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Applications of QCD to Hadron-Hadron Collisions:
Theoretical. -

lan Hinchlifle
Lawrence Berkeley Laboratory
Universily of California
Berkeley, California 94720

Abstract

I discuss some current problems associated with the applications of QUL to
event rates in high energy collisions. Emphasis is given to the current ambiguities
and uncertainties that exist in estimates of signals and backgrounds

1 Introduction

In these lectures, ] shall provide an intreduction to perturbative QCD and its
uses in calculating rates at hadron-hadron colliders. Since QU D processes account
for most of the background for new physics at such colliders, it is important to
understand the uncertainties in these predicted rates. Given the limited time
available 1 have had to be selective in the topics discussed.! [ will begin with a
discussion of the one parameter of QC D, namely, its coupling constant. | shall
then discuss the parton model in some detail. After & discussion of the apprupriate
kinematical variables | shall discuss the uncertainties and ambiguities inherent
in QCD calculations. 1 shall then discuss some aspects of jet physics and will end
with a discussion of underlying (minimum bias) events.

2 QCD and the parton model

The QC B Lagrangian may be written as follows:

—%F"”,F'“,-Fz,:tl:,(i P =, (1)
The sum on § runs over quark flavors and,

Fi, =8,G, - 8.G, - igf,uGLG (2)

“This work was supported by the Director, Office of Energy Research, Office of High Energy
and Nuclear Physice, Division of High Energy Physics of the U.S. Department of Energy under
Contract DE-ACU3-765F00098.

'Far a more detailed discussion eec ref. [1]
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and

D.=8,—igt' G, (3}

Here * are the 3 x 3 representation matrices and the structure constants fisx are
given by [t t;] = i finds.

Apart from the quark masses, which have their origin in the Weinberg-Salam
model of weak interactions, the theory has only one fundamental parameter, the
coupling constant g. It is this coupling constant that provides us with an expansion
parameter. If calculations are undertaken beyond the leading order in the coupling
constant, ultra-violet divergences are encountered. These divergences must be
regulated and reabsorbed into the fundamental parameters of the theory, i.e. the
theory must be renormalized and a renormalized coupling constant defined. The
easiest scheme for regulating and defining a coupling constant is the modified
minimal subtraction scheme (M3) [2). The ultra violet divergences are regulated
by calculating with the theory in n dimensions [3].

In order to understand the procedure, let us calculate a physical process
P(Q?), which depends on some energy scale @; P could, for example, represent a
cross-section. It is convenient to choose the quantity P to be dimensionless; this
can always be done by multiplying it by an appropriate power of Q. If we neglect
guark masses, calculate in n dimensions then

P(G?) ~ [4—2_’Ln—A~:3+Alog4rr—F(u.Q"g)1. (1)

Here A is some constant and F a function that is finite when n = 4. The scale y is
introduced so that the coupling constant g remains dimensionless in » dimensions,

viz.,

g — gult-mrz - 5)
The ultra-violet divergences appear as singularities at n = 4. The MS scheme is
defined by removing the terms of the form 1/(n — 4), vg and log 47. Then P has

the form
P(Q") = F{Q* /W', ). 16)
I have replaced g by a: @ = g*/4m and the coupling constant is now in the M5

scheme, The scale u is arbitrary so that a physical quantity cannot depend upon
its value

i _ :
d;.( - ( )
which implies
VOF | por¥F)
(.u Epe + Ble) ol 0. (8)
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Here S(a) is defined by 5
a
Bla) = #25;—2 . {9

We can introduce a momentum-dependent coupling a{t] via

o {t) dp

A B(p)

(10)

where t = log(Q#/p?). Then Equation 8 has the solution
F{t,a} = F{l,at}). {11

Hence the only dependence on the scale  or t is carried by alt). We can expand
£ as a power series in a.

gzwb%_y(%)u“. (2

Hence a{z?) has the following form:

4r
(J(pr‘))‘:m-i-.,, (14
Here b = 11 — 2n,/3 where n; is the number of quark flavors with mass less than
4. We can regard the fundamental parameter of QC'D either as of{@3) or as the
scale A. Notice that as y becomes small, o becomes large. Therefore. perturbation
theory cannot be used to discuss processes which involve momentuin flows as simall
as a few times A,

Other renormalization schemes are possible, for example one could not sub-
tract the & and log4x terms. A physical quantity is, of course, independent of
the renormalization scheme. However, if the perturbation series is terminated at
some finite order in the coupling constant, the values of P (Py) calculated to this
order in two difference schemes will differ

Pn(a) # Pr(a) = Pu(@) +0(a"™'} (14)
Since the coupling constant of QCD is not very small and most processes are not

known to a very high order, these differences can be significant.

As a specific example of QC [} process, consider the total cross-section for
e*e~ — hadrons at center-of-mass energy /3. In the one photon approximation
(see Figure 1) this is given by

2
8ral

Fnad = ;(27*)‘5(9 ~qn) (Oliuln} {nlj.l0) {15)




where j, is the electromagnetic current of the quarks

Fu =2 eabiyah, {16)
If we introduce the photon self-energy function I+~
Mu(g) = ifﬂ"re"“ (01T (=}5.0))j 0}, {7
Defining I,..(9) = (9..,4* — g.0.) = TT(Q?) then
Ohes = % 1), (18)

A dimensionless quantity is R(s) defined by
Thad
R = 191
(S) cr(e‘e+ -t y+p‘) ( 9
The previous argument implies that R = BR(a(s)). If we calculate R using per-
turbation theory we get.

