Kristina Djinovic-Carugo

Structural Biology Laboratory Sincrotrone Trieste

e-mail: kristina.djinovic@elettra.trieste.it tel: +39 040 375 8059

Literature

- Crystallographic methods and protocols, Methods in Molecular Biology vol 56, edited by C. Jones, B. Mulloy, M. R. Sandersson (1996)
- Marcomolecular crystallography, Methods in Enzymology, vol 276-277, edited by C.W. Carter and R.M. Sweet (1997)

Literature

- X-ray structure determination (A practical guide), G.H Stout and L.H. Jensen) (1989)
- The principles of Protein X-ray crystallograph, J. Drenth (1999)
- Crystal structure analysis A primer, J.P.
 Glusker, K.N. Trueblood (1985)

Outline

- X-ray sources, why SR
- Crystallisation of proteins
- Structure determination methods
 - multiple isomorphous replacement (MIR)
 - multi-wavelenght anomalous dispersion(MAD)
 - molecular replacement (MR) (only mentioned here)

From protein in solution to its 3D structure

- Crystallisation
- X-ray diffraction
- Solution of phase problem (MIR, MAD, MR)
- Building 3D model and refinement

Final result

Sources of X-rays

- Wavelength: 1 Å (10⁻¹⁰ m)
- Generators sealed tube or rotating anode
 - targets Cu, Mo
- Synchrotron radiation

Generators

In high vacuum; working potential and current: 50 mA 60 kV

- Applied power is limited
- Limited intensity of X-rays
 - rotating anode

Generators

Valovna dolzina (Å)

Transitions L - K: K α 1, K α 2 Transitions M - K: K β 1, K β 2

Synchrotron radiation

- High flux
- High collimation/brilliance
- Tunable
- Time structuire of beam allows time resolved experiments

Synchrotron radiation for structural biology

- Flux: macromolecular crystals are typically weak diffractions
- High collimation/brilliance: small crystals
- Tunability: solution of phase problem with MAD or SAS
- Time structure of beam: time resolved experiments for study of enzymatic reactions

Crystallisation

- First Protein crystals
 - 1840: Haemoglobim from earth worm
 - grown from blood between two cover slides
- Modern approach
 - techniques of recombinant DNA
 - pure protein sample

Crystallisation

- Solubility of protein sample depends on
 - pH
 - T
 - ionic strength
- Solubility is precisely defined by the above conditions

Crystallisation - saturated solution

- Protein in solid phase is in equilibrium with the solution
 - Non of the phases is gaining in concentration
 - Thermodynamic force is maintaining the system in equilibrium

Crystallisation - oversaturated solution

- Concentration of solute is higher that its solubility at given conditions
- Chemical system is not in equilibrium
- Thermodynamics is forcing the system towqrds equilibrium
- Crystals grow from OVERSATURATED solutions

- Oversaturated solution can exist because:
- activation energy is needed for start of precipitate formation

Free E

Crystallisation strategies

- high number of parameters multidimensional space
 - systematic search
 - sparse-matrix
 - investigation of 100-200 different conditions at different temperatures (20C, 4C)

Crystallisation - vapour diffusion

- Hanging drop
- Sitting drop

11.11.11.11.11.11.11.11.

Crystal Gallery

- Multiple isomorphous replacement
- measure apppludes of diffracted beams
- determination of phases indirectly
- MIR is very often used *ab initio* method for determination of phases for macromolecules

- 1954 Perutz *et al.* solve structure of heamoglobin
- For macromolecules: proteins, DNA, RNA
- Basic principle: binding of heavy atom to (Hg, Pt, U, Pb, etc) the macromolecule which does not change structure upon this treatment

MIR -isomorphous derivative

- ideal isomorphous derivative: the only difference between the native and derivative is the bound heavy metals atoms(s)
- Approach: 'soak' of protein crystal in solution containing heavy metals

MIR -isomorphous derivative

- presence of heavy atom(s) introduces differece to the diffraction pattern with respect to the diffraction pattern of the native crystal
 - differnecs are in INTENSITIES of diffcirated x-rays
- when heavy atom binds isomorphously the dirrerenced between the two samples are

MIR - approach

- X-ray data collection of native crystals
- preparation of heavy atom derivative
- X-ray data collection of derivative
- determination of heavy atom positions (Patterson)
- refinement of heavy atom coordinates and phase calc.
- calc. Of electron density
- building and refinement of atomic model

