Fa i
I\f wl iN T E AN AT ONMLTI A3 DM ENERGY AGENOY !
! v] !
‘ \é).\\ “l/ { UNITED NATIONG LLUCATIONAL, S ENTIFTO AND CULTURAT ORGANIZATION ! 3
s

[INTERNATIONAL CENTRE FOR THEORETICAL IPHYS10S

$H100 TRIESTE (ITALY) - P.O.B. (80 - MIRAMARFE - STRADA COSTIERA 11 - TELEPHONES: 2242R1/2/8 45 4
CARLI: CENTRATOM - TELEX 460392-

SMR/90 - 2

COLLEGE ON HMTCROPROCES$SORS:

TECHNOLOGY AND APPLICATIONS IN PHYSICS

7 September - 2 October 1981

MPL COOKBOOK -
A guide to MNPL

Ue. RAICH

CERN, Geasva
Switzerland

These are preliminary lecture notes, intended only for distribution to
participants, Mieaing or extra copies are available from Room 230.

1. ABSTRACT

This guide was written for the Mi¢roprocessor College in Trieste
1981, It will give anybedy interested an aid in getting acquainted
with the HMotorela MPL Cross-Compiler which is installed on the
Trieste CDC machine. It is not intended to be a replacement of
the Motorela MPL reference manual but rather +o be an aid to make
that manual more understandable. This is achieved mainly by means
of sample programs. To discover all the possibilities of +the
compiler it is zecommended to study the Motorola MPL referencea
mnanual. But if you never used this language before then you will
hopefully find all the information needed to run successfully your
first MPL program. The sample programs axe very simple but they
will show you how the compiler works.

2. INTRODUCTION

2.1 u MPY, PR ?
A MPL program consists of the following parts:
1. The statement: "PROCEDURE OPTIONS (MAIN)"
2. Declaration part starting with "DECLARE"
3. Program statements
4. "END" statement
Before explaining these parts in detail, let us first try to urite

2 simple program. Notice that the above oxder of the four parts is
maintained.

H OUR FIRST PROGRAM: PROGRAM ADD

'

PROCEDURE OPTIONS(MAIN) 'ALLOCATES STACK AND TEMPORARY STORAGE

BECLARE NUMI1,NUMZ,SUM 'RESERVES SPACE FOR VARIABLES
SUM=NUMT+NuM2

$ SWI TREETURNS CONTROL TO MONITOR

% FCB 0
END

2.2 HHII_QQIE_IHE_HRL—SQHI1Lx3—ﬂLKE—QQI—QI—QnB—BBQERAnﬁz

The compiler translates cur programs into a sequence of assembler
statements which can be passed to the Motoxrela assembler. cnly
the assembler produces an executable program. The woxk of the
compiler can be seen if we refer +o the listing produced from our
small program (see listing 1). Aftex the standard Motorola headar
we find our MPL statements preceeded by a "¥"., The translation is
the essembler code directly following the MPIL statement. Notige
that the declaration paxt reserves space for the variables needed
and that "PROCEDURE OPTION (MAIN)" sutomatically allocates an ares
for the stac¢k and temporary storage (variable T).

-2 -

2.3 RACTERS "!" anNp "s¢" LISTING 1

These two characters have the following special meaning: Addition program
1. The "!" character is wused to indicate a comment. A1l
characters in a line following the "!" are intexpreted as a NAM MPLR1OQ .
comment and +the MPL compiler ignores them. If <the first *MOTOROLA SPD, INC. OWNS AND IS RESPONSIBLE FOR M68MPL
character in a line is a "!™ the whole 1line is considered x COPYRIGHT 1975 AMD 1976 BY MOTOROLA INC.
to be a comment (see first lines in listing 1. x ‘
' * MOTOROLA'S M6800 MPL COMPILER, RELEASE 1.2
2. A "$" in the first position of a line indicates that the %
line is an assembler statement which must not be translated x)
but will be passed to the assembler unaltered. This allous £33 COMPILED WITH MPL VERSION %.2
MPL and assembler statements to be mixed. Very time : 00001 1 . -
critical parts of a pregram may ‘thus be written in *00002 ' OUR FIRST PROGRAM: PROGRAM ADD
.agsembler code while the rest of the program is written in *00003 Y :)
MPL. :) *00004 PROCEDYRE OPTIONS(MAIN) "'ALLOCATES STACK AND TEMPORARY STORAGE
T RMB 40 '
Zo00 LDS #T+39

*G0005 DECLARE NUM1,NUMZ,SUM YRESERVES SPACE FOR VARIABLES
JMP 2001 - .)
NUMt RMB -1
- NUMZ RMB |

suM RMB 1
00006 : SUMSNHUMt+NUM2
Z001 LDAA NUM1

ADDA NUMZ

STAAL SUM

SWI _ 'RETURNS CONTROL TO MONITOR

FCB 0 :
£00009 END
ZFFF EQU X

EXD

-3 - -4 -

Tabla 1 gives you all the possible variahle types and the number
of bytes needed to store thenm.