R=Ze?(1+?+3(%)z...) (20}

where the sum runs over all quarks (electric charge e,) of mass less than /5/2
and B is a scheme-dependent constant which is small in the M5 scheme I4]

In order to discuss processes which involve hadrons in the initjal state, we
must discuss the parton model. Consider the case of electron-proton scattering,
where the cross-section can be written as

o dmaZ s [14+ {1 - y)?
R e e X O rs —2IF1(r~Q’))J

(21)
The variables are defined as follows {see Figure 2}: g is the momentum of the
exchanged photon and P is the momentum of the target proton and % is that of
the incoming electron

W

Q?

=—q
= LF
v _?;
z
z = Imyz
¥ =t
s =2 k+m?

(22}
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Figure 1:

Figure 2:

Feynman graph for e*e~ — hadrons.

&

U

Diagram illustrating the variables in deep inelastic scattering (
Equation 21): electron + proton — electron + anything.
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where m;, is the proton mass. 1 have neglected parity violating effects which arise
from the exchange of 2 Z boson instead of a photon.

In the naive parton model the proton is viewed as being made up of a set
of non-interacting partons. The structure functions Fy and F; are related to
the probability distribution gi(x) which represents the probability of finding a
parton of type (quark or gluon} inside the proton with fraction T of the proton's
momentum, and the scattering cross-section for such a virtual photon from a
parton? .

f= Doy [ Fawidsery - ) (23)

* Tz Y

where ¢; is the charge of parton of type i The &-function appears from the cross-
section for ¢+ — ¢ and corresponds to the constraint that the massless quark in
the final state is on mass-shell. Let us consider QC D corrections to this scattering.
At next order in o, there are contributions from gluon emission which jead to the
final state g+ g and also from virtual glhions (see Figure 3). To order o, Equation
23 is replaced by

F= [ Yot [26 (1) o ()] e

with . o s )
0.(2,@%) = S2el |tPula) + [} + 0 (5)] (25)
d
- P = 4 0r) -
CANE T S

for z # 1. Here t = log(@?/¢?) and the scale 4 has appeared from dimensional
regularization {1 have dropped terms proportional to 1 J(n—4)). The p dependence
arises because o; is not finite in four dimensions. In the cases discussed previously,
the divergences arose from large romentum flows inside loop diagrams (ultra-
violet divergences). In this case these divergences cancel. Individual Feynman
diagrams can also have divergences when momentum flows become very small
or particles are collinear. The former (soft) divergences cancel between the real
and the virtual diagrams but the collinear ones do not. 1t is these divergences
that appear as singularities in the calculation of Fy and are responsible for the p
dependence in Equation 5. In order to see the origin of the problem consider the
graph of Figure 3 and work in a frame where k, = (k, k,0,0).

If the transverse momentum of the gluon (p) relative to k is small then we
can take p = (nk + k1/2nk, nk, ks 0). (Terms of order k% are negiected.] The
internal quark line now has invariant mass squased r* = (k — p)? = ki /n, so that
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Figure 3:  Diagram contributing to the process ¢+ — X at order a,.

Figure 4:
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Diagram showing ¢ +v —~ ¢+ 4§



the squared amplitude from the graph will contain 1/k4. Now, at very small kg
helicity conservation ferbids the emission of a real gluon from a quark line, so that
one factar of k3 appears in the numerator. We now have for the total cross-section

4+~ — ¢+ anything, a contribution

dkt
=R {27)
ki

which gives rise to a logarithmic singularity. Notice that for a massive quark the
singularity becomes log(Q?/m2}).

We have obtained a result which depends on p (or contains the large
log{2?/m7) if quark masses are retained). This is not physically meaningful. But
Equation 24 contains the unknown quantity g:{y). We can define

alz.t) = alz) + 5 j—q(y)Pw(y) (28)

=5 [ 2% g}l
Rexf e [s(E-1) g2 (3)] +oen. e

1

Hence

The ¢ dependence can be eliminated at the cost of introducing a #-dependent
structure function.

I have so far considered an oversimplification of the true problem. To order
. there is an additional partonic process, namely gluon + 7 — ¢ + § (see Figure
4). Tiis process also contains a log {(Q?/*} arising from the propagation of the
internal quark close to its mass shell. This singularity results in the replacement
of Fquation 24 and 23 by

Filz,t) '"fl [E-e gy ['5( [t‘DW +fv )]
(T etgly)e [thg(y) + fg(,)]]

with P (z) = 1/2(z? + (1 - £)?). The t dependence can be absorbed by defining

aet = ain) + 22 [ @Rl + o PuiE )Y (30)

so that the quark and gluon distributions {qi(x) and g(z}) are now coupled. This
equation can be recast in the more familiar form (Altarelli-Parisi equations) (5]

da:(z, s ! z . d
a0 _ 20 Flap )+ snPut Y- )
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The equation for the evolution of the gluon distribution is

T . d
dg, S: t) =°'_2§:_) A fai(y) y.,( 5+ 9ly)P, y))_yé'., (32)

Given data feom which g;(z, ta) and g(z,1o) can be obtained as functions of z for a
fixed to, these equations for the evolution of ¢(z,t) and g{z,t) with ¢ can be solved
to obtain them for all £. Note that structure functions at =, and ¢; depend only
on those at z > z, provided ¢; > to. Since these equations are valid only to lowest
order in a,, to must be sufficiently large for a,({tc) to be small enough so that
the perturbation series can be trusted. If the equations are used to extrapolate
to t > t5 the series will become more trustworthy. The order a? terms in the
Altarelli-Parisi equations are known and are included in some parameterizations
of gi(z,t) (see below). The structure functions fall 1o zero as = tends to 1 (see
Figure 5).