- Fph, Fp, Fh: structure factors
 - derivative, protein, heavy atom

- Fph = Fp + Fh
- knowing the position of heavy atom(s) we can calculate:
 - amplitude Fh
 - faze αh
- F = A + iB; $A(hkl) = \Sigma f_i \cos[2\pi(hx_i + ky_i + lz_i)]$; $B(hkl) = \Sigma f_i \sin[2\pi(hx_i + ky_i + lz_i)]$

- Measured:
 - amplitudes Fph
 - amplitudes Fp
- Calculated:
 - heavy atom positions and from them
 - amplitude: Fh
 - faze αh

- $Fph^2 = Fp^2 + Fh^2 + 2FpFhcos(\alpha p \alpha h)$
 - amplitudes: Fp, Fh, Fph
 - fazes: αh, αp
- $\alpha p = \alpha h + \arccos[(Fph^2 Fp^2 Fh^2)/2FpFh]$
- $\alpha p = \alpha h + / \alpha'$

- we can not determine the phase unambigously with only one derivative:
- $\alpha pa = \alpha h + \alpha'$
- $\alpha pb = \alpha h \alpha'$
- αpa in αpb represent structures A and B
 - A is a mirror image of B
- proteins are chiral molecules (L-amino amino acids)

- we need at least two derivatives for correct
 - determination of phases

having determined αp for each diffracted beam
 hkl we can calculate electron density

 $\rho(xyz) = (1/V_c)\Sigma\Sigma\Sigma Fp(hkl)exp[-2\pi i(hx + ky + lz)]$

• $Fp = Fp \exp(i\alpha p) = Fp \cos\alpha p + iFp \sin\alpha p$

MIR - often used havy atoms

- Pt, Au, Hg, Pb, Th, U, Re, Os, Ir, Xe
- Pd, Ag (small atomic number) for small proteins
- J iodinated tyrosins, modified nucleic acid bases (J, Br)
- lantanides (La-Lu) can substitute Mg or Ca
- noble gasses (Xe, Kr

Determination of heavy atom positions:Patterson

- Patterson 1934
- Fourier synthesis with
 - coefficients: AMPLITUDEs²
 - fazes: 0.0
- $P(u,v,w) = (1/V_c) \Sigma \Sigma \Sigma [F(hkl)]^2 \exp[-2\pi i(hu + kv + lw)]$
- $P(u,v,w) = (1/V_c) \Sigma \Sigma \Sigma [F(hkl)]^2 \cos[2 \pi(hu + kv + lw)]$
- Convolution of electron density
 - $P(u,v,w) = \rho(xyz) \rho(x+u,y+v,z+w)dxdydz$

Patterson function

- has N² -N maxima + maximum at the origin
- distance of maxima from the origin depends on the length of the inter-atomic vector
- intensity of maxima depends on the priduct of the atomic numbers of t atoms i and j:

Patterson function

- Symmetry: centrosymmetric
 - vectors AB, BA
- possible only 24 space groups: loss of information when going from F(hkl) to
 [F(hkl)] without using phase

Patterson function with one heavy atomom

- P2₁ space group
- x,y,z; -x, y+0.5, -z
- Maxima in Pattreson maps corresponding to the vector between two symmetry related atoms will be at:

•
$$u = x - (-x) = 2x;$$

•
$$v = y - (y + 0.5) = -0.5$$
;

• w = z - (-z) = 2z

Patterson function with one heavy atomom

- u = 0.25; y = 0.5; w = 0.44
- x = u/2 = 0.25/2 = 0.125
- z = w/2 = 0.44/2 = 0.22
- Heavy atom position:
 - x = 0.125
 - y = anything
 - z = 0.22

MIR - determination of heavy atom positions

- $P(u,v,w) = (1/V_c) \Sigma \Sigma \Sigma [F(hkl)]^2 \exp[-2\pi i(hu + kv + lw)]$
- $P(u,v,w) = (1/V_c) \Sigma \Sigma \Sigma [F(hkl)]^2 \cos[2 \pi (hu + kv + lw)]$
- difference Pattersonova method
- Coefficients:
- (| Fp | | Fph |) ²
- most intense maxima will correspond to interatomic vectors bewteen heavy atoms

