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Navigating the Folding Routes

Peter G. Wolynes, Jose N. Onuchic, D. Thirumalai

To fold, a protein navigares with remark-
able ease through a complicated energy
landscape as it explores many  possible
physical configurations. This fear is begin-
ning to be quantitatively understood by
means of statistical mechanics and simpli-
fied computer maedels (1), Folded

drunk playing golf, would take practically
forever. A flar energy landscape (or golf
course) is very unreulistic, but many vears
ago Bryngelson et al. pointed out thac a dif-
ficult search alse arises on a rugged energy
tandscape that might describe proteins (1.

maining fixed in one of many strucrures,
unahle to rcconﬁgure to the lowest cneryy
crystal statc. At temperatures far above o
glass transition, a rough landscape is casily
traversed. At low temperatures, where the
ground state has a significant chance tw be
thermally occupied, the search to find the
deepest valley out of the many on the glassy
energy landscape is incredibly slow. For a
protein to be kinetically foldable, there
must be a sufficient overall slope of the en-
ergy landscape so that the numerous valleys
flow in a funnel roward the nacive structure,
Wirh such a slope, native scructure cle-
ments are significantly more stable

proteins are marvels of molecular
engineering and it is hard to avoid
thinking that all of rtheir complex
structural features play a role in
their folding through an obligate
multistep mechanism. A unique
folding pathway, if it exists, could
he elucidated with classical chemi-
cal experiments. A newer view
holds that in the carlier stages a
protein possesses o large cnsemble
of structures. The problem is not o
tind a single route but to churacrer- =
iz¢ the dynamics of the ensemble
through a statistical description of

the topography of the free-energy
landscape. Folding is easy it the
landscape  resembles o many-di-
mensional tunnel leading rhrough
a mvrind of pathways to the native
structure. Only g few parameters
should ke needed to characterize
statistically the ropography of and
routes Jdown the folding funnel.
Using experimental Jdata, Onuchic
et al. have estimated the exrent,
ruggedness, and slope of the tolding
(2}, Similar paramerers
characterize the enerey Landscape E

funnel

.. - E
ot sinple compurer models of pro-

L

Beginning of helix formation and collapse

bt

Entropy

Molten globule
states _

Transition state
region Q=06

Glass transition Q = 0.71

Discrete folding
intermediates

Native structure

than expected by chance. Thus,
the global energy minimum (na-
tive structure) s seill chermeody
namically stable above rhe glass
rransition temperature, where ki-
netic barriers for escaping glassy
traps  (misfolded  structures)  be
come oo large, That the inrerc-
tions of a kinetically toldable pro-
tein must have fewer conflices than
typically expecred is known as the
“principle of minimal fruseration.”
Minimizing frustration or the racio
of glass o folding temperatures is
cquivalent to maximizing the “sta-
bility gap” berween the narive
state and  disordered  collapsed
structures measured in unirs of rhe
ruggedness. The quantitative ver-
of the minimal [rustration
principle has heen used toinfer en-
crey functions useful for structure
prediction {3) and o design pro-
reins in machina (4). Manv simu
Lations of simple madels have con
tfirmed the principles of the eneray
landscape analysis (3), mcluding o
recent exhaustive studv of -2
short sequences (6).

Onuchic et al. look e renl pro-

S10M

ST
(.

reins. These models of self inter-
acting necklaces ot beads, often on
Lattices, tnck most of the details of
real proteins, bur eatablishing
quanritative  correspondence
rween the landscapes of computer
models and real proteins mukes it
possible to wse simulations o un-
Jerstund tolding kinerics.

The extent of a protein enerey Lndscape
i+ huge. Betore folding, cach residue v
toke on abour 10 ditferent conformarions;
thus, a 60 residue protein can be in anv ol
IO wrares. An unguided search, Tike a

be-
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sentbe ard a glass tranaimion reqion where discrele oathways