Before leaving the Altarelli-Parisi equations, [ would like to discuss the be-
haviour of the structure functions at very small values of z. As the energy available
increases it becomes possible to reach smaller and smaller values of z at fixed Q.
Consider the behaviour of the gluon distribution at small z. We can neglect the
generation of gluons from quarks since the gluon density is larger at small = (see
Figure 5). The Altarelli-Parisi equation simplifies to

%9(1.0 ;’r fl iyg(y,t)ng (3) : {33)
Furthermore P, (r) may be approximated by
Ple) =2, (34)
z
Equation 33 can be recast as
_x%)—) =g, (35)

Here 1 have eliminated a,(¢?) using Equation 13. Equation 35 can be solved to
give

z9(z, Q) exp(\/gzogwr}zogzog(caz)). (36)

The growth of this at small x is very rapid. It is eventually cut off when
the equations break down [6]. We can estimate the position of this breakdown as
follows. The Altarelli Parisi equations describe the growth of incoherent parton
showers: the shower initiated by one parton is independent of that of the other

e

e
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Diagram showing the behavior of the quark and gluen distributions
as functions of 1 for various Q?. Plotted is zf(x) for gluons, quarks
and antiquarks (surmmed over quark flavors). The solid (dotted) lines
correspond to the structure functions of Reference [24]([20]) at Q% = 5
GeV?. The dashed (dot-deshed) lines correspond to these structure
functions evolved to Q? = 25 GeV? using QCD.
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partons. This assumption must eventually break down. Let us view the proton
in a frame which is moving extremely fast, the appropriate frame for the parton
picture. The proton looks like a pancake with area 1/m?. Viewed on a scale Q7
it contains a set of partons each of size 1/Q. The fractional area occupied by
partons is
zg(z, @%Im3 .
o (37)
Provided this fraction is small the partons are not densely packed and the inco-
herent approximation is correct. If the fraction is of order one, the incoherent
approximation breaks down and the growth of g(z, Q%) is cut off.
A vital property of QC D is that the distribution functions defined by Equation
98 are universal, In order to illustrate this, consider the Drell-Yan process in
proton-proton collisions. In the naive parton model, the cross-section for the
production of a u*u~ pair of invariant mass M in a proton-proton collision (the
Drell-Yan process) with total center-of-mass energy /s is given by

do dral

dM? - 9Ms

[ dnidnalE alm)q@)elsne, - Ms) + (1 e 2], (38)

Here § is an antiquark distribution. The fundamental process is quark-antiquark
annihilation into p* g, Consider the corrections to this at order @,. As in the
case of ep scattering these can involve either virtual or real glucns (see Figure 6).
These corrections modify Equation 38, viz.,

do ra _
i = e 82 (damalz) + (e 2)]

[6(1 = 2} + 6(1 = 2) 22 [2Py ()¢ + [(2)]]
+HTi el (gi(a) + Gilz1))G(z2) + (1 & 2)]
(01 = 2)B[Fy(2) + f"(2)] (39)
where z = M?/(sz,z;3) [7]. The last part of the expression arises from the process
g+e—ptuT +gq

If we replace g(z) by g{z,t) defined by Equation 28 then the resulting expres-
sion will have no t’s appearing explicitly, vz,

T
= S [dndaalela (o1, lza )8 (aiza— MP/5) + (1 65 2) 4 O(e. (@)

{40)
where the order a,(Q?) terms contain no powers of t. This absorption of the
singular terms into ¢(z,t} is known as factorization; it is a universal property



Figure 6:

Feynman graph illustrating an order a, contributicn to the Drell-Yan

process (see Equation 39).
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which guarantees that hard processes ¢an be reliably calculated in perturbative
QCD and that the same set of structure functions should be used for all processes
(8].

In summary, all cross-sections involving the transfer of large momentum
(greater than 10 GeV) or the production of heavy particles can be calculated
using the parton model. The cross-sections are given by

o =¥ [ dndeafilz, @) stz Q1) a1)
L

where the sum  runs over the parton types (quarks and gluons) and o}, is the
cross-section involving partons that is calculated using perturbative QCD. Many
partonic processes involve 2 — 2 processes of the type a+b -+ c4+4d. In these cases
is is useful to write the partonic cross-section in terms of Mandelstam variables:
s =(pa +p6),v t={p _Pc)?u and u= (p — bc)a-

3 Structure of hadron-hadron events

Particle production in pp interactions is best described in terms of a particle’s
transverse momentum (F, a two dimensional vector in the plane orthogonal to
the beam) and its rapidity. The latter is defined by

_1 E+PR
y= 2109(3_},() (42)

where F} is the component of the particle’s momentum along the beam direction.
Also useful is the pseudorapidity (1) defined in terms of the angle that the particle
makes with the beam () by

n = ~log(tan(#/2), (43)

For a massless particle 7 = y. For a particle of mass M, the maximum rapidity is
Ymar = log(y/s/M). In terms of these variables the invariant phase space element
is

&

F = pdpadydd (44)
where ¢ is the azimuthal angle and p, = |F,|. Rapidity is an additive quantity in
the following sense. If a particle A is produced with rapidity y, in the pp center—
of-mass and decays so that one of its decay products (B) has rapidity yg in the
rest frame of A, then the rapidity of B in the pp center-of-mass frame is ya+ye.

The dominant part of the cross-section in pp or pp collisions at currently avail-

able energies consists of production of particles {so called minimum bias events)

s

P

-y



that are distributed approximately uniformly in rapidity and have a transverse
momentum spectrum that falls rapidly with increasing p.. As /3 increases from
630 GeV to 1.8 TeV, the average value of p; rises from 432 + 4 MeV to 495 + 14
MeV, while dn/dn increases by a factor of 1.27 £ 0.4 from its value of 3.30 £ .15
at 630 GeV{53).

