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Primer in Special Relativity
Helmut Wiedemann
Stanford University

Relative Motion
Physical phenomena appear different for observers in different systems of

reference. Yet, the laws of nature must be independent of the reference system.
In classical mechanics we transform physical laws from one to another system
of reference by way of the Galileo transformation z* = z — vt assuming that one
system moves with velocity v along the z-axis of the other system.

As the velocities of bodies under study became faster, it became clear that
this simple transformation must be modified. Maxwell's equations result in
a velocity of electromagnetic waves equal to the velocity of light and do not
contain any reference to a specific system of reference. Any attempt to find
a variation of the "velocity of light" with respect to moving reference systems
failed, most notably Michelson's experiment. The velocity of light is finite and
it's value is

c = 299,792,458 m/s

Lorentz Transformation
Any new transformation laws must include the observation that no element

of energy can travel faster than the speed of light. The new transformation
formulae combine space and time and are for a reference system moving with
velocity v along the z-axis with respect to the inertial system.

X =

r =

cb*

z~pzct = >y(z-pzct)

= j(ct-pzz),

where j3z = vz/c, 7 = 1/y 1 — fi2
z and quantities designated with * are measured

in the moving system L*. These Lorentz transformations can be expressed
in matrix formulation by
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Electromagnetic fields transform also in a special way between reference systems
in relative motion:
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For example, a pure static magnetic field in the laboratory system £ becomes

an electromagnetic field in the electron system £*. An undulator field, therefore,
looks to an electron the same as, for example, a laser field and both interactions
can be described by Compton scattering.

Lorentz Contraction
Characteristic for relativistic mechanics is the Lorentz contraction and time

dilatation, both of which become significant in the description of particle dy-
namics. To describe the Lorentz contraction, we consider a rod at rest in £
along the ^-coordinate with the length Az = z<i — z\. In the system £* this rod
appears to have the length Az* = z^ — z^ related to the length in the C—system
by

Az =

or
Az =

The rod appears shorter in the moving particle system by the factor 7 and is
longest in it's rest system. For example, the periodicity of an undulator Ap

becomes Lorentz contracted to Ap/7 for relativistic electrons.

Time Dilatation
Similarly, we may derive the time dilatation or the elapsed time between

two events occurring at the same point in both coordinate systems. From the
Lorentz transformations we get with z^ = z\

At = t2-tl = 7 (^

or
At =jAt*.

As a consequence, high energy, unstable particles, like pions and muons, live
longer in the laboratory system as measured.



Space-Time

Imagine a light flash to originate at the origin of the coordinate system
(xj y, z). At the time t, the edge of this expanding light flash has expanded with
the velocity of light to

Z 2
+ 2 /

2 + Z
2 = C V .

Applying a Lorentz transformation from the laboratory system £ to a system
£* gives

demonstrating the invariance of the velocity of light.

4-Vector
Minkowski combined space and time to form a four-dimensional space-time

coordinate system. The components of the space-time 4-vector are

s=(x°,x\x2
}x

3)=(icb1x1y1z),

where the time component has been multiplied by c to give all components the
same dimensions.From the World time defined as

we get

cdr = Jc2 (dtf - (dx)2 - (dy)2 - (dz)2

a relation we known from the Lorentz transformation as time dilatation dr =
^ dt. We may now form a velocity 4-vector or the 4-velocity

ds di

We may also derive the 4-acceleration

_ dv d / ds
a = -r- = 7~

or in component form a = (ia*, aXi ayi az) we get ax = 72aa?+74/3a; Q3 - a), where
a is the ordinary acceleration. The other components can be obtained in a
similar way.

An important 4-vector is the 4-momentum or energy-momentum 4-vector
defined by

cp = (iE)cpX)cpy,cpz).



Invariance to Lorentz Equations
Remarkably, the length of a 4-vector, or the product of any two 4-vectors

is Lorentz invariant. The proof is straight forward calculating the length of a
4-vector in one system and applying a Lorentz transformation. Particularly,
calculating the length of the momentum we get

-E2 + c2p2
x + c2p2

y + c2p2
z = -me2,

where we have set EQ = me2 for a particle at rest. The rest mass of a particle
is Lorentz invariant. From this we get

From the velocity 4-vector we get —c2 + x2 +y2 + z2 = —c2 or the invariance
of the velocity of light. Light travels at the velocity c independent from the
system of reference. That is the reason why the flash of light discussed earlier
expands like a sphere seen from any system of reference.

Energy - Momentum

Einstein tells us that the total rest energy of a particle is

EQ =mc2
}

and the relativistic factor

Momentum and total energy of a particle are connected by

and the velocity is

Combining the last two equations we get

cp = /3E.



Spatial and Spectral Distribution of Radiation

Although the acceleration and the creation of radiation fields is not periodic,
we may Fourier-decompose the radiation pulse and obtain a spectrum of plane
waves

where the phase is defined by

#* = LJ* [t* - I (n*xx* + njJjT + n*Mz*)] .

The phase of an electromagnetic wave is proportional to the product of the
momentum-energy and space-time 4-vectors and its length is therefore invariant
under Lorentz transformations. We have

tu* [c£* — nxx* — 7i*y* — w*£*] = uj[ct — nxx — nyy — nzz]

between the phases as measured in both the laboratory £ and the particle frame
of reference £*. To derive the relationships between similar quantities in both
systems, we use the Lorentz transformations noting that the particle reference
frame is the frame, where the particle or radiation source is at rest. We use
the Lorentz transformations to replace the coordinates (x*,y*,z*}ct*) by those
in the laboratory system. Since the space-time coordinates are independent
from each other, we may equate their coefficients on either side of the equation
separately.

Spectral distribution
In so doing, we get from the ct-coefficients for the oscillation frequency

which expresses the relativistic Doppler effect. Looking parallel to the di-
rection of particle motion n* = 1 the observed oscillation frequency is increased
by the factor (1 4- /3Z) y « 2 for highly relativistic particles. The Doppler effect
is reduced if the radiation is viewed at some finite angle © with respect to the
direction of motion of the source. In these cases n* = cos 0*.

Spatial Distribution
Similarly, we obtain also the transformation of spatial directions

nx =

7(l+/?,n;)

n, —

These transformations define the spatial distribution of radiation in the lab-
oratory system. In case of transverse acceleration the radiation in the particle



rest frame is distributed like cos2 6* about the direction of motion. This distri-
bution becomes greatly collimated into the forward direction in the laboratory
system. With nf + nf = sin2 9* and nl+nl = sin2 6 « 6 2 and n* = cos 6*
we find

O
~ 7(1 + /?cos 6*) *

In other words, radiation from relativistic particles, emitted in the particle
system into an angle — w/2 < 0* < w/2 appears in the laboratory system highly
collimated in the forward direction within an angle of

7
This angle is very small for highly relativistic electrons like those in a storage

ring, where 7 is of the order of 103 — 104.