3. DECLARATIONS

As you c¢an see from listing 1 the compiler reserved 1 byte for
each of the variables NUM1,NUMZ2,SUM. In this chapter we will see
how to declare addresses, character strings, arrays etc. which
cause more than 1 bhyte to be reserved.

variahle type parameters space needed
[bytes]
The general form of a declaration is the following:
flevell name [{occurence)] {variable typel [(m)] A
) YE [Cm,n)} 1. no specification| BINARY (1) assumed 1
{DEFINED name] [BASED) IINITIAL]
2, BINARY (m) m: numbexr of bytes; m=1,2 1 if m=1
2 if m=2
. J
3. BIT (wm) m: number of bits : 1
Here everything given in brackets is optional m=1-8
i 4. DECIMAL (m,n) #: number of digits in total 1-12

n: number of digits after
decimal point

3.1 SINPLE VARIABLES (NOT ARRAYS) R=1-12; n=1-12

Here we can forget about "level” and “occurence™ since these 5. CHARACTER (m) m: number of ASCII chazacters t-256
values are only used in conjunction with declarations of data m=1-256

structures. DEFINED, BASED and INITTIAL will be eXplained later.,

so we stay with a form: 6. LABEL used in conjunction with

¢omputed GOTC statement only

DECLARE example: DECLARE O
namel [type) {tm) 1, NUM1 BIKARYC1), -

[C(m,n)}
name2 [type} [(m) 1, NUMZ BINARY(1),

[(m,n}]
namel [type..... PROD BINARY(2),

Table 1: Variable types

namen [typel [(m)} -] FPPRINT DECIMAL(S,2)

[tm,n)]

which is the most commonly used type of a declaration. Notice the

comma after each declaration except the last one and don't forget
them in youz program!tt!}

- f -

3.2 SYMBOLIC NAMES FOR VARIABLES AND LABELS

Symboli¢ names in MPL consist of up to 6 alphanumeric characters,
the first one being alphabetic. You should try to use meaningful
narmes hecause this makes your programs much more readable.

The following names must not be used because they are reserxved
Keyuwords for either the MPL compiler or the assembler:

F T
A GE OR
AND g0 ORIGIN
B GOTO FROC
BASED GT PROCEDURE
BEGIN IAND RETURN
BIT IEOR SHIFT
BY IF SIGNED
CALL INIT T
PCL INITIAL THEN
DECLARE IOR TO
DEF LABEL WHILE
DEFINED LE X
Do LT Z0o00
ELSE MAIN 2001
END NE .
EOR NOT .
ER OPTIONS . ZFFF

All 4 character names starting with Z are not allowed.

Table 2: Reserved Keywords for the compiler or assembler

1. "DEFINED" is used to redefine a variable. Thig we can only
apply on the last variabla declared on the same level (see
also chapter on declarations of data structures). This
statemant should however bhe avoided since it makes the
programs hard to debug.

2. "BASED" allows you to allocate storage space dynamically in
a predefined large memory space. It is used only in
conjunction with pointers. This rather advanced feature of
MPL is not treated in this manusl.

3. TINITIAL (value)” gives +the wvariable +he initial value
specified in the bhracket. In the case of axxays sevaral
initial values may be assigned. INITIAL is very £fraquently
used,

Notice that the dec¢imal variables ars

that you can use £oxr caloulations but only ASCII character strings
used for printing messages! So a multiplication o¢f two decimal
numbers will result in pure nonsense.

Az a summary of this section we will improve our first program

1

!PROGRAAM TO SHOW DECLARATIONS OF SIMPLE VARIABLES
' :
PROCEDURE OPTIONS(MAIN?

DECLARE

NUM1 BINARY(1) INITIAL(Y4),NUMZ,SUM,
D CHARACTER(S5)

$ PRINT EQU #1000
D="SUM =*
SUM=NUM1+NUMZ
CALL PRINT(D,SUM)

% SWI

$ FCB 0

' END

This program adds &% to the contents of NUMZ and stores the result

into memoxy leocation SUM. The varishble D is loaded with the
character string: (delimited by quotes) ‘SUM =' and tha
suhroutine PRINT prints the result in the form: SUM =14 (if MUM2

was hex. 10), Notice how "INITIAL" has been translated.

3.4 CHARACTER STRINGS, ADDRESSES, HEX VALUES

Character strings and addresses are indicated by single quote
signs. S0 D="SUM =' assigns the character string "SUM =" to the
variable D (see listing 23J. PTR="NUMBER' will load PTR with the
address of NUMBER (PTR has to he declazxed as BINARY (2) of
course) . Double quotes are used to indicate hex nunbers e.qg.
PTR="FFFF".

LISTING 2

Declaration of simple variables

NAM HMPLR10
*MOTOROLA SPD, INC. OWNS AND IS RESPONSIBLE FOR M68MPL

* COPYRIGHT 1975 AND 1976 BY MOTOROLR INC.
b

* MOTOGROLA'S M6800 MPL COMPILER, RELEASE 1.2
X

*

XX COMPILED WITH MPL VERSICN 1.2

x00001 !