The production cross-section for heavy particles at hadron colliders is also flat
in rapidity near y = 0. The reason for this can be understood from the example
of W production, the cross section for which has the following form

do ~ dardzaq(zy, ME)T(z2, M )6(z120 — My /5). (45)

The longitudinal momentum of the W is (2, — z3)4/3/2 and its transverse mo-
mentum is zero. Hence if we define * = z,2;, we can write £, and z; in terms of
the rapidity (yw) of the W:

Ty = /TE, T2 = \/1_'&““” (46)

and dz,dx, = dywdr. The structure functions can be parameterized approxi-
mately by

flz) ~2%(1 —- ). {47)
Hence do
o~ (1 + 1 = \/Teoshyw)". (48)

Hence do/dyw is almost constant if VTeoshywS0.1, In the case of W production
the Tevatron /7 ~ 0.04 and hence do/dyw should be approximately flat for
Jy| £1.5. Figure 7 shows the cross-section. It can be seen from this figure that the
naive expectation is in agreement with the exact cajculation.

4 TUncertainties in Predicted Rates

1 will now turn to the errors and uncertainties inherent in QCD predictions at
hadron-hadron colliders. In order to calculate a cross-section, one needs; structure
functions; a,; the partonic cross-section and a jet definition if the process has jets
in the final state. The current value of Azzz quoted by the Particle Data Group{10]

is 180 £ 95 MeV. The corresponding o,{Q) is shown as a function of Q in Figure 8.
It can be seen that the corresponding uncertainty in ¢, is order 15% independent

of §. Since a cross-section for n jets in & hadron-hadron collision is propertional

to a7, it will be uncertain by » x 15%. The situation is slightly better in e*e”

collisions where the uncertainty is of order (n — 2} x 15%.
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Figure 7:  Figure showing the cross—section do/dyw for the production of 2 W+

as a function of the rapidity of the W* in pP interactions at /s =
1.8TeV.



A detailed discussion of the determination of the distribution functions and
an estimate of the errors in them can be found in Ref. [11]. The existing pa-
rameterizations arise from fits to deep inelastic scattering data {with occasional
input from Drell-Yan and photan production in hadron collisions}. One of the
major difficulties with such fits is the systematic disagreement between different
data sets. This problem is illustrated in Figure 9 which shows a comparison of
Fy(r, Q%) as measured by EMC{12], BCDMS[13] and SLAC[14] data on a hydrogen
target. The EMC and BCDMS experiments cover the same kinematic range but
do not agree. BCDMS is higher at small z and lower at large £ than EMC. The
ratio of them is approximately independent of %, It is not clear which of these
data provides a better extrapolation of the SLAC data into the range of larger
€%, A comparison of the EMC[15] data on an iron target with the BCDMS[16]
data on carbon reveals similar systematic differences. The results of these two
measurements show systematic differences that are larger than the quoted errors
[17). When using these data to extract distribution functions, a choice must be
made between them.

There are many sets of distribution functions coming from fits to the data
using lowest order QCD. The most frequently used of these are the two sets of
Duke and Owens [18] (DO1 and DO2) which were based on data from EMC [13],
SLAC [14] and CDHS [20] {25] (the latter were renormalized in an attempt to
deal with the systematic differences in the data sets, see above), and Eichten et
el [19] (EHLQ! and EHLQ?2) based primarily on the CDHS data [20]. These
pairs correspond to different shapes for the gluon distribution and consequently
different values of @, {or A). As usual, the gluon distribution with more support
at large £ (harder distribution) corresponds to the larger value of a, (EHLQ2 and
DO32). Parameterizations of these distribution functions are given in the papers
and can easily be applied to a variety of other processes.

Recently, fits using next-to leading order QCD have emerged. Diemoz, Fer-
roni, Longe and Martinelli (DFLM) (21} used neutrino data from BEBC [22] |
CCFRR (23], CHARM [24) and CDHS [20] [25]. They also provide different fits
corresponding to different values of a,. They give sets of distribution functions
corresponding to a range of Af viz A = 160, 260, 360 MeV. These fits are used to
estimate the uncertainties in top quark rates at the Tevatron and SppS colliders
[286].

Martin, Roberts and Stirling (MRS) [27} have used EMC data together with

IHere we are quoting a A that corresponds to 4 flavors, in the range menarm < Q < Mpoerom

i
the formula for a, is o, (Q%) = ﬁﬁg("%"ﬁ”)[l_ gﬁ%] See reference {10] for a summary

of the behavior of this formula as a thresheld is crossed.
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Figure showing 0,(Q) as a function of Q. The solid line indicates the
central value quoted by the Particle Data Group(10], the dashed lines
indicate the range of uncertainty.

T

e



. ceet Y am08 faw) 21
= ot = | Treely
o . o o, -
F et L UV,
' vaes Tvee Ty
. evees S 010 ) . #“"--!.'.
.,u grate e o' L sy e, "'u"',-
§ TR - o
an@ 14 (1)) - 4
heas ! +* wrte .t r LTI t *'t-r!,“ -
- o ‘ 1 f '
L + "
__...d” .‘...‘.:..-num] i }- .!"**
.l. “esy b
Feas mavhy T, L e ®
LR T 0, O *
L .
Gost |
A AT + i
e e T, m-z ® ous Voohe
i LA ST '_otu: + 4
[UE) F
| & Seac-sat *
bl o vl a I T Y AT §
] 10 lo2 ' 0 IO?
Q' (Gev') Q' {Gev)
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that from CDHSW and CCFRR to which they apply a renormalization of order
10%, to remove the systematic disagreement with EMC. They present three fits
that differ in the form of zg(z,Q? = 4GeV?).

rg(z,Q? = 4GeVT) ~{l—z)® (set 1)

~ {1l -z)* (1 +9%) (set2)

~ oz — £)%(1 + 9z)  (set 3). 149

They then use data from J/¢ production [28] and photon production {29] at
large transverse momentum, processes that are sensitive to the shape of the gluon
distribution (see below), in an attempt to distinguish between the sets. They
conclude that the soft gluon distribution of set [ is preferred.