MIR - determination of heavy atom positions

- atom 1: 0.25 0.11 0.32
- atom 2: 0.1 0.35 0.15
- maximum v Pattersonovi map at:
- 0.25 0.1; 0.11-0.35; 0.32-0.15
- 0.15 -0.24 0.17

MIR - final step - calc. Of electron density

 having determined αp for each diffracted beam hkl we can calculate electron density

 $\rho(xyz) = (1/V_c)\Sigma\Sigma\Sigma Fp(hkl)exp[-2\pi i(hx + ky + lz)]$

• $Fp = Fp \exp(i\alpha p) = Fp \cos\alpha p + iFp \sin\alpha p$

Structure, scattering factor

- structure factor F(h) is a vector sum of the contribution to that reflection of diffracted amplitude from every atom in the unit cell
- intensity of diffraction from each type if atom is determided by scattering factor *f*
- scattering factor *f*
- is proportional to the number of electrons and inversely proportional to the angle of diffraction 2θ

Scattering factor

calculated

Normal scattering

• when incident λ is distant from the natural frequency of oscillation (ω) of the electron

- elastic (Thompson) scattering
 - *f* is real and positive quantity

Anomalous scattering

- when incident λ is close to the natural frequency of oscillation (ω) of the electron
 - electrons execute resonat vibrations
 - diffraction occurs from such a resonant entity
- scattering factor *f* is a complex quantity
 - $\Delta f'$ dispersive component (real)
 - $i\Delta f''$ Bijvoet component (complex)
- anomalous scattering

Anomalous scattering

• $f^{anom} = f_0 + \Delta f' + i\Delta f'' = f' + i\Delta f''$

Anomalous scattering: Fhkl

- Fw = resultant of scattering from atoms without dispersion
- f' and Δf'' scattering factors from each atom with dispersion

Anomalous scattering: Fhkl

- Fw = resultant of scattering from atoms without dispersion
- f' and Δf'' scattering factors from each atom with dispersion

Anomalous scattering: Friedel law

- F⁺ and F⁻ would be equal in magnitude in the absence of Δf'' vector
- although magnitudes of ∆f'' are equal for Friedel mates
- phase of the Δf'' is always π/2 ahead of all other diffracted vectors
- Friedel mates are not equal

Bijvoet and dispersive signals

- Bijvoet signal can be derived by measuring the differences in intensities of Friedel mates at suitably chosen λ
- magnitude f' is the same for Friedel mates
- f' signal can be used by measuring
 intensities of a given replection at suitably
 chosen pair of λ and determining the
 differences between those measurments

Phasing with MAD

- Karle formulation
 - algebraic approach
- MAD as a special case of MIR

Phasing (as special case of MIR)

- native (reference dataset), e.g. PI
- PK, RE considered as derivatives

Phasing (as a special case of MIR)

- for each walevength *i*
- dispersive term $\Delta f_i' = f_i' f_1'$ is the source of isomorphous differences between $F(\lambda_i)$ and $F(\lambda_1)$
- within one wavelenght
- f_i, 'gives rise to Bijvoet differences between
 F(hkl) and F(-h, -k, -l)

Anomalous scatterers for phasing

- primary choice based on wavelengths emitted by synchrotrons
- 0.35 3.5 A
 - subset of atoms in the range 29 (Ca) 47 (Ag), and 50(Sn) to 92(U)
- effectively 0.7 1.7 A due to experimental difficulties

Anomalous scatterers for phasing

- heavy atoms
 - metals (either introduced or part of the native enzyme)
 - Br, J, Kr, Xe
- Se intruduced into the overexpressed protein via Se-Met
 - auxotroph strains of *E.coli*
 - extensively used method with high rate of success

WHY MAD

- excellent phasing vehicle in combination of
 - use of third generation syncrotrons and
 - techniques of molecular biology for preparation of Se-met labelled samples

 theoretically no problems with nonisomorphism

Choice of Wavelenghts

- maximizing the Bijvoet signal (PK)
- maximizing the dispersive signal (PI, RE,

Experimental requirements

- tunable X-ray source
- energy resolution (bandpass) < 10⁻⁴
 - Wavelengths of PK and PI
 - precise position of the absorption edge depends on the chemical environment of the element
 - the position of the absorption edge must be determined on the crystal itself
 - by measuring the fluorescence of the element

Diffraction experiment

- differences due to anomalous scatterer are often small
- carefull measurments of intensities
 - set the counting statistics in function of expected anomalous signal