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In our case we have that the z* can be chosen to be X* (special coordinates), and the
index A is also A. For these coordinates we will call the metric G5

GAB(X, X) = —?;FAB -+ C.C; = 2Im FAB = 3189K(X,X)
K(X,X) = i(Fa(X)X* - Fy(X)X™) (3.29)

Furthermore we have N 5 = Fyg.

Note action zero for quadratic polynomials.

More general gauging for §F = gy*C.pcXZXC. For gauge invariance a Chern-
Simons term has to be added.

Les = _%gfuuwcA,BCW:‘Wf (apwcrc - %Q[Wm Wcrjc) . (3‘30)
Curvature .
Rascp = —Faceg®™ Frpp
3.4 Coordinate independent description

We can use more general variables: X*(2'), and F,(2'). We have then
gi; = €€ 8.85K (3.31)

where e! = %X A4 We define now also G“4? as the inverse of G 45, and €, as the inverse
of e,... . We obtain then

G*Belg; = &f (3.32)
Gisk = Ouel - ehgi; + '8 + 0cGag - €k (3.33)
as € is anttholomorphic. This gives as connection *
k fik k
I = 0G+T5
I‘fj = e8¢
T¢ = ehGCPopG pele) . (3.34)

The connection I' is a flat connection (the curvature tensor vanishes for this one). We
define the symmetric tensor (using (3.29))

C,‘jk = ef‘e?efFABc = ie;4efegacGAg . (3.35)

Then
Tk = —ie 40,#9‘"‘ g (3.36)

]

The covariant derivatives are for a vector V;

DV, =8V, -TEVi; DV, =aV,-Thv. (3.37)

‘In general for Kahler manifolds, the connection is only non-zero when all indices are holomorphic
or antiholomorphic, and in the curvature tensor with ail indices down, 2 should be holomorphic and 2
antiholomorphic. The nonzero components are I'f; = ¢* 13,9:1, and Ry*; = 8;T'}; with all its other forms
related by the symmetries of the curvature tensor.
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Observe that by definition the full covariant derivative gives zero on the metric g;;, but
ﬁ,‘&f =0; 'D,‘ef‘ = ‘iC,‘jggtﬁéi . {(3.38)

Let us compute the same equations for the derivatives of F';. First of all, it is also holo-
morphic and thus §F, = 0, and defining A,y = 0, F = e8 F 4, which is also holomorphic
of course, satisfies then

Dih;a = iCiug"™eE Fup +e,BBJCFABc
= iCijeg" ey, (Fup —iG 4p)
= iCieg™ el Fap = iCijtg™ hma (3.39)
where first (3.32) was used, and then (3.29). This equation (3.39) looks similar as (3.38).
Introducing V = (X“(z), F4(2)), which is holomorphic &,V = 0, we got differential

equations on

U =6V =(8X"0F,). (3.40)
Namely:
D,’Uj = iC,»J-kg“'(]’g
U, = 0. (3.41)

These differential equations can also be used to define the geometry. This is also the
appropriate setting to make contact with the geometry of the moduli of Riemann surfaces.
Observe that

K = iviav
Cijk —_ UEQD,UJ
where 0 1
— 3.42
Q (—11 0) , (3.42)
curvature: R,;H- = _Cl'kpc'ﬁﬁgpﬁ'
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4 Symplectic transformations

4.1 Duality symmetries for the vectors

Kinetic action for the spin-1 fields {coupled to scalars)
L1=+im (NagFLAFH B) = AN FIAF S 4 SN FR 08 (41)

The field equation for the vector is (from now on we omit the non-abelian parts)

oc oL :26,,( oL oc )

=28, ——
gwi ~ 2057, gFzh T BFA

We then define

oL ac
= N FEw o = -2

I~ ) FiudenfiRY ¥ S — 2 pv .
OF LA = gy = e 43

[TUSY Y
A =2

Observe that these relations are only consistent for symmetric A, So far, this is an obvious
remark, as in (4.1) we can choose N to be symmetric.
Then the Bianchi identities and equations of motions can be written as