Set ! has been[30] refitted using the BCDMS [13] [16] data instead of EMC
[12] {15]. Here they find that the neutrine data and BCDMS are compatible and
that a renormalization of the former is not needed. These authors have compared
the predictions from these two sets of distributions with the data on Drell- Yan
production: at the ISR {31]. The BCDMS fit is preferred, but the order o, QUD
corrections to the Drell-Yan rate are quite large [7) and the o? terms are not
known so any definite conclusion seems premature.

Existing deep-inelastic scattering data do not extend below = ~ (.01 and
cover a very small range of Q% at small z. This is a potential problem since for
some applications it is necessary to know the parton distributions in this region.
Recall that x,z; > §/s where § {s) is the center of-mass energy squared in the
parton-parton {hadron-hadron} system. It is traditional to assume that the gluon
distribution obeys
(507

for some scale Qo of order a few GeV. However this form is unstable. When
evolved to higher @2, it develops rapidly into a steeper form (see Figure 10). As
we have seen(sce Equation 36) at very small z and large Q% it is possible to solve
the Altarelli-Parisi equations analytically. This solution is singular as z — 0. It

lirxaj rg(z, Q%) = const.

is also possible to sum to all orders in o, the most singular terms at small r and
large Q*. This gives
lim rg(z,Q%) ~z7* (51)

:-nOfM-—-ao
where, § = 120, log(2)/r, which is an even more singular form [6]. It has been sug-
gested {6] that one should use a form for xg(z, @F) that is more like the asymptotic
form:

zg{z. Q3 ~ 1/ V= (52)



xg(x.a%)

Figure 10:

T T T

A comparison of the gluon distributions for fixed Q? as a function of
z. The solid lines are EHLQ set 2 and the dashed are EHLQ? (see
text). The higher {lower) curve at small z corresponds to Q% = 50(5)
GeV7.
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is most commonly used. This argument provides the motivation for set # of the
MRS structure functions. It is not ciear that this form is a better assumption
than the traditional one, or below what value of z this form should hold. Notice
that the momentum sum rule provides almost no constraint since the amount of
momentum carried by gluons in the region = < 0.01 is small, whichever form is
used there. Figure 10 compares the resulting gluon distributions at higher (J?
that evolve from different forms at MJ. The two starting forms are equal for
z > 0.02 {Q} = 5GeV?) and have the forms of Equations 50 and 52 at smailer
x; the first of these is the EHLQ set 2 (see above). We will refer to the other
as EHLQY and will use it below to illustrate rates from such an extreme choice.
As can be seen from Figure 10, the differences become less important at large
Q?. The uncertainties in predicted rates due to the small z problem are therefore
serious only for processes sensitive to small z and small Q2.

In order to assess the uncertainties in predicted rates quantitatively it is
necessary to have set of structure functions that take into account the errors in
the data that were used in making the fits. In the absence of such fits, one
can attempt to estimate the uncertainties by using a range of structure functions
that are compatible with existing data. Figure 11 shows the cross-section for the
preduction of a photon at large transverse momentum. The relevant partonic
processes are ¢+ ¢ — v+ g and ¢+ 7 — v+ g. It can be seen from this plot that
the uncertainties associated with the choice of structure functions are of order
25%.

Even if the structure functions and @, were known exactly there would be
some uncertainty in the QCD rates since the choice of scale Q at which they are
evaluated in Equation 41 is arbitrary. If the partonic process were calculated to
all orders in o, then a change in @ would not change the resuit; it would merely
adjust the relative sizes of the different terms in the a, expansion. To see this
note that

(@) = @1~ 2= iog(0/@)0u@) + 0@ ()

and that (see Equalion 30)

f(z.Q") = f(z,Q%) + Oo.(Q)). {54)

Hence, a complete discussion of the Q* dependence of the calculated rates is only
possible for processes where the next-todeading order corrections to the partonic
rate () is known. In the absence of such information one can vary Q7 over a
reasonable range and estimate the change in the predicted rate. The scale @
should be of order of the momentum transfer in the hard scattering process. For
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example, in the case of W production is should be of order the W mass or, in the
case of photen production at large transverse momentum, it sheuld be of order
P

One would expect that the @ dependence of an estimated rate would be
reduced if the next order corrections to & are known. Keith Ellis will discuss this
in the context of the production of top and bottom quarks [32]. Here I will discuss
the transverse moementum distribution of W bosons. The lowest order process
that contributes to the production of W bosons is ¢ — W. Since the incoming
partons have very small (less than a few hundred MeV) transverse momentum,
this process can only produce W bosons with very small transverse momentuni.
There are two processes at order a, namely 4§ — W + g and gg — W + ¢ that
can produce W's at large pi; the transverse momentum of the W is balanced by
that of the outgoing quark or gluon. The rate from ¢§ is given by [33]

do =2P=f dru(:mAﬂ%)&(rl,Qz)o(é,hf,ﬁ) (55)

dp.dy rs+u— M§
with
—zt— (1 — z}ME,
s+ u— M§
—~uf{s+1— ,Ma,)
D cremo (@) (8 — ME) + (v — M%)
9sin?fw stu '

