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1 Lattice QCD

1.1 Introduction

Many important features of QCD lie outside the reach of
perturbation theory. In order to study them one must
resort to non-perturbative techniques. In particular, one
must be able to regularize and renormalize the theory in
a non-perturbative manner. The formulation of QCD on
a lattice in Euclidean space-time, introduced by Wilson
in 1974, provides such a regularization and establishes
a powerful framework for studying the non-perturbative
properties of QCD and other quantum field theories.
Since its introduction, lattice QCD has formed the basis
for a very large number of investigations of hadron prop-
erties. Of special importance has been the fact that the
lattice regularization permits the application of numeri-
cal simulation techniques to the analysis of the quantum
fluctuations. These have been used successfully to derive
several quantitative predictions from the first principles
of QUDI[1].

Lattice QCD does not hold the unique key to the
study of the non-perturbative properties of hadrons, even
if we add the challenging constraint of a meaningful reg-
ularization of the ultraviolet divergences. For instance, a
calculation based on the expansion into quantum fluctu-
ations around a semiclassical solution of O(1/g), even if
the expansion takes a perturbative form, would embody
non-perturbative effects. However, because of the very
special role that the lattice formulation has played in the
study of non-perturbative QCD phenomena and because
of the many results that have been obtalned through its
application, this entire section will be dedicated to it.

1.2 Lattice QCD in Fuclidean Space-Time

Methodology

The most important aspect of lattice QCD is that it pro-
vides a gauge regularization of the ultraviolet divergences
which does not require a gauge fixing. This is accom-
plished by taking finite elements of the gauge group,
rather than the gauge potentials Ai(z) which are el-
ements of the gauge algebra, as dynamlcal variables.
These finite elements of the gauge group U“’( } are
color SU(3) matrices and are defined over the oriented
links of a lattice in Euclidean space-time[2]. In most ap-
plications this is a hypercubical lattice with lattice spac-
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ing a. Matter fields (the quark fields ¥, % in QCD) are
defined over the sites of the lattice. The gauge field vari-
ables U, (z) and the quark fields are combined into gauge
imvariant expressions, which form the building blocks of
the discretized space-time action. This consists of a pure
gauge term Sy (), which reduces to f LF, F®dizinthe
continuum l]rmt and of a matter ﬁeld term Sq (1, ¥, 1),

which discretizes the Dirac term of the continuum ac-
tion. In terms of these variables the quantum expecta-
tion value of any observable is given by

<0>=27" [wWdsds 0w d.0)e 5 (1)

with

Z= ]dU di dyp e~ 9= 54 {2)

If one considers a system of finite space-time volume
V at first, letting ¥V — oo at the end of the calculations,
the integrals in the two equations above are integrals over
a finite, albeit very large, number of variables. These in-
tegrals are either over a compact domain (for the group
elements {/) or over Grassman variables (¢, ¥), and thus
they represent mathematically well-defined, finite quan-
tities. Since () can be any observable, Egs. 1, 2 pro-
vide in principle the description of all QCD phenomena.
Of course, in principle is the keyword. Although the
integrals are well defined, they are quite complex and
calculating them, even in an approximate manner, is a
formidable task. Moreover, at the end of the calcula-
tion the regulator given by the finite lattice spacing a
must be removed in order to obtain continuum results.
This is done by readjusting the coupling constant g which
appears in Sy and determines the strength of quantum
fluctuations of the gauge field. g plays the role of a bare
coupling constant. In the process of renormalization ¢
and a are sent simultaneously to zero, with a functional
relation @ = a{g) determined in its leading orders by
asymptotic freedom, in such a way that all physical ob-
servables tend to a finite limit[3].

The regularization of QCD given by Eqgs. 1, 2 is non-
perturbative and permits the implementation of many
calculational techniques, frequently similar to techniques
used in statistical mechanics, which are not available in
the more conventional perturbative schemes of renormal-
ization. Of particular importance is the possibility of



applying powerful computational methods to an approx-
imate calculation of the quantum expectation values.

The computational analysis of lattice QCD proceeds
first through the integration over the quark fields ¥, ¥,
which can be done explicitly because the matter part of
the action S, is bilinear in the quark fields. This leads
to integrals over the gauge variables only

<O>=2"1 /dU <O >y e 51 (3)

where < 0 >p stands for the average of O over the quark
field fluctuations alone, in the background provided by
the gauge field U7, and

Sepy = Sy — logdet{D(U)] (4)

D(U) being the lattice Dirac operator that appears in
Sq-

Because of 5 invariance, det[ZH{U)] is a positive,
semidefinite quantity. e~5+// can therefore be taken as a
measure factor in the space of the gauge variables U,(x)
and the integrals giving < O > can be approximately
calculated by numerical simulation techniques. This is
the essence of the computational methods underlying the
majority of the numerical studies of QCD performed in
the past, or envisioned for the future. There are, how-
ever, some important remarks which must be appended
even to the most concise description of the methodology
of lattice QCD.