*00002 TPROGRAM TO SHOW DECLARATIONS OF SIMPLE VARIABLES
*00003 ! :
*0G0004 PROCEDURE OPTIONS{MAIN)
T RME 40
zZ000 LDS #T+39
*00005 DECLARE
JHP Z001
X00006 NUMJI BINARY(1) INITIALC4)},NUMZ,SUNM,
NuM1 FCB &
Nun2 RMB 1
suM RMB 1}
*00007 D CHARACTER(S)
D RMB §
Z001 EQU =
PRINT EQU #1000

*00009 D="SUM ="
LDX #Zu2Eg
STX T
LDX #D
LDAB #5
JSR ZFOA
*00010 SUM=NUMI1+NUM2
LDAR NUM1
ADDA NUM2
STAA SUM
*00011 CRLL PRINT(D,SUM}
JSR PRINT
BRA Z002
FDB D
FDB SUM
Z002 EQU =
SuI
FCB 0
*00014 END
ZY42E FCC 5.5uUM =
PAGE

ZFOR STX T+2 XXX EQUAL SIZE MOVE ¥x=x
ZFOAT LDX T

LDAR 0,X

INX

- 10 -

STX T

LISTING 3
LDX T+2
STAA 0,% Array declarations
INX
STX T+2
DECH Fon1 NAM HPLR10
ENE "ZFOR *MOTOROLA $PD;, INC. OWNS AND IS RESPONSIBLE FOR M68MPL
RTS x COPYRIGHT 1975 AKND 1576 BY MOTGROLA INC.
ZFFF ERU % * -
END x MOTOROLA'S MGB00 MFL COMPILER, RELEASE 1.2
*
x
: kX% COMPILED WEITH MPL VERSION 1.2
3.5 E TION ES £00001 1 " R
) *00002 'PROGRAM TO ADD TWO 2ZX2 MATRICES
3.5.1 Yectors and Matricgegs *x00003 !
*00004 OPT
Let us first consider simple mathematical arrays. Here the T i:gczﬁgkﬂ PTIONS(MAIN)
declaration has exactly the same form as in the case of simple Z000 LDS #T+30
variables esxcept that "eceurence” has te be specified.

*00005 DECLARE

JMP Z001
*00006 ARRA(C2,2) BINARY(Z) INITIAL(™I1FF"™,"™10","3541","0"),
ARRA FDB S$I1FF

"Occurence” gives you the number of elements you have in your data
structuxe, e.g. VECTOR (3) has 3 elemants, MATRIX {(2,2) has &
elements. The type of each element is specified in the same manner

as for simple variables. As an example we rewrite our program to FOB %10
allow the addition of 2 (2,2) matrices in double precision FDE $3541
(BINARY(2)). MNote that +the matrices are stored in the following FDE %0
order: ARR(1,1), ARR(1.2), ARR(Z,1). ARR(Z,2). X00007 ARRB(2,2) BINARY(2) INITIAL(7,8,9,10), !'VALUES ARE DECIMAL
ARRB FDB 7
FDB 8
FDB 9
v FDB 10
' *00008 ARRC(2,2) BINARY(2)
:PROGRIH TO ADD TWO 2X2 MATRICES ARRC RME 8§
PROCEDURE OPTIONS(MAIN) *00009 ARRC{ 1, TI=ARRACT, 1)+ARRB(1,12
DECLARE . Z001 LDAA ARRA+1
n " ow L] " owaw LDAB ARRA
ARRA{(2,2) BINARY(2) INITIAL(T1FF","10","3541","0"), ADDA ARRB+1
ARRB(2,2) BINARY(2) INITIAL(7.,8.9,16), 'VALUES ARE DECIMAL ADCE ARRB
ARRC(Z,2) BIMARY(2) STAE ARRC
ARRCU Y, 1)=ARRA{ I, 1)+ARRE(1,1) STAA ARRC+H1
ARRC(1,2)=ARRA{1,2)+ARRB(1.2)
ARRCCZ, 1)=ARRAC2, 1J+ARRB(2, 1) *00010 DA lR;:§§(1.2)-lRR5(1.2)+ARRB(1.2)
ARRC(2,2)=ARRA(2,2)+ARRR(2,2) LDAE ARRA+2
: :g; o ADPDA ARRB+3
END ADCB ARRB+2
STAE ARRC+2
STAA ARRC+3
*¥00011 ARRC(2,1)=ARRA(Z, 1)+ARRB(2,1)
LDAR ARRA+S
LDAB ARRA+Y
ADRDA ARRB+5
ADCB ARRB+4
STAB ARRC+i4
STRA ARRC+S

12

*00012 ARRC(Z,2)=ARRA(C2,2}+ARRB(2,2)
LDAR ARRA+7
LDAB KRRA+6
ADDA RRRB+7
ADCB ARRB+6
STAB ARRC+$
STAR ARRC+7

SWI

Fca 0
*00015 END
ZFFF EQU %

END
3.5.2 G ta str ur
As you saw in the matrix addition program (listing 3) each alement
in the matrix was of the same typbe namely BINARY(2). Suppose you
want to write a command string interpreter 1like the one that is
implemented in the development station. Such a program may be

efficiently written with the aid of tables ¢f the following form:
Command string Jump adress Parameters needed

HELP ADDHLP 000090008 row 1

DECO ADDDEC 110000008 rou?
EPRO ADDEPR T10000008

CONV ADDCON 0001000038

ete.

Here the first ¢olumn are ASCIT strings., the second are addresses
and the thizd of type BIT(n), where n is the number of parametexrs
allowed. If a bit is set the corresponding parameter has +to be
given. To implement such a structure we must study the concepts
of Mlavels™. You can decompose your data stucture into several
substructures, in about the same way as you decompose a big
program into a main progzam, a subrxoutine, a sub-subroutine etc.,
and you declare the types of these substructures. Level 1 is the
main routine in a big program by analogy, here it is the entire
structure. Level 2 is the first level subroutine, here the rows.
Level 3 is a subroutine called by a subroutine, hera the
individual elements. This means that ¥You can assign a type to an
individual elament in a rouw using Tlevel®. It is not pessible
however to change the type within a column. (The second element
in'a row is always of type BINARY(2)). As you see our example is
still a rather primitive one since in fact the elements of the
rous could itsalf be a data structure. The declaration for the
command string table (CSTRTB) of the example is done in listing 4
fox 20 zrous, Don't be puzzled that the compiler allocates 134
bytes to PAR . This isg just the s¢pace needed £for the whole
structure when the number of bytes already allocated (4 for COMSTR
and 2 for JPADDR) are substracted from ZOX(H42+1)=140,

