 Vanishing Theorems

The vanishing of (6.17) puts some constraints on the solution set of (6.1). For
example, if there is a metric on X for which /& > 0 then all the terms in (6.17)
are positive and so they must individually vanish. In particular this implies that
M =0and F} =0 Thisis a 'vanishing' theorem.

Even when the scalar curvature is positive the squaring argument puts strong
constraints on the solution set. As

1 , 1 )?
ul ~R] >0 6.18
[ d=vag (M0 +5R) 2 (6.18)
we conclude that
/ d‘x\/§(1|Ml* +TRIMP) 2 s (6.19)
X 2 4 - 32)x
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Now, re-write (6.17) as
/ d*zﬁ(l|F+|= +IDMP) = - [ d*z\/a(lwr +IRMP) . (520)
x 2 X 2 4 ’
which yields an inequality
1 1
4 2 1 (_ 1 L 7)
jx o JIFHP < [Xd 25 (511 + SRIM) (6.21)
Combining the two inequalities yields
/ s TLF ] < if 'z fi R (6.22)
X 2 =16 Jx ’ ’

The line bundle in question, L, satisfies ¢1{L)* = (2x + 35)/4, but we can also
express this as

ally’ = (zflr)ﬁ [P = (zi)? Il Cad e U R

When the dimensijon of the moduli space vanishes the bound on F'* also places a
bound on F~,

1
. -2 < 4 2 2
f d'z fg|F7| T /x d I\/§R — T (2x +30). (6.24)

This places a bound on the number of z's that will lead to a zerc dimensional
moduli space. Hence, associated to every four manifeld, there will only be a finite
number of invariants n,. One can also read the inequality as a condition on the
underlying four manifold, namely there will be a zero dimensional moduli space

only if
1

fod‘\/g‘f?’ > 2x + 30, (6.25)

6.6 Kihler Manifolds

When X is a Kiahler manifold we may decompose the components of M according
to

N, =wle g el

Let us choose our complex co-ordinates on R* to be 2! = z'+4z?, 2% = £ +ir'.
The (2,0) and the (0, 2) forms are spanned by

de'ds? = (do'ds’ - drlds*) +i (dr‘dz‘ + da:“dr3)
di'dz? = (dr'ds’ - da'ds') — i (dz'dz! + d2®dz’) (6.26)
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The symplectic two form, w can be taken to be
w = %dz'df’ + %dz’df’ = dz'dz? + dz’de? (6.27)

Self dual two forms & satisfy

Qaﬂ = %EaﬂyVQ#”| (628)

so that
® = 28y (do'de’ + doids*) + 28y (dz'ds® - dz’dx‘) + 2%, (dx’dx’ - dzg’ds)
= 28w+ (B3 — i9y,) dz'd2® + ($yy + i®y,) d2ldE* {6.29)

From this we see that we may decompose the space of self dual two forms, {2,
ag w0 & Q) @ Q00 This decomposition holds on any Kahler surface.

h’]/? RLG K—lf! ® L

To be continued

Computations
After these preliminaries we find that the ‘monopole’ equations take on the
following simple form

F(?,O) = C!ﬂ

(L) _ _¥ 1,2 _ g2

F = == (lal’ - 161)

Fo) = 5§ {6.30)

In this notation (6.17) can be rewritten
[ a5 (%Mﬂ +IP) = IRV (%|F*|’ +9*DyaD,a + ¢ D,8D,3
Sllal + 1677 + {R(P +187)) . (63)
We notice that the right hand side has a symmetry

A=A, asa, S5 (6.32)
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Even though this is not a symmetry of the equations, it does have strong impli-
cations. Firstly, the right hand side of (6.31} has a zero only at a solution of the
monopole equations (as from the left hand side we would require s = & = 0). If
for some § the right hand side is zero then, by the symmetry, it must be also zero
for —3. Thus if (A, o, ) is a solution to the monopole equation so is (A, a, 3).

The situation just described implies that
FOB = o8 = —~ag . (6.33)
We have thus learnt that
0=FRD = p@ = 43 =55 (6.34)

These equations imply that either &« = 0 or 8 = 0. We can deduce which of the
two is zero by integrating the {1,1) patt of (6.30),

;—ijwF = —%ﬂ [ ww (|a|2 - L@lz) 7 (6.35)

The left hand side is the degree of the holomorphic line bundle L, sometimes
denoted by deg(L), which is a topological invariant. When deg(L) = 0, there is
the possibility of having trivial instantons (in this case both o and @ must be
zero) and we consider metrics for which this is not possible. Now

Hence, the topological data all but fixes the solutions.