i) Numerical simulations techniques proceed by averaging
over a very large number of “configurations” of the sys-
tem (in our case the collection of all U, (z)} distributed
according to the desired measure. These are obtained
through repeated “upgrades” of the dynamical variables
U,{z), in which these are either individually or collec-
tively replaced by new values, according to some definite
stochastic or deterministic algorithm. Since the num-
ber of dynamical variables is huge and the number of
upgrades required for reasonably accurate averages can
also be very large, it is crucial that the upgrades be done
by the computer as rapidly as possible. With a measure
factor that involves only couplings between neighboring
variables, such as the exponential of the pure gauge part
of the action e~ an individual upgrade requires a small
number of arithmetic operations (these can range in the
thousands, but this is still a small number with respect
to the typical number of dynamical variables and to the
overal] scale of the computation) and, in any case, inde-
pendent of the volume of the system. But thisis no longer
the case when the non-local det[D(U/)] is incorporated
in the measure. Algorithms to account for the effects
of the fermionic determinant, either in an approximate
manner or exactly, have been introduced and are rou-
tinely applied. They require a few orders of magnitude
(10% = 10%) more arithmetic operations than are needed

with a local measure alone. All of this has prompted
the use of an approximation, called the quenched or va-
lence approximation, whereby the gauge field configura-
tions are generated according to the pure gauge measure
factor e~57. Since in field theoretic terms the fermionic
determinant accounts for the creation and annihilation
of virtual quark-antiquark pairs, the quenched approxi-
mation consists in neglecting ¢ — ¢ vacuum polarization
effects. Various arguments cah be given to support the
validity of such approximation. Also, there is a consid-
erable effort in lattice QCD investigations to go beyond
the quenched approximation. It is a fact, however, that
many computational analyses of QCD, especially those
aiming at the largest lattices or smallest quark masses,
have been or are currently based on the quenched ap-
proximation.

ii) There are some notorious problems in the lattice dis-
cretization of the continuum Dirac operator. It is not
possible to define a lattice Dirac operator with the for-
mal chiral properties of the continuum one[4]. There are
formulations of the lattice Dirac operator which permit
meaningful simulations of QCD, but one pays with either
an explicit breaking of chiral symmetry (Wilson formu-
lation){2], which must be recovered through the careful
tuning of a mass counterterm, or with a breaking of fla-
vor symmetry, which is restored only in the continuum
limit, and limitations on the possible number of flavors
(Kogut-Susskind or staggered formulation){5][6].

iii) The <5 invariance which guarantees the reality of
log det[D{U/}} and makes it possible to incorporate the
fermionic determinant in the measure is no longer true
in presence of a quark chemical potential. Thus numeri-
cal studies of QCD at finite baryon number density, while
not impossible, are computationally much more demand-
ing and the results much more approximate.

iv) Perturbative techniques can also be applied to the
lattice formulation of QCD. The perturbation expansion
is more complicated on the lattice than in the continuum
because of the loss of Lorentz invariance, but can still be
carried out. Lattice perturbative calculations are impor-
tant and have been done to determine crucial renormal-
ization parameters and to establish a bridge to the more
conventional perturbative results[7][8].

Hadron spectroscopy

Among the non-perturbative observables of QCD hadron
masses occupy a very prominent role.  Accordingly,
through the years many lattice calculations have been
devoted to the calculation of the hadron spectrum. One
considers an observable O(t) with non-vanishing matrix
elements between the vacuum and the states with the
quantum numbers of the hadron whose mass is being
sought. O can therefore act as source for creation of the

hadron, O as a sink for its annihilation. Typically O



will consist of a quark-antiquark bilinear for the calcu-
lation of meson masses, a product of three quark fields
for baryon masses or some expression involving the gauge
fields for the study of glueballs. Also, it is convenient to
project over states of zero spatial momentum by includ-
ing into the definition of O a sum over spatial sites (a
projection over definite, non-zero spatial momentum can
also be easily implemented). One uses then simulation
techniques to evaluate the Euclidean correlation function
(or Green function) < O(¢)O(t') >. On general grounds
this is given by

< OOty >=_| < 40[0 > P E@N=tT (5)

where the sum ranges over all physical states with the
quantum numbers of O and the exponential fall-off is due
to the fact that one is considering Green functions in Eu-
clidean space-time. From a numerical determination of
the leading exponential behavior(s) one can then derive
the energy (mass, if one has performed a projection over
zero space momentum) of the lowest state(s).

The basis for such calculations was established in the
early eighties{9]{10]. The intervening years have brought,
however, very important refinements in the construction
of the source (sink) operators O (O}, by which crucial
enhancements of the matrix elements between the vac-
uum and the desired hadron states have been obtained,
as well as constant improvements in the scope and accu-
racy of the calculations[11]. The actual precision is lim-
ited by the statistical nature of the calculations as well
as by a variety of systematic errors. The latter are due to
the finite volume of the lattice, the finite lattice spacing,
practical limitations on the quark mass (the rate of con-
vergence of the algorithms for calculating quark propaga-
tors becomes prohibitively slow for small quark masses)
and to the finite extent in Euclidean time over which one
can calculate the Green function with sufficient accuracy
(Lhis limits the precision in the calculation of the masses
due to mixing with higher states). In regard to this last
point, it is to be noticed that the calculation of Green
functions for operators built out of quark fields proceeds
through an initial calculation of the quark propagators,
which are then combined as appropriate and averaged
over several gauge field configurations. Of the overall fall
off of the Green functions, a large fraction is then due to
the fall off of the quark propagators themselves, and only
part to the averaging procedure. This is to be contrasted
to the case of the Green functions for gluonic operators,
where the entire fall off comes from cancellations among
quantities which are typically of order one. As a conse-
quence, the masses of states whose Green functions are
given by connected quark lines can be determined with
better accuracy than the masses of purely gluonic states
(glueballs). Even worse is the situations for states that

wonld involve disconnected quark lines, such as admix-
tures of g-¢ states and glueballs, for which up to now it
has been possible to do very little with lattice techniques.

