Microspectroscopy and Spectromicroscopy

Sebastian Günther

Institut für Physikalische Chemie und Elektrochemie, Universität Hannover, Callinstr. 3-3a, 310127 Hannover and Sincrotrone Trieste, Area Science Park, SS 14, 163.5 km, 34012 Trieste–Basovizza

sebastian.gunther@elettra.trieste.it

Microspectroscopy and Spectromicroscopy

Part I:

- Motivation
- concepts to achieve spatial resolution
- XPS and XAS concept for X-ray microscopy
- Focussing devices for X-rays
- STXM versus TXM
- SPEM

Why microscopy with x-rays or electrons?

- high lateral resolution (10 nm range possible, TEM sub nm range)
- transparency of matter

Why Microspectroscopy and Spectromicroscopy?

• elemental resolution:

quantify composition of sample with lateral resolution

• chemical information:

characterize chemical environment

• further information on:

Magnetism different type of bonding (e.g. π , σ bonds) orbital alignment electronic structure

combination with other microscopy techniques

Concepts to achieve spatial resolution

Concepts of Spectromicroscopy: Detection mode

detection	microscope	sensitive to	sample thicknes required	depth information
photon in / electron out	SPEM imaging XPS X-PEEM	XPS	thick possible	few atomic layers
photon in / electron out	SPEM X-PEEM	XAS	thick possible	5-50 nm
photon in / photon out	STXM, TXM conversion microscopy	XAS	thin (< several μm)	bulk
photon in / flourescence out	not considered here			
photon in / ion out	not considered here			

photon in / electron out + energy filtering of electrons => XPS - mode

Tuning of photon energy through and absorption edge

water window

chemical contrast for N,C,O (biology polymers)

higher energy good for higher Z-materials

Trabecular bone of a mouse femur sample (10µm thick); Image field is 27 x 21 µm²

Mineralized area in trabecular bone tissue near Ca K-edge

M.Salome et al. X-Ray Microscopy, AIP Proc. 507 (2000) 178-183

µ-spectrum

Hydroxy-apatite spectrum recovered from a stack of 200 images

XANES: tuning on molecular orbitals XMLD: imaging antiferromagnets, XMCD: imaging ferromagnets

Focusing devices for x-ray point sources

Focusing devices for x-ray point sources

Other focusing devices for high energy applications

e.g. at ESRF

Focusing devices for x-ray point sources: Fresnel lenses

Focusing devices for x-ray point sources: Fresnel lenses

m²

Focusing devices for x-ray point sources: Fresnel lenses

Spatial resolution δ in 1st order:

$$\delta = \sqrt{\delta_r^2 + \delta_i^2 + \delta_c^2}$$

 δ_r : Intrinsic ZP resolution δ_{c} : chromatic aberration δ_i : demagnified source $\delta_i = \sigma \bullet q / p$ $\delta_{c} = D \cdot \Delta E / E$ $\delta_r = 1.22 \times \Delta r_n$ σ : source size D: ZP diameter (Rayleigh criterion) p: source-ZP distance $\Delta E / E$: resolving power q: ZP-object distance of monochromator => small outermost zone, small source size, monochromatic beam

e.g. Δr =100 nm + typical values from synchrotron beamline δ_r =122 nm, δ_i = 30 μ m × 8 mm/3 m=80 nm, δ_c =100 μ m × 0.2eV/500eV=40 nm => δ =150 nm

Scanning versus full field imaging transmission microscopy

Scanning versus full field imaging transmission microscopy

- + versatile detectors can be run simultaneously
- + low demands in the optics setup
- + SPEM possible
- long exposure times
- complex electronics

- + short exposure times
- + access to X-ray tomography in combination with spectromicroscopy
- + highest resolution due to static system
- complex optical alignment

Scanning versus full field imaging transmission microscopy

e.g. at the ESRF

Scanning Photoemission Microscope

Scanning Photoemission Microscope at ELETTRA

Scanning Photoemission Microscope at ELETTRA

SPEM: Multichannel-acquisition

SPEM: Multichannel-acquisition

Electron imaging systems: Imaging XPS Analyser concept

homogeneous illumination + scanning => imaging

ICTP Summer School on Synchrotron Radiation, Trieste 2002