The equations for the spinors are

D.a-iD,f =
iD,,E + Do

1t
I

(6.36)

6.7 Perturbation

For a Kahler manifold the condition 57 > 1 is equivalent to H(*®{X) # 0. In this
case we can take p = n 4 7, where 5 is a non-zero holomorphic two-form. Before
perturbing, the first Chern class of the line bundle L was given completely by the
(1,1} componeat of F. The perturbation is chosen so that this remains the case,

namely
(20)= _ (0.3}, ...
[XF _ij n=0. (6.37)
Az argument similar to the one that lead to (6.34) yields
0=FCY =qg_g. (6.38)
37
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The vanishing of F©*® means that we are still in the realm of holomerphic
bundles. The important equation 1s

wf=q. (6.39)

Now n € HGZO(X) (= H°X,K)), and o and § are holomorphic sections of
K¢ @ L*  Let the divisor of n be a unien of irreducible components I, with
multiplicity r,. Then

oK) = S, (6.40)
where [I,] denctes the cohomology class that is Poincare dual to the Riemann
surface I;. We take the I, to span H3{X,Z), and consequently [Z,] to span
H*X,7Z). The integers r, > 0 as the sections are helomorphic. Likewise as o is
a holomarphic secticn of K2 @ L and # a holomorphic section of K'/2 @ L™!

PRENDA
SouE], (6.41)

alK'? e L)

alK e L™)

with 0 < s,, and 0 < #,. For line bundles, E and F, c;(E @ F) = e)(E) + ¢, {F).
Set
a(l) =3 ulB)], (6.42)

4
where there is no apriori constraint on the sign of the integers u,. Even though
we do not know the sign of the u; we do know that

r—u >0 (6.43)

r3 | e

f =
so that r, > 2u,. We also know that
i

st (6.44)

but, because of the bound on the u;, we obtain 0 < s; < r;. As we could have run
through the argument with ¥, and t; interchanged we conclude that 0 < ¢, <r,.

The basic class is of the form = = —2¢,{L) or

- 2(23,- - r)[E]. (6.45)

To be continued
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Appendix 1: Vierbeins and the Spin Connection

We will recall here some of the basic formula for the coupling of spiners to a
gravitational field. One introduces a vierbein e}, where the label a is an internal
Lorentz label. The gauge field for the internal gauge group SO{4) is called the

spin connection and is denoted by w2’

The covartant derivative is
1
DM = (a,, + jtton) M. (.46)
The matrices o, = %hq, 7s), satisly the algebra of the Lorentz group, namely
[Tabs Oed] = BaaTsc — 0paTac + O4c0ad — Gac0a - (-47)

The spin connection is determined from the fact that one requires that the covari-
ant derivative of the vierbein vanishes

D,el = 8,62 — Fiue‘; + w:bei =49 {.48)
With this one calculates that

(D, D.]

1
(Byw:” - B”w:b + [y, w,,]“‘) 4—am.,

1
R 37 (.49)

1t

This gives back the definition of the Riemann curvature tensor

Some properties of the Riemann curvature tensor that will be useful are

Rm\pu + RuXu” + R‘,_\m‘ =0 (50)
Consider
: By ! ab v
VY0 D = (8w = B + [w ) 7"y 0
1
= g(a#wy - ava + [wm w"])m\ 1,}1_),»757}\
1
= ngn“'r"'r‘“r" (51)

We can use the identity {.50)

0

(Rm\pu + Rv‘\np + Rp)un) 7”7”7‘7*
Rou[ V1™ + """ + 4"y 1 (:52)
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and standard ¥ matrix-ology, such as
Yy = 29%y" - 29T + Ryt (.53)

to write all the products of three gamma matrices in the order y*4*y*. One may
now deduce that

B ¥y = 29" g™ Rap = ~2R. (54)

Appendix 2: Differential Form Conventions

The basis for differential forms on a manifold X will be denoted by exterior
products of dz*. Recall that

dz¥dz¥ = —dz*dz", {.55)
A one form « € §'(X, IR} is given in local coordinates by
a = a,dr¥. (.56)
Likewise an -n-form 8 € Q*(X,R) is given by
B = Buy pdz* . dzt" (.57)

and the ‘coefficients’ 3, ..,, are totally antisymmetric tensor fields.

There is always a little confusion with the field strength. A gauge field A is
denoted by

A= Adz* (.58)

and it is natural to define the field strength as F = dA. However, in components
we find

F=dA = §,A.dz*ds”
! v
= 5Oy - 0,4,) de*dz

%F,,.,dx"dz” (:59)

so that there is a factor of 1/2 in the definition of the components.

Hodge Dual
If the dimension of X is n, we can define the Hodge star » which maps p forms,
o, to n — p forms, *a, by
1

o= ;)T\/Ecmmﬂn_;""'y’ﬂpl...p,dr"‘ .dztnr (.60)

10

With this definition
w = (—1)nrle (.61)

With these conventions under control we deduce that
= l 4 uv = l '[ 4 aff ppv
fXF"F‘ zfxdx\/EF”,F , /XFF_. 1 ) ' eVican PR, (62)

Homology and Cohomology

To be continued

Pojncare

Theorem: Given any k-cycle S, there exits an = — k form n, called the Poincare

dual of §, such that

From De Rham's thecrems we know that if we are given a basis {vi} for

Hy(X,R) there exists a dual basis {7/ _,} of H._s(X, R) satisfying

for all closed w € Q*( X, R).

/X?;“r#-,. =8, (.64)

To be continued
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