Currently, large scale calculations of the hadron spec-
trum in the quenched approximation involve lattices with
a spatial extent ranging up to 32% sites, time extent up
to 64 sites, ultraviolet cutoffs ranging up to a~! & 3GeV
and spatial volumes ranging up to (3 —4 Fm)® [11]. The
lowest values of the quark mass is best characterized
by the corresponding value of the pseudoscalar mass,
as it emerges from the calculation. One obtains ratios
me/m, down to =~ 0.3 as opposed to the experimen-
tal value 0.175. Because of the current algebra rela-
tion mga ~ my the square of the pseudoscalar mass is
a better indicator of the quark mass and this gives a cur-
rent value (mp, /Myeee)? = 0.09 versus a target 0.03. A
lot of attention is being paid to the effects of the finite
lattice spacing, finite volume and other sources of sys-
tematic effects. Extrapolations based on analyses done
for several values of these parameters are used to reach
the physical domain. One recent study[12], based on
a very careful set of extrapolations over volume, lat-
tice spacing and quark mass, has produced a set of re-
sults in excellent agreement with the experimental data
(e.g. mp/m, = 1.216(104) (experimental value 1.222);
ma/m, = 1.565(122) (exp. 1.604); my/m, = 1.333(32)
{exp. 1.327); fx/m, = 0.106(14) (exp. 0.121). In this
study mg, my are used to determine the bare quark
masses, while m, sets the scale for the lattice spacing.
The same study found a value 1740 + 71MeV for the
0F+ glueball mass. A slightly lower but not inconsistent
value of 1625 + 92M eV has recently been found by an-
other group[13]. These values pertain to the pure gauge
system and do not account for possible mixing with ¢ ¢
states which, as mentioned above, are much harder to
calculate. Figures 1 and 2 illustrate the results obtained
for hadron masses and for the scalar glueball decay con-
stant in the study mentioned above{12][14].

There are also many investigations which do not rely
on the quenched approximation (full QCD simuiations
or simulations with dynamical quarks). Since including
det{D{U)] (and thus the effects of virtual ¢-g pairs) in
the measure is algorithmically very costly, such calcula-
tions are typically limited to lattice sizes about one half
of the corresponding quenched calculations. Even more
important is the fact that the simulation algorithms can
be effectively implemented only with rather large quark
masses leading to {mps/Myece)? R .25, versus 0.09 for
the quenched approximation and the experimental value
of 0.03 for light quarks. With such large quark masses
the whole effect of the fermionic determinant appears to
be limited to the renormalization of the bare coupling
constant and, moreover, the ratic between the masses
of the nucleon and the vector meson stays very close to
the heavy quark limit of 3/2. This situation is reminis-
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Figure 1: Masses of several hadronic states in units of m, as
obtained in a recent large scale quenched calculation. The
horizontal lines represent the experimental values.
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Figure 2: Decay constants of the fo (1720) in comparison to
lattice results for the scalar glueball.

cent of the earlier quenched calculations, where because
of the more modest computer resources and in absence
of the recent algorithmic improvernents, one was simi-
larly limited to large quark masses. It is very likely that
in the near future the progress in non-quenched calcu-
lations will parallel the advances achieved by quenched
spectrum calculations during the last few years.
Another set of spectral data of great interest in QCD
are the masses of states containing heavy quarks. These
are too large for a direct lattice calculation based on the
formalism outlined above, but can still be calculated with
good accuracy either by using the lattice to evaluate the
potential binding the heavy quarks (and the spin depen-
dent potentials) or by developing an effective theory to
describe the degrees of freedom of the heavy quarks in

a non-relativistic approximation. These approaches give
origin to interesting issues of renormalization, where sub-
stantial progress has recently been made[l5]. The split-
tings among different states in the heavy quark families
can be calculated with precision, and these results can
in turn be used to determine the va.lue of the coupling
constant ag. Recently values for o3 at Mz cluster-
ing around 0.110, with errors +0. O(% have thus heen
found, with the major element of uncertainty coming
from the corrections one has to make to the quenched
approximation to include short-distance quark polariza-
tion effects{16]. It is to be noticed that these calculations
of the strong coupling constant are already competitive
with those based on perturbative QCD and that the lat-
tice may soon provide the way to produce the most pre-
cise determinations of ag. A compilation of values of
«g, obtained by perturbative and by lattice methods, is
presented in Figure 3 [16].
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Figure 3: Compilation of results for a5, The crosses denote

results based on perturbative QCD, the boxes results based on

lattice QCD. The shaded boxes represent very recent results
which are not part of the PDG’94 average.

High temperature QCD

The demonstration that quenched QCD undergoes a de-
confining transition at a temperature of approximately
900M eV was one of major successes of lattice QCD. The



study of QCD at a finite temperature T proceeds through
a path integral formulation of the thermal average

< O »p=Tr(0e HIT) (6)

The exponential is interpreted as a propagation fac-
tor for an Euclidean time ¢ = 1/T and one is thus lead
to consider a systern quantized in an Euclidean domain
of infinite extent in the spatial directions but finite ex-
tent 1/T in the temporal direction, where periodic (an-
tiperiodic) boundary conditions are imposed on bosonic
{fermionic) fields to implement the trace in Eq. 6. In
practice this system is simulated on a lattice of N, sites
in the space directions and N, & N, sites in the time
direction. The temperature is related to lattice spacing
and temporal extent by T=1/(N,a).