Such o lndseape can arize because different
seaments of o rvpical hereropolymer come
thar the
many resulting tulividual moeractions will
not murually contlice and thereby frus
trate” minimizing each other. This Land
seape will be ragued with mony deep valleys
corresponding to local minima. Transicat
rrapping in these vallevs slows the explora-
tion of rouges towand the most seible native
struccure. This erapping resembles the way a
alass when cooled, re-
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ated. The ‘ract.or of rative coriacs correcty made,
sated for each collection of stales

rein folding by developing o b ot
corresponding states (21 Studyving
phase transicions reaches rhar boil

g bsovery similar tor svatenmis as
ditterent as warer and merlune be-
cause each svstem can be mapped
onto the same par of a universal
phase dingram. Similarly, Onochic
et al. aroue that dhe derailed local
structural features like the hvdrocen bonds
of helices and side chain packing von be
riken into account by tfinding appropriae
values of the seatistical paramerers chare

rerizing the free encroy landscape. Hlelix
tormation and collapse solve parr of the
tolding scarch locally =0 as to renormuatize
the cttective number of deorees of frecdom
and chanege the details of sinele reeon:
Higuration events. Nevertheless, rhe global
feacures of the Lindscape of o real protein
can be mapped onto those of o bead model,
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Fig. 2. (Left) Ribbon diagram for the native structure of a 96-residue helical srotein that corresponds with a
46-residue bead model simulated by Thirumalai and Guo {7). (Right) A discrete native-like intermediate
whose rearrangement is the slowest process in their simulation.

A theory of helix formation in coellapsed
polymers relates the measured amount of
helix in the collapsed states to the confor-
mational entropy associated with different
chain topologies. The extent of the renor-
malized configurational energy landscape
for a 60-amino acid helical protein is only a
bit larger than that for models containing
only 27 beads. At the folding temperature,
using thermodynamics, the resulting en-
tropy estimate yields the slope of the folding
funnel. Finally, measurements on motiens
in the collapsed denatured proteins gquantity
the ruggedness and with the conformational
entropy leads to values of a glass transition
temperature. These estimates suggest real pro-
teins resemble bead models in which only
three kinds of residues are used to encode
sequence in that both have a folding to the
glass cransition temperature ratio of 1.6.

A simulation of a three-letcer code, 27-
mer lattice model gives a picture ot the fald-
ing mechanism and the folding funnel to-
pography of a 60-amino acid helical pro
tein. A caricature of the multidimensional
funnel accurately representing the entropy
and scructurad similariey involved in the
search is shown in Fig. 1.

The funnel illustrates thar a fast-tolding
helical procein has a collapsed molten glob-
ule hand of states with roughly one-quarter
of the number of native contacts correctly
made. As one proceeds down the funnel,
bath entropy and  energy  Jdecrease, but
when roughly three-fifths of the native con-
tacts are made, rthe incomplete compensa-
tion of entropy decrease by enerpy decrease
leads to a very modest harrier (~3kpT)
Folding is thereby slowed by o thermody-
namic horrleneck. The transition state or
hottleneck region consists of a large en-
semble of srructures retlecting the mulriple
pathways of protein folding. Afrer this
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bottleneck is crossed, the entropy still de-
creases until discrete kinetic intermediates
appear, most having roughly three-quarters
of the correct contacts. These native-like
but misfolded structures are sensitive to se-
quence mutation. If the thermodynamic
bottleneck is not too narrow and the land-
scape still rough, the search through inrer-
mediates becomes rate-limiting.

A recent oft-lattice study of Thirumalai
and Guo {7) illustrates chis well inte the
tolding of a model with 46 beads. Using the
connection between simplificd bead models
and helical proteins, their simulation is
roughly like that of a 36-residue tfour-helix
bundle protein whose narive strucrure is
shown in Fig. 2. The sequence Jdesign of
their model pives a tolding funnel with a
smaller slope than the fast folders just dis-
cussed. Now trapping in a rather native-like
mtermediare (Fig. 2} becomes a Jdistince,
slow side reaction, while a traction of mol-
ecules follow a more direct nuclearion-like
mechunism with o =mall barrier consisrent
with o finite size sealing estimate.

The correspondence theory puts simala-
tions into direct contact with recenr experi-
ments, Several studies have demonstened
that the Jdiscrete mrermedisies e the re-
tobling of cvtochrome ¢ can entirely Jdisap-
pear upon chaneing an mdividual restdue’s
chemistry (8). [n keeping with the energy
Lindscape theory, these resules show char
the discrete intermediares often found are
an epiphenomenon, their distinetness un-
important when oving o understand how
tolding is ewnded. Intermediates are relics of
the hindscape rugeedness whose features may
tossilize same of the relevanr suiding forces.
Fershi's recent studs of linear free eneray re
lations tor tolding chymotrepsin inhibitor
(9% suggests that different residues are be
tween W oand T0% tolded in the ensemble
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of structures representing the transi-
tion state, reminiscent of the borttle-
neck in the three-letter-code funncl.