Iy =

Timan

cr(s,ﬁt‘u) =

Here the hatted variables apply to the partons and the unhatted to the hadrons.
The W is produced with transverse momentum p and rapidity y. ¥ The rate
from the gg initial state can be obtained from this by crossing. At next order on
QCD there are contributions from g7 —+ Wgg for example. The rate from all of
the order o? processes has been computed [34] and is shown in Figure 12 as a
function of Q for p, = 100GeV at /s = 1.8 TeV in pp collisions. 1f Q is allowed
to vary over a reasonable range from p,/2 to 2p., it can be seen from tlis figure
that the lowest order rate varies by a factor of order 1.8 while the order a? result
changes only be a factor of 1.3. This result is typical and is to be expected if the

§Gince the W is observed via its decay to ev more useful experimentally 1s the cros-section
for fixed momentumn of the e. This is obtained by using the matrix element for Uipu) +dlpa) —
e(pe) + P(p,) + g(py) which is given summed (averaged) over final (initial) spins and colors by

MPE = (&)n 20480, My, ® (Popn)? + (pepa)®
72 Bpu = Pe — Po)opd — Pe = Pe)? ((Pe + Pod? = ME )P+ METE
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QCD perturbation theory is reliable. {Bottom quark production at the Tevatron
is an: exception, here the ¢ dependence ircreases in next-to-leading order [32] )

To summarize, for a process that does not reguire the definition of a jet the
uncertainties on the cross-section are of order 25% from structure functicns (more
if the process has a partonic centerof-mass energy that is less than about 40 GeV
and a value of 3/s less than about 10~*), of order 50% from the cheice of Q? scale
if next-todeading order QUD effects are not known and order 15n% if the partonic
process is order a]. In the cases where hadronic jets are measured it is necessary
to define a jet.

5 Jets and their Definition

Itis well known from the analysis of e*e™ data that the details of jet fragmentation
and of the experimental jet finding algorithm can significantly effect any detailed
interpretations of jet measurements, and, in particular, of attempts to use such
analyses to extract the value of a, [35].

The products from a partonic hard scattering event can include quarks and
gluons as well as photons and W bosons. While the Jatter can be observed directly
in an experiment, the former cannot. What is observed is a narrow et of hadronic
particles whose direction and total energy correlate with that of the produced
quark or gluon. The simplest model of such a jet is as follows. Consider a quark
with four momentum (E, P,0,0). This will fragment into n hadrons with momenta
{Ei, pi, pricosdi, pysing;}). The distribution of particles is then given by

dNy _
dyidpyde; -

where the rapidity distribution f{y;) is approximately constant out to its maxi-
mum value (Ymas o logE) where it falls rapidly to zero, This model predicts that
the jets become narrower as E increases since the average value of py; does not
increase while the average value of the momentum (p:) paraltel to the quark direc-
tion does. Furthermore the average multiplicity of particles within a jet {<n>)
will be proportional to logE. The average value of the transverse momentum is
of order 300 MeV which is similar to the scale at which o,(Q?) becomes large and
QCD perturbation theory can nc longer be used.

Fly)ew (56}

This simple model provides a reasonable description of jets at £ S
GeV. At higher energy the width of a jet expressed in terms of its opening angle
4 does not decrease as fast with energy as the naive model indicates. (The model

e

e
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predicts tané ~ Le22Puzy. In order to understand this let us consider ete”
annihilation into hadrons.

At lowest order in QCD, %, the final state consists of a ¢ pair and one
would therefore naively expect to find that the final state was dominated by 2-
jet events. At next order we can get a state with an additional gluon (terms
of this type contribute to the order &, terms in Equaticn 20). Since the quarks
and gluons hadronize into jets of particles, this would seem to imply that the
ratio #/{3jets)/#{2jets) should be of order a,. This is only partially true since
it is necessary to define what is meant by a jet. Consider the final state of
two quarks and a gluon illustrated by Figure 13. The Feynman graph contains an
internal propagator which gives rise to a factor of 1/(pz +pa)?; this factor becomes
singular when either the gluon becomes very soft, i.e. pa — 0, or when it moves
paraliel to the outgoing quark pa. In the calculation of the inclusive cross-section,
these singularities are cancelled by the divergences also present in the radiative
corrections to the final state of quark and antiquark (see Figure 11).

These soft and collinear divergences correspond precisely to those parts of
phase space where a detector would only detect two jets. Consider an idealised
detector consisting of a set of elements each of which covers an angular cone of

opening angle § and has an energy threshold e This detector will be incapable of

resolving two jets if one of them is very soft (energy ¢ or less), or if the two jets
have an angular separation which is less than . We can define the [ to be the
fraction of lotal cross-section in which all but a fraction ¢ of the total energy 1s
deposited into two cones of opening angle &. Then to order a,,
(1-fy=2o 57)
Feotal

provides a definition of the three jet fraction.
We can calculate this fraction s follows, Working in the centerof-mass of
the e*e~ system and defining =, = 2E:/\/3, where E; is the energy of the outgoing
quark or antiquark(see Figure 13),the differential cross-section for the three parton
final state can be written as
1 do 2zt
Gt dzidzz | 37 (1 —z)(l — 23}

{58

Notice that this is singular when either 7, or z; is zero which corresponds to the
configuration where the gluon is soft (£, ~ z3 ~ 1) or hard and parallel to one of
the quarks (either z, ~ 1 ar =7 ~ 1). Hence [36]

a-n = 2

& Ouorat 471 dry
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Figure 13; Feynman dia

gram showing a contribution to the three jet final

described by Lquation 5%,

Figure 14:

Feynman diagram showing a virtual correction to the total ¢

tion in e*e” annihilation.

state
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(4log{1/8)log(1/2¢) — 3log(1/8) + n*/3 — T/4),

da,
37

Notice that as ¢ and § become very small the logarithms in this expression
can become very large. Ultimately the perturbation expansion in e, breaks down
since there are terms in next order which are of order allog?(1/6). Since this is
not small compared with a,log(1/8), the expansion is not reliable. The situation
can then be improved by resumming these large logarithms to ail orders.