The properties of the deconfining transition in
quenched QCD have been by now rather well estab-
lished[17]. The critical temperature, the order of the
transition (weakly first order) and other observables,
such as the surface tension of nucleating hadrons, have
been determined. Many of the current efforts are be-
ing devoted to simulating hot QCD with dynamical
quarks{18][19][20]. As one would expect, the creation
and annihilation of virtual ¢-§ pairs has strong effects
on the dynamics of the thermal fluctnations. These are
felt even for moderately large quark masses and lattice
simulations have shown that they can alter the nature of
the transition. For large quark masses, of course, one ex-
pects little departure from the results of quenched QCD.
For intermediate quark masses, full QCD simulations in-
dicate a weakening of the transition, which appears to
change to a rapid cross over from the hadronic medium
to a quark-gluon plasma with no discontinuities. Also,
the temperature of the transition is lowered with respect
to the quenched case. At exactly zero quark mass there
are theoretical arguments for a transition driven by the
restoration of chiral symmetry, which is of the second
order for two quark flavors and of the first order with
N; > 2. The interesting case is, of course, the one of
light, but not vanishing quark masses and current inves-
tigations have been focusing on this situation. There is
good numerical evidence that a first order transition per-
sists into the domain of finite (non-zero) quark mass with
four flavors of light quarks. For the more realistic case of
two light quarks and one quark of intermediate mass the
results are still inconclusive, but it is realistic to expect
that substantial progress will soon be made.

Weak matrix elements

Hadronic matrix elements of weak operators are very im-
portant for extracting the pararmeters of the electroweak
theory from the experimental data and, more generally,
for testing the predictions of any fundamental thecry

of weak interactions against experiment. Lattice tech-
niques can be used to calculate many of these matrix
elements[21}[22][23].

The difficulty in calculating these observables, and
consequently the precision which can be achieved, de-
pends a lot on the type of matrix element under con-
sideration. If we recall that individual hadronic states
are 1sclated on the lattice by the “filtering ability” of the
propagation in Euclidean time, which enhances the con-
tribution from the lightest states, it will be clear that
matrix elements between the vacuum and a single par-
ticle state, such as those encountered in the calculation
of pseudoscalar decay constants, are much easier to cal-
culate that those involving two or three external particle
states. Additional difficulties lattice calculations have to
contend with, beyond the general need of correcting for
finite lattice spacing, finite volume etc., come from the
fact that the weak interactions frequently involve scales
much larger than the lattice momentum cutoff. This can
be taken care of by an operator product expansion of the
interaction followed by renormalization down to the scale
of lattice momenta. Problems of renormalization thus
play a very important role in the lattice determination of
weak maitrix elements and much progress has been made
in this field. Perturbative and non-perturbative methods
of renormalization have been developed and are routinely
used to relate the quantities calculated on the iattice with
their continuum counterpartsf21][22]{23].

Pseudoscalar decay constants for the light mesons
(fx, fx) are calculated together with the masses in the
hadronic spectrum and the results are in good agreement
with experiment. Recently much attention has been paid
to the calculation of the decay constants for heavy-light
mesons, fg and fp. Since the mass of the b meson is
larger that the lattice cutoffs which can be reached in
present calculations, the deterrmnation of fp can pro-
ceed either through the use of a static approximation for
the heavy meson or via an extrapolation of results oh-
tained for lighter mesons. Earlier calculations showed a
marked discrepancy between the results obtained by the
two methods, but a better understanding of the static
approximation and of various renormalization factors has
brought the two sets of results in much better agreement.
The values found for fg thus tend to cluster around
200M eV, with quoted errors of the order of 10 — 15%
and variances between the results obtained by different
groups of about as much. Values fp & 210MeV and
ratios fg,/fg = 1.1, fp,/fp == 1.1 are also found[22].

Quantitatively meaningful results have begun to ap-
pear for semileptonic form factors in the decays D — K,
D = K", B —» K’y and for the Isgur-Wise function.
Another quantity for which very substantial progress has
been made is Bk, the K° — K® mixing parameter. [t
is possible to quote today a lattice value By (2GeV) =
0.616 % 0.020 £ 0.017 (Bx = 0.825 £ 0.027 &+ 0.023){24].



Many other matrix elements have been considered in
the literature, including those governing the non-leptonic
decays K — mm, trying in particular to find a computa-
tional explanation for the Al = 1/2 rule. As implied
above, these are very challenging and for the moment
cannot be calculated with confidence, but with the ex-
pected improvements in algorithms and computational
resources they will also become caleunlable within the next
few years.

Hadron structure and other observables

There are many more QCD observables which can be cal-
culated by lattice techniques. Reasons of space prevent
us to go at any depth into their [ist. Many of these
observables are discussed in detail in [1]. First steps
have been taken toward the calculation of structure func-
tions. Charge density correlations within hadrons have
been determined. A very interesting recent calculation
has shown that these are left almost unchanged if one
uses so-called cooling techniques in the simulation to sup-
press short range quantum fluctuations, leaving only long
range instanton excitations. This points to an intriguing
role played by topologically non-trivial structures in the
dynamics of hadrons.

