Microspectroscopy and Spectromicroscopy

Sebastian Günther

Institut für Physikalische Chemie und Elektrochemie, Universität Hannover, Callinstr. 3-3a, 310127 Hannover and Sincrotrone Trieste, Area Science Park, SS 14, 163.5 km, 34012 Trieste-Basovizza

sebastian.gunther@elettra.trieste.it

Microspectroscopy and Spectromicroscopy

Part II:

- basic PEEM principles
- imaging modes of a PEEM with imaging analyzer
- PEEM with magnetic sector field to couple in an electron beam
- comparison SPEM / X-PEEM
- Applications

PEEM PhotoElectron Emission Microscope: principle setup

Action of aperture and accelerating field:

=> Aperture cuts most of the signal

accelerating field itself introduces aberrations:

angle limiting aperture reduces these aberrations but cuts signal

furthermore the aperture introduces diffraction which limits as well the resolution

=> energy resolution, lateral resolution, transmission all interdependent

Electron imaging systems: PEEM setups

Classification of PEEM systems

- A. PEEM without energy filter
- B. PEEM with imaging retarding field filter
- C. PEEM with area selective spectroscopy
- D. PEEM with **full spectromicroscopy capabilities, i.e. imaging analyzer**
- E. PEEM with magnetic sector field in combination of MEM and LEEM
 - F. PEEM with **aberrations correction** of the accelerating field
 - G. PEEM with **time of flight detector**

A) energy filtered imaging

B) area selective spectroscopy

ICTP Summer School on Synchrotron Radiation, Trieste 2002

C) imaging the back focal plane (energy filtered): diffraction pattern

ICTP Summer School on Synchrotron Radiation, Trieste 2002

PEEM with magnetic sector field to couple in an electron beam

PEEM with magnetic sector field to couple in an electron beam

Th. Schmidt, S. Heun, J. Slezak, J. Díaz, K. C. Prince, G. Lilienkamp, E. Bauer: Surf. Rev. Lett. 5 (1998) 1287.

PEEM with magnetic sector field to couple in an electron beam

Th. Schmidt, S. Heun, J. Slezak, J. Díaz, K. C. Prince, G. Lilienkamp, E. Bauer: Surf. Rev. Lett. 5 (1998) 1287.

Comparison: SPEM - PEEM

SPEM	PEEM
Lateral resolution (focusing optics) and energy resolution (x-ray monochromaticity and analyzer) not correlated	Lateral resolution and energy resolution correlated because of instrument transmission.
Lateral resolution:	Lateral resolution:
~ 100 nm at present, 40-50 nm feasible.	10-20 nm at present, 2 nm feasible
Acquisition rate : 'slow' (min) The same in single and multichannel imaging	Acquisition rate : 'fast' for one image (s) "slow" for image stack
µ-spectroscopy:	Area selected spectroscopy
fast, with 100 nm resolution	fast with ~ 1 µm resolution
energy resolution 10 meV - 500 meV depending on application	energy resolution ~ 400 meV reached
other detectors possible	Combination with electron source possible

Applications: handling topographic contrast

Topographic contrast in the SPEM at ELETTRA

 MoO_3 crystal on Al_2O_3 support

Applications XPS: removing topography- chemical map

Applications XAS- XPEEM: imaging ferromagnet antiferromagnet interface

Applications XAS- STXM: imaging polymer blends

XAS-XANES

Contrast due to:

C1s transitions into the C=C and C=O π^* orbital

e.g. H. Ade, X-ray microscopy 99, AIP507, p197

Applications XPS-SPEM: Ni-Si(111) interface

imaging coexisting phases: NiSi, NiSi₂ islands and 2 dim $\sqrt{19x}\sqrt{19}$ and 1x1 ring-cluster phase

35 µm

L. Gregoratti, et al, PRB 57 (98) L2134; PRB 59 (99) 2018.

Applications XPEEM-LEEM: imaging giant vicinal facetting

facetting of a miscut SI(100) surface upon Au evaporation

XPEEM Au 4f

e.g. F.-J. Meyer zu Heringsdorf et al., PRL 86(22) 2001, 5088.

Applications XPS-SPEM: imaging chemical reactions

H. Marbach, to be published, S. Günther et al.J. Electron Spectrosc. Relat. Phenom 114-116 (2001) 989.

ICTP Summer School on Synchrotron Radiation, Trieste 2002

O 1s K 2p time -20 t°~20 h t[°]+ 2.5 h t°+6h coverage (a.u.) 4.5 h 7.51 640 µm distance (µm) 250 300 t⁰ + 7.5 h

Applications XPS-SPEM: imaging chemical reactions

H. Marbach, to be published, S. Günther et al.J. Electron Spectrosc. Relat. Phenom 114-116 (2001) 989.

Conclusions: Microspectroscopy - Spectromicroscopy

adding lateral resolution to X-ray spectroscopy helps to characterize samples in, e.g.:

biology

materials science

semiconductor surfaces

polymer science

surface chemistry

magnetism

it combines

high spatial resolution with full chemical characterization

Acknoledgement:

Many thanks to:

M.Kiskinova, B. Kaulich, L. Gregoratti, A. Barinov, F. Nolting, Th. Schmidt, S. Heun, H. Ade, H. Marbach, R. Imbihl