- 13 -

HAM
*MOTOR

LB B 3

x
EX

*¥00001
*00002
*00003
*x0000H
T

zZ000
*00005

*00006
CSTRLB
*00007
ROW
*00008
COMSTR
*00009%
JPADDR
*00010
*00011
¥oo0012
*00013
PAR
Z001

*00016
ZFFF

LISTING &

Declaration of general data structures

MPLRI10O
OLA SPD,

INC. OWNS AND IS RESPONSIBLE ¥OR M68MPL
COPYRIGHT 1975 AND 1976 BY MOTOROLA INC.

MOTOROLA'S M680C MPL COMPILER, RELEASE 1.2

COMPILED WITH MPL VERSION 1.2

'DECLARATION OF K COMMAND STRING TABLE
1

PROCEDURE OPTIONS(MIIN)

02 ROW(ZO),

39

1
B,

COMSTR CHAR(H),

!COMHAND STRING

JPADDR BINRRY(2), !JUMP ADDRESS

PAR

BIT(8})

!PARAMETERS TO BE GIVEN

ICOMMAND STRING INTERPRETER

1
EMB 40
LDS #T+
DECLARE
JMP 200
01 CSTRT
EQU X
EQU x
03
REMB &
63
RMB 2
03
1
!
RMB - 134
EQU x
SHI
FCB 0
EQU =
ENRD

END

14 -

4. ARITHMETIC AND LOGIC STATEMENTS

Since the handling of arithmetic and loegic statements in MPL works
like in any other high level lanquage (like Fortzan etc.) and the
description of these statements in the MPL reference manual is
rather understandable I will only give a list of all +the
possibilities and show their use by an other example.

r b
- unary -

SHIFT arithmetic shift or rotate
IAND logical AND
IOR legical OR
EOR legical exelusive OR

- * mueltiply
4 divide
+ add
- subtract

Table 3: Arithmetic and logic statements

In the above table the order of priority is maintained, seo that in

an arithmetic expression the unary -~ is executed first and the
subtracticen last. The oxrder of cemputation can be changed using
brackets.

Only the SHIFT opefation needs Ffurther explanation:
It has the form:

WORD SHIFT K

where WORD is a3 variable of type BINARRY or BIT and -38<K<& gives
the number of bits that WORD will be shifted. If K is poesitiv it
Wwill be shifted left otherwise it will he shifted right. If WORD
is of type BINARY the SHIFT will be translated into an arithmetic

shift instruction if WORD is of type BIT the SHIFT will become a
rotate instruction,

The logical expressions are:

EQ egual
NE not equal
GT greater than
GE greater or equal
LT lower than
LE lower or edqual
L []
Table 4: Logical expressions

These logical expressions are used in conjunction with control
statements like "IF", "DO WHILE" atc. which are explained in the
chapter on contxol statements. To see how one uses arithmetic and
logic expressions, we will write 2 program that converts a binaxy
number into ASCII characters which you c¢an print on the terminal.
Such a routine is of course also used in the ROSY monitor.

]
'CONVERSION BIMARY-ASCII
1

PROCEDURE QPTIONS(MAIN)

DECLARE WORD,STR1,STR2
STR1=WORD IAND "FO"
STR1=STR1 SHIFT -4
STR2=WORB IAND “OF"

'MASK OFF LOW NIBBLE
'SHIFT TO BIT! 0-3
'MASK OFF HIGH NYBBLE

r

!IF STR1 IS LOWER OR EQUAL 9 WE HAVE TO ADD "30" TO GET
!THE CORRECT ASCII VALUE

'IF IT IS A...F WE HAVE TO ADD "u1".

1

IF STR1 LT 10 THEN STR1=STR1+"30"™ ELSE STRI=STRI+™41"
L}

'THE SAME THING HAS TO BE DONE FOR STR2 OF COURSE

1 .

IF STR2 LT 10 THEK STR2=STR2+"30" ELSE STR2=STR2+"41"
$ T SWI

% FCB 0
"+ END

- 17 -

NAM
*MOTOR

*x

x

¥

*

x

XXX
*00001
00002
x00003
*0000Y
T

2000
*00005

WORD
STR1?
STR2
*00006
2001

*00007

*x00008
*00009
¥00010
*x00011
*00012
*x00013

0001y

*00015
¥00016
*00017
Z003

LISTING 5

Conversion binary-ASCII

MPLRIiOQ
OLA SPD, INC. QWNS AND IS RESPONSIBLE FOR M68MPL
COPYRIGHT 1975 AND 1976 BY MOTOROLA INC.