The properties of the QCD vacuum have been the
subject of many investigations. Lattice techniques have
been used to evaluate observables such as the magni-
tude of the fluctuations of the topological charge and
the gluon condensate. They have helped clarify the ef-
fects of monopoles in the maximally Abelian gauge and
investigate the gauge fixing ambiguities encountered for
targe fields. Altogether, the lattice formulation of QCD
is much more than a tool for the numerical determination
of experimental observables. Suitably used, it can pro-
vide valuable insights into the whole dynamics of strong
interactions.

Discussion of the errors

Since lattice QCD calculations are based on sampling
techniques, the results are affected by statistical errors.
In general it is rather straightforward to estimate the
magnitude of the statistical errors (exceptions are the
cases where metastabilities make it difficult to reach sta-
tistical equilibrium) and these are universally quoted to-
gether with the results. Somehow more difficult is the
estimate of the systematic errors coming from finite lat-
tice spacing, finite volume, the quenched approximation
(if used) and all other approximations required to im-
plement, the numerical simulations. A lot of attention
is generally paid to these sources of error and various
procedures, such as repeating the calculations with dif-
ferent lattice sizes and different values of the bare cou-
pling constant {which, through the renormalization rela-

tion @ = a{g) implies different lattice spacings), are used
to estimate the magnitude of the systematic effects and,
if possible, to correct for them.

Nevertheless, although these (statistical and system-
atic) errors can be quantified, there are other elements of
uncertainty which depend to a large extent on the ques-
tions which are being asked and on what one is willing
to assume. This is what makes the often heard question
“when will lattice calculation produce a result accurate to
(say) 5% for the ratio m,/my7" difficult to answer. De-
pending on what theoretical assumptions one is willing to
accept, such a rate of precision has already been achieved
or may be still several years far away. The recent calcula-
tion of the spectrum considered above is a case in point.
Large samples of configurations have been used to reduce
the statistical errors and very careful extrapolations in
lattice volume and lattice spacing have been made. Still
the calculation could only be performed for quark masses
larger or equal to approximately one half the strange
quark mass and in the quenched approximation. Recent
theoretical studies, based on chiral perturbation theory,
of the quenched approximation indicate that the limit
of zero quark mass is singular. Taken per se this would
seem to invalidate completely the extrapolation in quark
mass that was used to derive the masses of hadrons made
of u and d quarks: on theoretical grounds ene would not
trust a linear exirapolation for the quenched approxima-
tion. At the very least, one would want to see the values
it produces with much lighter quark masses. But then
the effects of ¢ — § vacuum polarization effects are ex-
pected to become important and one would not trust the
quenched approximation anyway. This road leads to the
conclusion that the only reliable results would be those of
full QCD simulations done with light dynamical quarks.
Such simulations are certainly several years away.

But one can look at things from a different perspec-
tive. One can give theoretical arguments in support of
the fact that hadron masses should exhibit a smooth be-
havior as function of the masses of the quarks. From this
point of view, one can then assume the legitimacy of a
linear extrapoelation in m, {using squared masses, on cur-
rent algebra arguments, for the lightest pseudoscalars),
which finds confirmation in the experimental data. No-
tice that even with this assumption, the slopes and in-
tercepts of the linear fits remain as important, and quite
non-trivial, non-perturbative observables of QCD. The
lattice calculation of the spectrum, done within a range
of values for m, where the quenched approximation is
expected to be valid, provides then a quantitative de-
termination of these observables. This is a major accom-
plishment, for which one would have held little hope prior
to the advent of lattice QCD.



1.3  Alternative Discretization Techniques
Null-plane quantization

The null-plane quantization is a well established, alterna-
tive method of defining a quantum field theory where one
of the light cone coordinates, e.g. et =(° +z3)/\/§, re-
places the time coordinate z° as the evolution varable. It
offers some important advantages over the more conven-
tional ° = const quantization, such as better properties
of the vacuum state, explicit invariance under Lorentz
boosts in the z3 direction and a more direct relationship
between deep inelastic structure functions and the wave-
functions of quarks within hadrons. Computational tech-
niques based on the null plane quantization have been
introduced and studied during the past few years[25]. In
this approach one focuses directly on the wave-functions
of the hadronic components. In the restricted two di-
mensional space spanned by the z¥,z™ = (20 — %)/V2
coordinates the gauge field interaction produces a lin-
ear potential, which gives origin to confinement. The
extension to four dimension can be accomplished by dis-
cretizing the space of transverse coordinates r!, 2% The
challenge is then to show that confinement survives this
extension of the degrees of freedom and to incorporate
all appropriate renormalization effects. As a computa-
tional technique, the null-plane quantization of QCD has
not been as widely studied as the Euclidean lattice for-
mulation, but it constitutes a quite different approach
with the potential of producing valuable complementary
results.