The small size of the actual ther
modynamic barrier to folding is per-
haps a bit surprising. Many studies on
long time scales show very large acti-
vation barriers, but the landscape
theory suggests that these arise from
transient trapping. In vivo proteins
are stable by several kzT, so thar
folding may be largely a downhill
run toward the final near native ki-
netic traps followed by u short search
through them, as in many simula-
tions. The near perfect compensation
of entropy by enthalpy in the funnel
sugpeses that proteins behave like fluids
near a critical point. For theoreticians, «
next step is to see how scaling and renor-
malization group ideas might be used to un-
derstand kinetics, especially for larger pro-
teins. A more complete experimental char-
acterization of the dynamics of partially
tolded proteins throughout their phase Jdia-
gram, including very low temperatures and
high pressures (10). is also needed 1o pre-
cisely quantify the glass transition. For ex-
perimentalists, the present perspective abso
shows that the guiding forces act in much
less than a few milliscconds. A new genera-
tion of experiments using lasers to rapidly
initiate folding (11) promises dramatic ad
vances in Jdirect measurement of the pro-
rein’s energy landscape topography.
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Kinetic and thermodynamic analysis of proteinlike heteropolymers:
Monte Carlo histogram technique

Nicholas D. Socci and José Nelson Onuchic
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Using Monte Carlo dynamics and the Monte Carlo histogram method, the simple three-dimensional
27 monomer lattice copolymer is examined in depth. The thermodynamic properties of vanious
sequences are examined contrasting the behavior of good and poor folding sequences. The good
{fast folding) sequences have sharp well-defined thermodynamic transitions while the slow folding
sequences have broad ones. We find two independent transitions: a collapse transition to compact
states and a folding transition from compact states to the native state. The collapse transition is
second-order-like, while folding is first-order-like. The system is also studied as a function of the
energy parameters. In particular, as the average energetic drive toward compactness is reduced, the
two transitions approach each other. At zero average drive, collapse and folding occur almost
simultaneously; i.e., the chain collapses directly into the npative state. At a specific value of this
energy drive the folding temperature falls below the glass point, indicating that the chain is now
trapped in local minimum. By varying one parameter in this simple model, we obtain a diverse array
of behaviors which may be useful in understanding the different folding properties of various

proteins. © 1995 American Institute of Physics.

I. INTRODUCTION

Simple models are one powerful theoretical tool for the
study of complex systems. The idea is to remove ali but the
essentials from the original system which will ideally allow
for a more complete analysis. There is often a trade-off be-
tween the complexity of the model (or how faithfully it rep-
resents the system of interest) and the thoroughness of the
analysis. In the case of protein folding, research has spanned
the entire spectrum from all-atom molecular dynamics with
solvent!~* 1o complete enumeration of simple lattice polymer
systems,™® with many works in between these two extremes.
Naturally the more realistic simulations do not yield results
as thorough as the simpler ones. In the all-atoms simulations
a large amount of supercomputer time is required for runs of
hundreds of picoseconds of a single protein molecule (plus
solvent). In contrast, high-end workstations can be used to
simulate lattice polymers. Many different sequences can be
simulated over a range of temperatures for time scales com-
parable to the folding time. We do not want to imply that one
set of techniques is superior to the other, but rather in study-
ing a system as complex as proteins many different ap-
proaches are necessary. In fact the two limits complement
each other. Simple systems permit detaiied analysis while the
more complex systems allow for contact with real proteins.
Connecting these two timits would allow for a more thor-
ough analysis of real protein systems. Such an analysis has
been recently carried out.”®

In a previous work” we examined the kinetics of a
simple three-dimensional lattice polymer system. This sys-
tem is too large for exact enumeration studies but is still
small enough for detailed analysis. Many studies of lattice
maodels seem to focus either on thermodynamics or on kinet-
lcs, considering each in isolation. However, as previously
shown’ and shown here, a combined approach that considers
both the kinetics and thermodynamics of the same system is
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important in understanding the model in detail. We have de-
termined that there is an important relation between kinetics
(the “‘glass transition”) and thermodynamics (the folding
temperature) in determining whether a sequence will fold or
not, an idea that was advanced by Bryngelson and
Wolynes,'""" and later explored by Leopold and Onuchic.'?
In this work we continue the study of this system, examining
both thermodynamics and kinetics in greater detail.