MOTOROLA'S M6800 MPL COMPILER. RELEASE 1.2

COMPILED WITH MPL VERSION 1.2
1

!CONVERSION BINARY-ASCII
H

PROCEDURE OPTIONS(MAIN)
RME 40
LDS #T+39
DECLARE WORD,STR1,STR2
JMP Z001
RMB 1
RMB 1
RMB 1
STRT=WORD IAND "FO"
LDAA WORD
ANDA #240
STAX STR1
STR1=STR1 SHIFT -4

'MASK OFF LOW NIBRLE

!SHIFT TO BIT?! 0-3
ASRA
ASRA
ASRA
ASHA
STAR STR1
STR2=WORD IAND "oOF" MASK OFF HIGH NIBBLE
'
'IF STR1 IS LOWER OR EQUAL 9 WE HAVE TO ADD "30" TO GET
THE CORRECT ASCII VALUE
'IF IT IS A...F WE HAVE TO ADD "y1".
1
LDAR WORD
ANDR #15
STAR STR2
IF STR1 LT 10 THEN STR1=STR1+"30" ELSE STR1=STR{+"41"
LDAA STR?
CMPA %10
BGE Z003
ADDA #ug
STAR STR1
BRA Z004
L]
!THE SAME THING HAS TO BE DONE FOR STRZ OF COURSE
1
LDAR STR1

- 18 -

ADDA #565

STAA STRI . 6. CONTROL STATEMENTS (&0OTQ IF DO)
" e T N ! - i il - o : . — - "w ll. . .

:03018 ingTRZRLT 10fTHEN STRZ=STR2Z+7307 ELSE STRI=STRI+"41 : Every high level language incorporates ‘instructions which allou to
2ok . & An.i?,z e . . change the order of executien of the statements. These e¢orrespond

igin z;gs : . te JMP and BRA statements in the Motorxola 6800 assembler.

ADDR #43 -

STAA STR2

BRA Z0Q07
Z006 LDAAL STR2 6.1 LABELS

ggi: :322 A feature which is peculiar to MPL 4is the fact that there axist

007 EQu = different sorts of labels. One can put a lahel on an executable
z SKT) statement where the label name has to be follousd by a colon
G -

x00021 res END ¢.9.7 LOOP: A=A+
ZEFE g:g * but one can .alse declate - a variahle ¢f “type "LABEL" in the

declaration paxt -and agsign a value to it either by an INITIAL
statement oxr by an aszignment statement 6f the form: :

]]
5. THE "ORIGIN" STATEMENT : VAR="LoOP
n n o : ! | " i . .) :

The ORIGIN statement snables you to lead your pregram o any T i Thanr s ey, e o e
location in memory you like. You just write:QRIGIN "xxux" ,wuhere Y . " g P
kxxx is a hexadecimal address and the whole progran follouwing the ' i -
ORIGIN statement will be loaded %to the address specified. The The control statements are thoroug;y explalngﬂ I the MNPL

. . reference manual so I will only give a compilation of +he
ORIGIN statement can occur anhywhere in your program. Note howevex possibilities and an other sample program
that your program . will then not be relocatable any moze. It is B prog *

therefore recommended (especially for subroutines written in MPL)
to specify the load address when xunning the pusher.

6.2 IHE GOTO STATEMENT
There exist 3 different types of GOTO stataments:

1. Unconditional GOTO:
GOTO LAB where LAB is a label on an
executable statement

2. Assigned GOTO:

GOTO VAR where VAR is a variahle of type
LABEL
3. Computed GOTO:
GOTO (x1,%2,x3...xn)},I Here the program continues at label
GOTO VAR(I) ®i or VAR(I),

depending on the value of I.

GOTO's to 2 1label should only be used for constructing "missing"
structured constructs,

- 20 -

6.3 IHE IF AND DO STATEMENTS

A conditional branch instruction can be obtained with the
statement:

IF L THEN $1 [ELSE 52)
where S1 and $2 are executable statements and L is a logical
expression. S1 and S2 can also he blocks of statements grouped

together using a DO statement of the form:

Do

END
The other forms of DO statements:
DO I= M1 TOo M2 [BY M3}
DO WHILE L

or a mixture of these:
DO T=M1 TO M2 [BY M3} WHILE L

are used to program loops. For an example of the use of these
contyol statements see listing 6

7. PROCEDURES

7.1 IHE MAIN PROCEDURE

In every program uwritten until now we used the ttatement:
PROCEDURE OPTIONS(MAIN) which reserves space for temporary storage
of variables and stack. The program itself immediately follous
this scratchpad and the space needed #for the variables. It is
housver often desirable +to place the stask and the scratchpad
into RAM whereas the program resides in EPROM. This can be done
writing:

PROCEDURE OPTIONS'MAIN,STACKNAME)

If a stackname is given the Programmer has to zeserve workspace
using the varjable T and he has to allocate the stack. In this
case DECLARE has to precede the PROCEDURE statement because STACK
has to ba declared before it is used. See in listing 6 how this
uoxks.

7.2 SUBROUTINE PROCEDURE
7.2.1 Setting up and c¢alling subroutines

It is a very good pzactice to wrxite Programs in blo¢ks or modules
whexe each meodule performs a certain task. This is usually done by
means of subroutines. Ir listing 2 such a scheme was already

used: We called the routine PRINT +o output the result of the
addition program. The character string "SUM =" and the result SUM

was transferred to the subroutine. The general form of a
subroutine call is: .