Hamiltonian QCD and other approaches

In the Hamiltonian approach to lattice QCD one dis-
cretizes the space coordinates, but maintains a contin-
uous time variable. The gauge dynamical variables are
finite group elements associated with the oriented links
of the spatial lattice (very much like in the Euclidean for-
mulation) and their conjugate momenta, which are the
components of the chromoelectric field. The evolution is
in real time and is generated by a well-defined Hamil-
tonian operator[5]. Indeed, if one considers a system of
finite volume, this is a many-body Hamiltonian with a
finite number of degrees of freedom. One tries then to
find good approximations for the wave function of the
vacuum and of the hadrons, and for the energy levels
of these states, typically by using variational techniques.
The major difficulty in this approach is the need of incor-
porating a very large number of components in the wave
functions, a problem which is bypassed in Euclidean lat-
tice QCD by simulating directly the quantum fiuctua-
tions. Thus, unless one succeeds in producing extremely
good Ansdtze for the wave functions, there are serious
limitations to the accuracy which can be achieved.
Several other computational techniques, for example

methods based on the derivation of equations relating the
expectation values of transport factors (Wilson loops),
have been proposed and studied. In addition, one should
mention the large body of analytical work that has been
and is been done in the context of lattice QCD. Research
in this field is indeed far from being exhausted by the
numerical simulations. Perturbative calculations, done
by analytic expansion techniques, play a crucial role in
defining various renormalizations that must be made to
bridge the gap to the continuum. Analytic methods have
been used to study finite size effects, to study gauge fix-
ing ambiguities and their implications, to calculate the
spectrum of QCD in a small box, to perform large N, and
strong coupling expansions etc. Very much like what is
happening in other fields of physics, in lattice QCD one
is also finding that anpalytical and computational meth-
ods complement each other and together provide a very
powerful tool for deriving quantitative predictions.

1.4 Ezxpected Progress
Computational resources

Lattice QCD calculations are very demanding computer
applications. The size of the lattices one can consider,
as well as other important parameters such as the values
of the quark mass, depend in a crucial manner on the
number of variables one can store and on total number
of arithmetic operations one can perform. For a compu-
tation of a reasonably limited duration, the latter con-
verts in number of floating point operations per second
(flops). Indeed, scope and accuracy of lattice QCD calcu-
lations have steadily increased over the years as comput-
ers have gained in memory capacity and speed. The pace
of progress in computer technology is forecast to continue
for years to come and thus one can correspondingly fore-
see very substantial, hardware driven improvements in
lattice QCD calculations.

While the advance in computer technology is ob-
viously quite independent of lattice QCI} applications,
which can thus ride the wave of commercial development,
the very special computational features of such applica-
tions has stimulated the design and construction of ded-
icated computers, to be used exclusively (or mostly) as a
laboratory for the numerical simulation of QCD[26]. The
rationale behind such developments is that the highly or-
ganized structure of data and communications in QCD
applications permits an optimal utilization of parallelism,
so that one can gain in economy and efficiency by de-
signing and building a supercomputer targeted to these
calculations. Dedicated machines capable of sustained
speeds of several Gigaflops have been built and used suc-
cessfully in the US and abroad[26].

At present there are two projects within the US for
dedicated QCD supercomputers capable of reaching into
the Teraflops domain:



i} A project pursued by a group at the Columbia Uni-
versity in collaboration with researchers from several
other institutions plans to use digital signal processors
and a rather streamlined communications architecture
to achieve a peak speed of (.8 Teraflops and a sustained
speed of 0.5 Teraflops[27]. The total cost of this project
is estimated at M$ 3.

i} The QCD Teraflops project plans to enhance a com-
mercially available machine with special multiprocessor
boards carefully designed to take advantage of the local-
ity features exhibited by QCD calculations (and of many
other large scale applications as well)[28]. This super-
computer, with a peak speed of 1.6 Teraflops and an es-
tiated sustained speed in excess of 1 Teraflops, would
anticipate the pace of commercial development by a few
years and at a fraction of the cost (estimated cost M$ 10
development, M$ 25 construction).

The two projects are quite different and, to a large
extent, complementary. The Columbia project is for a
rather rigid machine, designed to implement the cur-
rently available algorithms in an outstandingly efficient
and economical manner. The QCD Teraflops project is
for a much more general purpese and easier to program
supercomputer, which could be fruitfully used also for a
wide range of non QCD applications. The importance
that the development and implementation of new algo-
rithms are likely to play for the progress of lattice QCD
speaks of course in favor of the flexibility of the QCD
Teraflops machine, but the Columbia project has on tts
side its substantially lower cost.

Since either project would require a substantial allo-
cation of funds, issues of access become important. To
formulate these in terms familiar to particle physicists,
the question is whether a dedicated machine should be
considered more like an accelerator, i.e. a facility to serve
several groups of experimenters, or like a detector, where
the group who built it is entitled to take and analyze the
data in an exclusive manner. Given the expectation that
the funds allocated to a QCD machine may, directly or
indirectly, reduce the total amount of computer resources
otherwise available, many researchers within the lattice
community have expressed a strong sentiment that any
such machine should be operated as a facility. However,
the physicists who design and build a special purpose
computer can legitimately expect to see their efforts re-
warded by some kind of priority in the use of machine.
These are important issues, which will require careful
consideration.