The “fraction of three jet events” is therefore seen to depend on the jet
definition. Furthermore this result shows that jets shrink only logarithmically as
the energy rises (recall that a, fall logarithmically with the energy). Another
example of a jet definition in e*e~ is as fallows [37). Suppose that n particles are
produced with momenta p, and form the invariant mass of pairs of particles:

M} = (pi+ ;). (59)

If Mi; < M. then combine particles i and j into a pseudoparticle a: p, = p; +p,.
There are now n ~ 1 “particles”. Iterate the procedure until no more particles
can be combined. Th number of jets in the event is then equal to the number of
remaining pseudoparticles. Then the n-jet cross-section varies as

o™ ~ o} 7 (Mo )log"™ (Ve[ M) | (60)

Hence if M., is held fixed the 3 jet fraction will increase with 5. This is illus-
trated in Figure 15.

In a hadron-hadron collision the total energy in the parton scattering is not
known @ priori and hence the parameter ¢ is irrelevant. One could define jets in
terms of a fixed angular cone. Experimentally and theoretically the best definition
is in terms of a cone in rapidity and azimuth. Choose some direction then define
the energy of a jet in that direction to the energy inside a cone of fixed AR defined

by
AR = \/{6¢)? + (An)? (61)

where Ad and An are the distance of the energy flow from the jet direction in
azimuth and rapidity. There is some minimum value of AR that arises from the
hadronization of a single parton and from the finite resolution of detectors; a value
of order 0.7 is often used [38]. I will assume that AR < /2,

At order af there are processes such as g + ¢ —~g+gandg+qg—g+gq
that give rise to two partons in the final state in a hadron-hadron collision. If
these partons emerge at large p,, they will give rise, after hadronization, to jets of
hadrons, At this order the two partons must be separated by Ad = #, and hence

e

oy
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the final state will consist of 2 jets. The jet cross-section predicted by perturbative
QCD is given simply by these 2 — 2 processes and does not depend on AR. The
rate does depend rather strongly on the choice of Q?; see Figurc 16.

At order a? there are three parton final states arising from processes such as
g+ g — g+ ¢+ g. This partonic final state could give rise to either a 2-jet or
3-jet final state depending upon the separation between the partons. i.e.

%’;‘%g; ~ 0 f(OR). (62)
The inclusive jet cross-section calculated to this order will now depend on AR.
This is shown in Figure 17. As expected the (}? dependence of the cross-section
is reduced when the order a2 terms are included; the range of uncertainty shown
on Figure 16 is reduced by about one third [39). Notice that this calculation
must include not only the three-parton final states, but also the virtual {order
o2} corrections to the two-parton final states, This is necessary because there are
infra-red divergences in the three-parton final state that arise when one parton is
very soft. These divergences cance! against those in the virtual diagrams.

Many searches for new physics in hadron-hadran collisions are limited by
background from multi-jet final states. For example, one method of searching for
the top quark [40] is to look for a lepton and jets arising from the production
of a tf pair followed by the decays t — e*vb and ¥ — bdii. The background to
this arises (at least for top masses larger than 60 GeV or so) for the final state
W + jets. It is therefore vital to have good estimates of the multi-jet rates.

It is possible to use a partonic calculation to compare jet data with QCD or
to estimate background rates. In this case, the theoretical prediction is taken from
a partonic calculation done to some fixed order in a,. It is important to realize
that such a calculation depends not only on a, but also on the cut-off parameters
po and fo that ge inte the definition of a jet. A fully correct treatment of this
is, in fact, only possible in the context of a complete higher order calculation
(e.f. previcus paragraph). If one needs, for example, the four jet final state
that occurs at order a?, one must calcuiate the two loop corrections to the 2-
jet final state and the one loop corrections to the 3-jet final state. In practice,
the tree level results can be used (a] for 2-jet, a3 for 3-jet ete.} together with
the cutoffs. While these results can be used for estimating rates, they cannot be
used for making precise QCD tests involving the comparison of final states with
different numbers of jets. Recently there has been much progress in calculating
these tree level rates. The exact partonic matrix elements are known for all
the processes contributing to 3-parton [41] and 4-parton [42] final states. An
algorithm has also been developed [43] that enables the n-parton matrix elements
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to be computed recursively. The exact matrix elements are very complicated and
slow to evaluate for more than three jets. Nevertheless, approximations [44] have
been developed that are accurate to 10% or better for the 4-jet and 3-jet final
states and can be extended with some confidence to the final states with five
or more jets. These fixed order calculations should be reliable provided that all
of the jets are of approximately the same py. If o (pl" Yog(pi***/p™") ~ 1 or
0,l09(27Ymaz/AR) ~ 1, then the parten calculation ceases to be reliable. Here
pre® (p") is the transverse momentum of the stiffest (softest) parton, yma- is the
range of rapidity covered by the detector and AR is the separation in rapidity-phi
space of the closest two partons. The latter criterion is always irrelevant given
the segmentation present in current detectors.

If such a partonic caleulation is to be used to compare with data, either the
experimental data must be corrected back to “partonic energies”, or the results of
the calculation must be fed into a Monte Carlo event generator that fragments the
final state quarks and gluons into the hadrons seen in the detector. The advantage
of this technique is that the true QCD matrix element is used. The disadvantage
is that the calculation does not include the effects of additicnal gluon radiation
and hence of “jet broadening”. There is another difficulty in that an n-jet final
state is attributed to a 2 —n—parton calculation. After such a state is hadronized
and passed through a jet finding algorithm, it may appear as an (n — 1)-jet final
state. Since such states are supposed to be produced by the 2 — (n — I)-parton
scattering, there is a double counting problem.