CALE SUBNAM{X1,X2,.X3....%n)
or CALL SUBNAM<X1,%2,X3>
where X1....Xn are parameters to be transferzed. To set ué a

subroutine we wzrite:

SUBNAM: PROCEDURE(X1.,X2,X3..... Xn)

SUBNAM: PROCEDURE<X1,%2,X3>
in our example:
FRINT: PROCEDURE(CHAR,RESULT)

(refexr to the section on parameter transfers bhelow for more
details). '

Every MPL subroutine must contain the instruction "RETURN" to
return contrel to the calling program.,

You can eithexr compile the subroutines together with the main
program uhexe you just write one block after the othezr and then
you comnpile everything in one geo. or you can cempile subreutines
independently in whic¢h ocase the temporary storage variable T has
to be allocated using: T RMB Y40 oxr DECLARE T(4g) and you have
te tell the main program where it can £ind the subroutine via an
EQU statement or via an external reference when using relgcatakble
code (see listing 6). In the case where all programs are compiled
togaether the storage space £for the variables is common to all
programs which means that a variable name declared in one program
may net be used for an other variabhle in an other program. On the
other hand parameter transfers are not necessary.

7.2.2 Parametey transfers

There are 3 ‘different methods te transfer parametexs to
Subroutines:

1. Transfer using MPU registers: CALL SUBNAM<X®1T,X2,33>

In this case only 3 parameters c¢an be +transferred (X1 and
X2 in the ac¢gumulators A and B, and X3 in the index
register X). X1 and X2 must be 1 byte variables and X3 must
he of type BINARRY(2). Hull parameters are allowed. 50 you
may write: CALL READPR<,,PRESET> if you only want to
transfer the 2 byte variable PRESET.

2. Transfer with parameter list: CALL SUBNAM(X?!,X2,....¥%n}

The compiler translates this into a JSR followed by the
parameters,0f course a jump to the first executable
assembler statement has +to precede the parameter list
(refer to listing 6 to see how the compiler manages this).

3. Transfer via enxternal references

This is not provided in the compiler itself but it can he
done using the XDEF and XREF assembler directives. HNote
however that vyou can only transfer parameters from a MPL
program te an assembler program in this way. (XDEF must he
provided in the MPL program). Since every variabhle used in
a MPL program must be defined by a DECLARE and this
automatically assigns memory space to it, vyou cannot use
~variables defined hy the XREF directive in MPL subroutines.

7.2.3 Linkage of MPL programs

The MPL Cross compilex does not support the linkage facility! It
is however possible to link MPL program using the XDEF and XREF
assembler directive.

Program 6 shows you how to use control statements and subroutines.

Suppose an eaxMpgriment uses 2 TPCs and 2 ADCs and a dats word
consists of 6 bits of data and 2 address bits which identify the
instrument liKe this:

bit nrx. 7 6 5 4 3 2 1 0
it i0 d5 d4% 43 42 d1 do

Then the source listing <¢f a program to £ill a spectrum for each
of the four instruments might look as follows:

'READOUT PROGRAM FOR A LITTLE EXPERIMENT
!SHOWS THZ USE OF CONTROL STATEMENTS AMD SUBROUTINES
YINCLUDING PARAMETER TRANSFER

L) .

DECLARE

TYPE(Y4) LABEL INITIAL(TDCA,TDCE,ADCA,ADCE},
TDCI1C(64),TDC2(64),ADCH(6H), ADC2LGY),

PRESET BINARY(2),I,INSTR,DATA,T(40),STACK

'

PROCEDURE OPTIONS(MAIN,STACK)

1

% XREF GETDAT
k3 XDEF DATA
$READPFR EQU $3000
$INITIA EQU %3100
% XREF CLEAR
$ XREF BSPLAY

'CLEAR SFECTRA

¥

DO I=1 TO 64
TDCI(I)=0
TDC2(I)=0
ADC1(I)=0
ADC2(I}=0

END

'

!INITIALIZE EXPERIMENT
1

CAL
CAL
1

'GE
e
1

CAL

L INITIA

L RERDPR<,,PRESET> 'READ PRESET FROM TERMINAL

TDAT PU&S DATA INTO THE MEMORY LOCATION RESERVED FOR DATA BY THE
L PROGRAM. THE LOCATION IS KNOWN BECAUSE OF THE XDEF STATEMENT.

L GETDAT

DO WHILE TDC1(DATA) LT PRESET

.INSTR=DATA IAND "Co"

[

EXD
-CAL
END

'MASK OFF DATA BITS AND CALCULATE
INSTR=INSTR SHIFT-6 'INSTRUMENT IDENTIFICATION
INSTR=INSTR+1

DATA=DATA IAND "3F"

NEXT WE CASE ON THE INSTRUMENT IDENTIFICATION BITS
TO JUMP TO THE PART OF THE PROGRAM WHERE THE CORRESPONDING
SPECTRUM IS FILLED

GOTO TYPE(INSTR)
TDCA: TDCT(DATA)=TDCI{DATA}+1
GOTO ENDCAS
TDBCB: TDC2(DATA)=TDC2(DATA)+1
GOTO ENDCAS
ADCA: ADCT{DATA)=ADCI(DATA)+1
GOTO ENDCAS
ADCB: ADCZ(DATA)=ADC2(DATA)+1
ENDCAS: CALL CLEAR !CLEARS ALL INSTRUMENTS

L DSPLY(TDC1,TDC2,ADC1,ADC2)

25

LISTING 6

Contzol statements and subroutines

NAM MPLR1O
*MOTORQLA SPD, INC. OWNS AND IS RESPCNSIBLE FOR ME8MPL

* COPYRIGHT 1975 AND 1976 .BY MOTOROLA INC.
*

* HOTOROLA'S M6800 MPL COMPILER, RELEASE 1.2
*

*

x KX COMPILED WITH MPL VERSION 1.2

X00001 !