Algorithms

Advances in supercomputer technology alone are not suf-
ficient for the progress of lattice QCD. The development
of Teraflops supercomputers will bring an increase in
computer speed and memory of one to two orders of mag-

nitude with respect to what is available today. The num-
ber of operations required by a lattice simulation obvi-
ously contains the volume of the lattice as a factor. This
implies that a sheer increase of computer power, even
into the Teraflop domain, can produce little more than
a doubling of the size of the largest lattices that can be
studied. As a matter of fact, the situation is worse than
that. A major motivation for considering larger lattices is
to reduce the lattice spacing, coming closer to the contin-
uum limit. One also wants to be able to consider smaller
quark masses. But smaller lattice spacings and smaller
quark masses both imply a decrease in computational
efficiency, through the phenomenon of critical slowing
down. The algorithms for calculating quark propagators
(a crucial component of almost all QCD simulations) are
based on iterative procedures, whose rate of convergence
decreases dramatically as the quark mass (or, better, its
value in lattice units mga) is reduced. Thus, in absence
of progress leading to more efficient computational pro-
cedures, one cannot expect, from hardware developments
alone, even the gains that a naive scaling of the number
of degrees of freedom would suggest.

The lattice community has always been aware of the
importance of algorithm development and the progress in
accuracy of lattice QCD calculations has been accompa-
nied, indeed made possible, by crucial advances in com-
putational techniques. Examples of this progress are all
the techniques that have been developed to incorporate
fermionic degrees of freedom in the simulations, with the
discovery of the “hybrid Monte Carlo” algorithm topping
the list of the most important breakthroughs[29]. An-
other example is given by the refinement in the source
and sink operators used for spectroscopy and matrix
element calculations. Here, indeed, the line between
what should be considered algorithm development and
what ought to be considered theoretical progress becomes
blurred, but correctly so, because the development of bet-
ter computational techniques typically finds its roots in
a better understanding of the physics of the phenomena
under investigation.

Current areas of algorithmic research include the de-
velopment of better methods for calculating quark prop-
agators, which may overcome, or at least moderate, criti-
cal slowing down. Multigrid methods[30] as well as other
techniques are being studied. Some progress has been
made, but more progress will require a better under-
standing of the properties of the lattice Dirac operator
in presence of fluctuating gauge fields.

Another promising direction of progress consists in
the computational use of improved actions[31]. Renor-
malization group ideas have recently been applied to t.he
definition of a “perfect” action, an action which remains
unaltered in the renormalization leading to the contin-
wum limit. Actions approximating the properties of per-
fect actions may permit to recover the features of the



continuum limit working with coarser lattices and there-
fore with smaller number of dynamical variables. The
increased computational power (of the computers of the
next generation) could then be applied to an improve-
ment of the accuracy of the simulations and to an expan-
sion of their scope.

Observables

The increase in computer power and the progress in algo-
rithms which are anticipated to occur in a time of three
to four years will permit substantial improvements in the
accuracy of QCD lattice calculations and a widening of
their scope.

One expects that it will be possible to perform
quenched calculations of the spectrum for light quark
masses close to the experimental value {more properly,
for values of my, /myec: close to mq/m, ). For full QCD,
barring unanticipated progress in the algorithms for sim-
ulating dynamical fermions, one will probably be able to
perform calculations with quark masses half way between
m, and my, mgy. This should be sufficient to see the ¢ —¢
vacuum polarization effects go beyond a mere renormal-
ization of the bare coupling constant. One should also
be able to see genuine departures from the quenched ap-
proximation. Precise determinations of as from heavy
quark spectroscopy can be expected.

The nature of the transition to a quark-gluon plasma
will probably be resolved and progress will be made to-
ward a precise calculation of several thermodynamic ob-
servables.

One may expect a rather accurate determination of
weak matrix elements (perhaps with errors of +5%) for
which one is beginning to get quantitative results, as well
as an extension of the calculations to matrix elements
which cannot be evaluated today.

More aobservables will become calculable. These may
range from phenomenclogical parameters, such as the
coupling constants in effective chiral Lagrangians, to
scattering lengths, to moments of structure functions, to
quantities relevant to the interface between perturbative
and non-perturbative lattice QCD. While this list of ob-
servables is potentially very rich and interesting, it would
futile to try to define it too exactly now: its overall span
will depend on the detailed progress of the methods of
lattice QCTY as well as on the ingenuity of the scientists
who will apply them.

1.5 Long Range Outlook

Looking farther ahead into the future, given the rapid
progress of computer technology and the theoretical and
algorithmic developments which are likely to occur, it
is to be expected that, five to ten years from now, lat-
tice QUD will be able to produce an accurate determi-
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nation of a wide range of observables, which will provide
stringent tests for the underlying theory of QCD and
valuable input for theories describing non-strong inter-
actions. However, the actual rate of progress of lattice
QCD will depend on decisions which reflect the policies
of the entire particle physics community. This leads us
to the following conclusions.

Computer resources - The progress of lattice QCD
is heavily dependent on the availability of ever more pow-
erful means of computation. Fortunately the develop-
ment of supercomputer technology is receiving a lot of
support at the policy making level, and thus lattice QCD
automatically benefits from the expansion of computer
resources that this support generates. Lattice QCD ap-
plications, because of the huge volumes of data that they
manipulate and the extremely large number crunching
capability they require, have been acknowledged as one of
the driving forces of supercomputer development. Thus
there is the possibility of obtaining funding for QCD ap-
plications (either as direct funds for the development of
dedicated machines, or in the form of increased alloca-
tions of supercomputer time) from non-HEP sources be-
cause of the impact that QCD applications may have on
supercomputer technology. However, this also requires
a strong endorsement from the particle physics commu-
nity of the value of this mode of research, including the
willingness of allocating funds to support the necessary
hardware and algorithm developments. While any such
investment can be leveraged by appreciable funding from
non-HEP sources, it would be difficult to expect the lat-
ter to occur if particle physicists, first, do not recognize
the value of QCD applications.