An alternative method of calculation involves using a QCD inspired Monte
Carlo generator (ISAJET [45], PYTHIA (48] or HERWIG [49] for example). Such
generators usually start with the lowest order 2 — 2 calculation and then use a
classical branching process to radiate more partons from these cnes. This gener-
ates a multiparton final state in the so-called leading log approximatien.

In order to understand how this approximation works, consider the process
g+g — g+ ¢+g which gives rise to a three parton final state. Label the momenta
as follows

gl=p1) + g{—p2) = 9l{pa) + alps) + 5(ps) (63)

Then the matrix element squared for this process can be written as {summed over
all apins and colors)

|M]? = NN - 1S (i) 3 ]

! perms (P1P2}{P2p3) (Papa) (Paps) (pspr) (64

where N=3. Consider the limit in which py and p; become parallel. Then paps —
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0. Then define p, = po+ p3 and z = |pf / Ipal

Na(Ng - 1) )t £ 1
IMI = G P PU-0 L)) 3 o el op]

(65)
where the sum on { and j runs over 1,2 and 3 only, we have dropped terms that
are finite as p,ps — 0 and P is given by

Tia1a{pap)?
P= . (86)
Lig=13i>5(pipi )
Using momentum conservation one can show that P = 1. We can now write
t 2
MPP = ——PFy(2) 1M {67)
IM] (papa) ™

where £, is the Altarelli-Parisi splitting function and M; is the matrix element
for the process g(—p1) + g(—p2) = g(pa) + g(pa) viz
f+tt+utl 101

stu (; teta (68)

T _ g7
A" = NHN? - 1) S+

This result, which can be generalized. is the basis of the “leading log approxima-
tion”.

The leading log approximation calculates iMlz for a 2 — n process by select-
ing- the pair of partons (! and m} with the lowest invariant mass and writing (as
above po = pi + P, and 2 = |pil / [pal

[M(2 = n)f? = ——Py(2) M2 = n = 1) (69)
(PaPa)

The procedure is then iterated so that the final expression is in terms of a num-
ber of Altarelli-Parisi factors and M(2 — 2). This approximation is good when
log{/3/p;) or log{AR) is large, where AR is the separation of a pair of partons.
This approximation for generating multiparton final states is used by the
QCD inspired Moate Carlo generators (ISAJET [45], PYTHIA (48] or HERWIG
[49] for example). Such generators usually start with the lowest order 2 — 2
calculation. They treat the outgoing partons as being off shell {i.e. they have
an invariant mass of order p;) and then allow them to “decay™ with a branching
probability given in terms of the Altarelli-Parisi functions. (for a review see [50]).
The advantages of this approach are that it can reproduce many jet final states
and that it will automatically include any jet broadening eflects caused by gluon
radiation. It also has no inherent problem in normalizing the rates for different
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numbers of jets. The hadron (or parton) can be passed through a jer algorithm
and the number of jels determined. The disadvantage of the method is that the
leading log approximation does not reproduce the exact calculation for wide angle
radiation (typical errors can be as large as a factor of 2 or 3 in rate) and so may
net provide a good basis for comparing to multi-jet data. It is also very difficult
to include higher order QCD corrections in a fully correct manner.

6 Underlying Events

In 2 hadron-hadron collision, events that do not contain a hard scatlering make
up the dominant part of the cross-section at currently available energies. These
events {“minimum bias") consist of hadrons of small transverse momentum dis-
tributed uniformly in azimuth and approximately uniformly in rapidity. Since the
properties of these events are not calculable in QCD, the various Monte—Carlo
generators use models to simulate them. ISAJET [45] uses a Regge model [51];
PYTHIA [48] builds up the event from a large number of parton-parton scatter-
ings each of which produces an cutgoing parton of very small p,; HERWIG [49]
uses a phenomenological model based on the UA3 data [52]. All of these models
contain parameters which are adjusted so that they correctly describe the data at
the SppS collider.

When these generators are used to predict the minimum bias structure at
higher energies, it is not guaranteed that they will agree, either with each other
or with the data. Figure 18 shows the pseudo-rapidity distribution pradicted for
PP collisions at +/5=1.8 TeV. It can be seen from this figure that the Monte-Carlo
generators do not agree with each other and that PYTHIA provides the best
agreement with the CDF data [53]. HERWIG is in reascnable agreement with the
data, while [ISAJET is somewhat low. However, in the PYTHIA case we have not
included the contribution from the “double-diffractive” process. Including this
process will lower the multiplicity slightly. It is needed at /5 = 630 Ge\ to bring
the generated values closer to those of ISAJET, HERWIG and the UAS data
[SAJET and HERWIG do not have "double—diffractive” as a separate process. 1f
the jet final states are also included in the HERWIG predictions, better agreement.
is obtained [54].

In a hadron-hadron hard scattering event, such as the production of jets or
W bosons, the initial state partons in the hard scattering have evolved off shell by
an amount of order the momentum transfer in the hard scattering. This evolution
occurs by the emission of quarks and gluons all of which have limited transverse
momentum with respect to the beam direction. These quarks and gluons then



turn into hadrons of limited p, distributed approximately uniformly in rapidity.
One therefore expects that the multiplicity of particles in the underiying event
{i.e. that part of the event that is separated in ¢ — x space from the products of
the hard scattering) should be larger in events which contain a hard scattering
than in events which do not. This qualitative feature is seen in the data [55].
A comparison of this effect in the different Monte-Carlo generators is shown in
Figure 19 which also shows data from CDF [53]. A comparisen of this figure
with Figure 18 shows that there are indeed more particles in the underlying event
when a W is produced but that the distribution remains of approximately the
same shape in pseudo-rapidity,
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