*0000Z 'READOUT PROGRAM FOR A LITTLE EXPERIMENT
*00003 !SHOWS THE USE OF CONTROL STATEMENTS AND SUBROUTINES
*00004 YINCLUDING PARAMETER TRANSFER

'

*00006 DECLARE
*00007 TYPE(4) LABEL INITIAL(TDCA,TDCB,ADCA,ADCB),
TYPE FDB TDCA

FDE TDCB
FDBE ADCA
FBB ADCH

TDE RMB 64

TDhCZ RMB 64

ADC1 RMB 64

xg0008 IDCH(64),TDC2(64) ,ANDCIL6H),ADC2{6Y4),
ADC2 RMB 64

PRESET RMB 2

T RMB 1

INSTR RMEB 1

DATA RMB .

T RMB 40

*00009 PRESET BINARY(23,I,INSTR,DATA,T(40),S5TACK
*0001¢0 !

STACK RMB 1

x000%1 PROCEDURE OPTIONS(MAIN,STACK)}

Z000 LDS #STACK

*00012 1
XREF GETDAT
XDEF DATA

READPR EQU %3000
INITIA EQU $318¢
XREF CLEAR
XREF DSPLAY
*p0019 !
*00020 !CLEAR SPECTRA
*0002¢1 !
*00022 DOSI=1 TO 64
LOAR 31
Z0o01 STAR X
*00023 TDCIC(I)=0
LDX 4#TDCH

LDAB I

ASRA

J3R ZFIF ASRA

CLR 0,X : STAA INSTR
¥00024 TDCZ(I)=0 00041 ITNSTR=INSTR+1

LDX #Tbc2z ' INC IMNSTR

LDAB I 00042 DATA=DATA IRMD ™3F"

JSR ZFI1F X00043

CLR 0,X xgoguq KEXT WE CRSE ON THE INSTRUMENT IDENTIFICATION BITS
*00025 ADCI(I)=0

.

X00045 TO JUMP TO THE PART OF THE PROGRAM WHERE THE CORRESPONDING
LDX #AaDC1 00046 SPECTRUM IS FILLED
LDAB I ¥00047 !
JSR EFIF LDAR DATA
i CLRE 0,X ANDR #63
*00026 ADC2{I)=0) STRA DATH
LDX #ADC2 ¥000us GOTO TYPE(INSTR)
LDAB I) : "LDX #TYPE
‘JSR ZFIF . - " USR ZFOY4
CLR 0,X) . .. BRA *45
LDAR I : ' ' .. FCB 2
CMPA #64 . FDB INSTR
BCC Z002 . LDX 0.,X
INCA) . JMP 0,X%
JMP Z0O01 x00049 TDCA: TDCT1(DATAY=TDCI1(DATA)+1
*00027 END TDCA LDX #TDhCI
00028 T] LDAB DATA
*00029 'INITIALIZE EXPERIMENT JSR ZFI1F
*00030 ! - IHNC 0,X%
*00031 CALL INITIA , 00050 GOTO ENDCAS
Z002 JSR INITIRA JMP ENDCAS
*Q0032 CALL READPR<,,PRESET> 'READ PRESET FRONM TERMINAL 200051 TDCB: TDCZ(DATA)=TDC2(DATA)+1
LDX PRESET TDCB LDX #TDC2
*00033 ! LDAR DATA
*00034 IGETDAT PUTS DATA INTO THE MEMORY LOCATION RESERVED FOR DATA BY THE JSR ZFIF
¥00035 !MPL PROGRAM. THE LOCATION IS KNOWN BECAUSE OF THE XDEF STATEMENT. Ne 6.%
*00036 ! . *00052 GOTO ENDCAS
JSR READPR i JMP ENDCAS
*¥00037 CALL GETDAT. *00053 ADCA: ADCI{(DATA)I=ADCI1(DATA)+1
JSR GETDAT ' ADZA LDX $#ADCH
*¥00038 DO WHILE TDC1¢(DATA) LT PRESET LDAB DATR
Zo03 LDX #TDCI JSR ZFIF
LDAB DATA INC 0,X
JSR ZFI1F *0005y : GOTO ENDCAS
LDAA 0.X% JMP ENDCAS
CMPA PRESET+] XQQ055 ADCE: ADC2(DATA)=ADCZ(DATA)+1
BGE Z005 ADCB LDX #ADC2
*0Q039 INSTR=DATA IAND "c¢o" !MASK OFF DATA BITS AND CALCULATE LBAB DATA
LDAR DATA JSR ZF1F
ANDA #1192 INC 0,X
STAR INSTR xX00056 ENDCAS: CALL CLEAR YCLEARS ALY, INSTRUMENTS
*00Qu0 INSTR=INSTR SHIFT-§ TINSTRUMENT IDENTIFICATION ENDCAS JSR CLEAR
ASRA JMP Z003
ASRA ¥00057 END
R %00058 CALL DSPLY(ZDC1,TDC2,ADCT,ADC2)
ASRR