Exchange of information - Lattice QCD calcu-
lations are not a black box which turns out numbers
affected by smaller or larger errors. The details of the
calculations are frequently as significant as the final re-
sults, On the other hand, lattice QCD investigations
are of marginal value if pursued in isolation, without ex-
posure to the whole problematic of strong interactions.
Thus, 1t would be valuable if there were better contacts
between scientists working on lattice QCD and other ar-
eas.

Experiments - Lattice QCD has the potential of
producing one day very accurate results, derived entirely
from first principles, on many hadronic observables. It
is conceivable, for instance, that it will be possible to
predict spectroscopic data with a precision sufficient to
put stringent tests to the validity of QCD. However, this
would be of little value in absence of experimental data to
compare with. As the experimental frontier moves to ever
higher energies and smaller distances, it is important not
to neglect those energy domains, which do not lie at the
boundary of technology, but where a lot of very valuable
information can still be collected.



References

[1] Proceedings of Lattice 90-94, Nucl. Phys. B (Proc.
Suppl.) 20, 1991; 26, 1992; 30, 1993; 34, 1994; 42,
1995.

{2] K. Wilson, Phys. Rev. D10 2445, 1974.

[3] M. Creutz, L. Jacobs and C. Rebbi, Phys. Rep. 95
201, 1983.

{4] H. B. Nielsen and M. Ninomiya, Nucl. Phys. B185
20, 1981; Nucl. Phys. B195 541, 1982,

[6] J. Kogut and L. Susskind, Phys. Rev. D11 385,
1975.

[6] L. Susskind, Phys. Rev. D16 3031, 1977.

[7] A. Hasenfratz and P. Hasenfratz, Phys. Lett. 93B
165, 1980.

(8] R. Dashen and G. Gross, Phys. Rev. D23 2340,
1981.

[9] H. Hamber and G. Parisi, Phys. Rev. Lett. 47 1792,
1981.

(10] D. Weingarten, Phys. Lett. 109B 57, 1982.

[11} C. Michael, Proceedings of Lattice 94, Nucl. Phys.
B42 (Proc. Suppl.): 147, 1995.

[12] F. Butler, H. Chen, J. Sexten, A. Vaccarino and D.
Weingarten, Nucl.Phys. B430 179, 1994.

[13] G. Bali et al., Phys. Lett. B309 378, 1993,

[L4] J. Sexton, A. Vaccarino and D. Weingarten, Pro-
ceedings of Latfice 94, Nucl. Phys. B42 (Proc.
Suppl.): 279, 1995.

[15] P. MacKenzie, Proceedings of Lattice 92, Nucl.
Phys. B30 (Proc. Suppl.): 35, 1993,

[16] A.El-Khadra, Proceedings of Lattice 99, Nucl. Phys.
B34 (Proc. Suppl.): 141, 1994.

[17] A. Ukawa, Proceedings of Lattice 89, Nucl. Phys.
B17 {(Proc. Suppl.): 118, 1990.

[18] B. Peterson, Proceedings of Lattice 92, Nucl. Phys.
B30 (Proc. Suppl.}: 66, 1993.

[19] F. Karsch, Proceedings of Lattice 93, Nucl. Phys.

B34 (Proc. Suppl.): 63, 1994.

[20] C. De Tar, Proceedings of Lattice 94, Nucl. Phys.

B42 (Proc. Suppl.}: 73, 1995.

[21] C. Sachrajda, Proceedings of Lattice 92, Nucl. Phys.

B30 (Proc. Suppl.}: 20, 1993.

11

[22] C. Bernard, Proceedings of Lattice 99, Nucl. Phys.
B34 (Proc. Suppl.): 47, 1994.

[23] G. Martinelli, Proceedings of Lattice 94, Nucl. Phys.
B42 (Proc. Suppl.): 127, 1995.

[24] S. Sharpe, Proceedings of Lattice 93, Nucl. Phys.
B34 (Proc. Suppl.): 403, 1994.

[25] K. Wilson, T. Walhout, A. Harindranath, W-M.
Zhang, R. Perty and S. Glazek, Phys. Rev. D49
6720, 1994.

[26] Y. Iwasaki, Proceedings of Lattice 98, Nucl. Phys.
B34 (Proc. Suppl.): 78, 1994.

[27] R. Mawhinney, Proceedings of Lattice 94, Nucl.
Phys. B42 (Proc. Suppl.): 140, 1995.

[28] J. Negele, Proceedings of Lattice 92, Nucl. Phys. B30
(Proc. Suppl.): 295, 1993.

[29] S. Duane, A. Kennedy, B. Pendleton, D. Roweth,
Phys. Lett. B195 (1987) 216-222.

[30] R. Brower, R. Edwards, C. Rebbi and E. Vicari,
Nucl. Phys. B366 689, 1991.

[31] T. DeGrand, A. Hasenfratz, P. Hasenfratz, F. Nie-
dermayer and U. Wiese, Proceedings of Lattice 94,
Nucl. Phys. B42 {Proc. Suppl.): 67, 1995.