Im F1» = 0 Bianchi identities
OuIm G%, = 0  Equations of motion (4.4)

These equations are invariant under GL{2m,R}):

(&.)=5(5)=(¢ 5) (&) (49

To be consistent :
G* = (C + DN)F* = (C + DN)(A + BN)"'F* (4.6)
— (N = (C+ DN)(A+ BN)"! (4.7)

Condition that this is symmetric:

(C + DN)YA+ BN)' = (A+ BN)Y'T(C+ DN)T
(A+ BN (C + DN) (C + DN (A + BN) (4.8)

or

0=CTA-A"C+N (D"A-B"C)+(C"B- A"D)N + N(D"B-B"D) (4.9)
For general A/ the above condition implies that the first and the last term are separately
zero; furthermore we assume that the identity is the only constant matrix that commutes

with A, This implies thus

ATC -CT"A=0, B'D-D'B=0, ATD-C"B=1. (4.10)
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These equations imply that S € Sp(2m,IR):
stes=a  whee 0={(° (7. (4.11)

Note that this symmetry was only for abelian sector: g = 0.
These transformations are symmetries of solutions of field equations and Bianchi iden-

tities. However, they do not leave the action invariant in general. Vector kinetic la-
grangian transforms as follows

Im FAN s FE = Im FHG oy — Im FHGy4 (4.12)
~Im (FG.) (4.13)
+Im (2F*(CTB)G4 + FH(CTA)F* + G.(DT B)G.) (4.14)

If C = B =0 the lagrangian is invariant.

If C #0,B =0 it is invariant up to a four-divergence.

These transformations generically rotate electric into magnetic fields and vice versa.
Such rotations, which are called duality transformations because electric and magnetic
fields are dual to each other (in the sense of Poincaré duality), cannot be implemented on
the vector potentials, at least not in a local way. Therefore, the use of these symplectic
transformations is only legitimate for zero gauge coupling constant. From now on we deal
exclusively with Abelian gauge groups.

In quantum theory transformations must be in Sp(2m,Z). (See also lectures of J.

Harvey).

4.2 Action on the scalar fields

In general the above transformations change N, which are coupling constants. Another
such symmetry is the diffeomorphism group: it acts as

. . 83t 827
z > 2(2) ; g',‘_"(Z(Z))‘é;a—zi = gu(z)
N(:(2)) = N(z) (4.15)
Such transformations which change the coupling constants, will be called ‘Pseudo-—
symmetries’:
Dpseudo = Dif f(M) x Sp(2m,IR) (4.16)
Combination: . 3
N(3(2)) = N(2) = (C + DN)(A+ BN)™
Isometries

§i;(z) = gi;(2) are proper symmetries of scalar action.
If isometries used together with symplectic transformations such that

N(z) = N(z) (4.17)

then this is a proper symmetry

We must have Iso(M) C Sp(2m;R)
Dprop = 130(M) C Tso(M) x Iso(M) C Dpacudo (4.18)
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Examples: § and T dualities

N =4 in parametrization of Sen:

scalars: A = A + 1Ay and M

where M = MT and M'ﬂM = T]_l
7 = 5’ metric of O(6,22)

couplings to vectors:

N =X + i My
should transform as A = (C + DN)(A + BN)™!; with

ATc-¢CcTa=0, BTD-D"B=0, ATD-C'B=1
o 7T dualities:

Ft=AF*
M=AMAT with g=ATn4
=> N= (AT)_INA“
. . _{A BY (A 0 _,

asreqmredmthS:(C D)_(O (AT) )

¢ 5 dualities:
Ft=sFt4m 'NF*
5 PAty

rA+ s
= N =N +an)(rn™'N + 5)

with sp—gr=1

-1

or S — (a]l N )
qgn pl

non-perturbative
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