2005 JSR DSPLY

- 27 - - 28 -

BRA Z006
FDB TDC
FOB TDC2
FDB AaDC?
FDB ADC2

¥00059 END

Z006 EQU ¥ RTS
PAGE ZF1F2 DECH

ZF0Y STX T+6 **¥* COMPUTE SUBSCRIFPTS ZFEF STY T+6
PSHA ADDB T+7
PSHB STAB T+7
TSX BCC ZF1F)
ING T+6

ZFIF1 LDX T+6
RTS

ZFFF EQU *
END

INS
INS
RTS
SPC 2
ZF1iF BNE ZF1F2 **% ADD TO INDEX *%%
DEX

.
L

LDAR
ZFO&1 PSHA
STX T+2
LOAB 2,X
LDX 3,%
LDrA O0.,%
BNE *+7
SBA
LDAB #SFF
BRA *+6
DECR
* JSR ZFuy4
ADDA T+7
ADCB T+6
STAB T+6
STAR T+7
ZFO42 LDPX T+2
INX
INX
INX
PULA
DECA
DECA
DECA
BNE 2ZFOou"
LDX T+6
PULE
PULA
RTS)
ZF4Yy PSHB UNSIGNED SUBSCRIPT MULT
LDAB #8
PSHB
TSY
CLRB
RORA
ZF441 BCC *+4
ADDB 1.X
RORB
RORA
DEC O,X
BNE ZFug1

- 29 - - 30 -

8. POINTERS

Pointers are wused when handling arrays where the array elements
themselves are data structures. Let us take the declaration of the
command string interpreter in the chapter on array declarations:
The elements of the command string table are the rows and each row
consists of 3 elements. Pointexs allow you to address the elements
of the rous. Pointers are also useful when handling linked lists.
Since these are houever rathexr advanced Progxamming techniques
which we will not use in our eHxercises we will skip this chapter
completely.

9. HOW TO USE THE MPL COMPILER ON THE TRIESTE CDC

Before running a MPL program, several translations have +to be
perfoxrmed. First you have to compile the MPL scurce program using
the MPL compiler. This produces a £ile suitable as input file to
the assembler. You then assemble this file to get a Cufom object
file. This Cufom file you may Jlink to other Cufom files or
libraries to get a new Cufom file, which you finally translate to
Motozrola S-format suitable foxr down-line loading. This final
translation is done by the pusher. Of course you have to get the
MPL compiler, the MPL library, the assembler, +the linker and the
pusher into vyour local file hase before using these programs, ’

If you want to compile only, you have to type:

GET,.M&68MPL, MPLLIB/UN=MPTOOLS (gets the MPL compiler
(MA6BMPL) and the HPL
libraxry (MPLLIB) into
your local file base)

M68MPL,MPLSRC, ASMSRC, MFLLIB (starts compilation)

where MPLSRC: Name of MPL scurce preogranm
ASHMSRC: Kame of output file froem the
MPL compilex

(these two names have to be
given)

This sequence of commands will translate your MPL souxce file into
an assemblexr souxce file and print error messages if you used
incorzect MPL statements. If no errors are found you may proceed
with assembling ,linking etc.

Since it is
tranglations, a
steps needed.

To use this program you simply type:

quite a complicated
system program

story to do all
was written +to perform

these
21l the

.|

GET, PROCFIL/UN=MPTOOLS (gets the program

"PROCFIL™)

BEGIH»HICHPL;»S=HPLSRC.IL=LNRH,B=BHAN.ALIB=HRCLIB.CLIB=CUFLIB]

where MPLSRC: Name of MPL source program

LNAM: Name of file where the
assemblex listing and the
listings of the linker and of
the pusher will be stored.

Tf ommited the file is called:
LISTING.

BNAM: Name of output file fxrom the
pusher. This file will be doun-—
line loaded and executed.

If ommited the file is called:
LOADMOD.

MACLIB: Name of assembly language source
file to ba inserted into the
compiled MPL program.

MACLIB has to be specified

only if a statement:

s - INSERT MACLIB

is used in the MPL code

(rathexr advanced featura
normally used to insert macro
libraries)

CUFLIB: Name of Cufom library
to be linXed to the HMPL
prograin.

Everything given in brackets is optional.

This sequence o0f commands will get the necessary system PYOgIams
into your local file base and it will then compile, assemble, link
and push your program. S50 you get a file (BINKAM) ready fox
dewn-line loading after execution of these commands .

- 33 -

CONTENTS

1. ABSTRACT
2. INTRODUCTION . . .

What is a MPL program? .
What does the MPL compiler make out of our pxogxams?
The characters "!" and "s" e e

3. DECLARATIONS

Simple variables (not arxays) .

Symbolic names for va:;ahles and 1abels e e e

The usa of "DEFINED™, “BASED" "INITIAL™

Character strings, addzesses, hex values, ., .

Declaration of data structures C e e e
Vectors and Matrices,, . .
General data structures

4. ARITHMETIC AND LOGIC STATEMENTS
5. THE "ORIGIN™ STATEMENT < v v
6. CONTROL STA!ENENTS (GOTO IF DO) . .
Labels ., . . - e e e .
The GOTO statement
Tha IF and bO statements
7. PROCEDURES L
The main procedure
Subroutine procedure . . .
Setting up and calllng suhzout;nes
Parasmeter transfers . T
Linkage of MPL progzrams . .,
8. POINTERS L

9. HON TC USE THE MPL COMPILER ON THE TRIESTE CDC

- ii -

20
21

22
22
22
22
23
24
31

32

LIST OF LISTINGS

Listing

1.

2.

Addition program

Declaration of simple variables

Arzay deeclarations

Declaration of general data structures
Conversion binary-ASCIIX

Contrel statements and subroutines

- iii -

12

1

26

LIST OF TABLES

Iable

1. Variable types

2. Reserved leywords for the ¢ompiler oxr assembler
3. Arithmetie and logic statements

4. Logical expressions

_iv—-

15

16