Some of the earliest work on the thermodynamics of
proteinlike lattice polymers has been performed by Chan,
Lau and Dill.'"* They examined short chains in two dimen-
stons for which it is possible to enumerate all conformations.
This allowed them to calculate any thermodynamic quantity
by simply summing over states. By measuring a variety of
parameters, such as the average compactness, number of
contacts and hydrophobic core, they found a distinct differ-
ence between folding and nonfolding sequences. Although
exact enumeration studies are extremely powerful, they are
limited to small chains, uwsually in two dimensions. In three
dimensions many have studied the 27 monomer system on a
simple cubic lattice which has a maximally compact shape of
a4 3X 3% 3 cube. It is not possible to enumerate all confor-
mations, but it is still possible to enumerate all compact con-
formations (what is often referred to as the cube spectrum)
and then calculate approximate thermodynamics using just
the cube states. '>!¢ However, as we show in this work, care
must be taken in using this technique since the cube states
are not an accurate approximation to the full density of
states; in particular there are many low energy (i.e., thermo-
dynamically relevant) states that are not cubes.

For longer chains, one can use the standard Monte Carlo
technique'’  for calculating  thermodynamic  properties,
Skolnick, Sikorski and Kolinski'®™? use a dynamic Monte
Carlo method to study folding of realistic proteinlike struc-
tures on a diamend lattice. The word dynamic is used 1o
indicate that the move set has been selected in such a way

© 1995 American Institute of Physics
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that the actual time course of folding is as realistic as pos-
sible. Note that this is not necessary for calculating thermo-
dynamic quantities, since it is only necessary that the moves
satisfy  detailed balance. In fact, O'Toole and
Panagiotopoulos?! found that using the dynamic moves for
the three-dimensional cubic lattice system led to sampling
problems. At low temperature they observed a hysteresis for
the average energy. This is probably caused by trying to
sample below the glass transition. This transition was
predicted'® and explicitly shown® to exist in these simple
lattice systems. O’Toole and Panagiotopoulos were able to
circumvent this problem by using a more sophisticated sam-
pling procedure based on the Rosenbluth and Rosenbluth
chain growth algorithm.? They studied chains as long as 48
monomers and have used this technique to study thermody-
namically significant low energy conformations.* Camacho
and Thirumalai have used Monte Carlo techniques 1o exam-
ine the relationship between the folding and collapse tem-
peratures and the effect on the folding time.?*

These previous studies used the standard Monte Carlo
technique. The simulation is run at a given temperature and
various averages are computed. To obtain thermodynamic
quantities for a different temperature, another simulation (at
the new temperature) is performed. However, it is possible to
extract information about temperatures other than the simu-
lation temperature using a technique often called the Monte
Carlo histogram method.™® Using this technique one can
calculate an approximate density of states for the system,
which can be used to calculate any thermodynarnic quantity
of interest over a range of temperatures. Because of the small
system sizes used, we can obtain accurate results aver a
broad range of temperatures. In particular, we can extrapo-
late into the glass region where running normal simuiations
becomes extremely difficult and time consuming. The tech-
nique also facilitates the finding of peaks or zeros of various
thermodynamic functions. It can be used to calcuiate exten-
sive quantities like the free energy or entropy of the system,
which are difficult to extract by the standard Monte Carlo
procedure. One cannot only vary the temperature, but atso
the various parameters in the potential. One can examine
how the system behaves thermodynamically at a range of
parameter values without the need to run new simulations.
This in-depth analysis of the thermodynamics has enabled
us, along with several others, to begin to connect the behav-
ior and properties of these simple model systems with those
of real proteins.”®

I. MODEL AND METHODS
A. Definition of model and dynamics

The model studied was a simple three-dimensional cubic
lattice polymer. All chains were 27 monomers long with two
different monomer types. The potential was a contact inter-
action between monomers that are nearest neighbors on the
lattice (but that are not linked covalently). The energy of a
contact was £, for a pair of the same monomer type and
E, for a pair of different monomers. This model was the

FIG. 1. The three types of moves used in the simulations. The light circles
represent the possible lattice points to which a given monomer can move,
provided that that point is not occupied. In the case of the end and crank-
shaft moves, one of the possible moves is picked at random. Note that the
corner and crankshaft moves are exclusive: A non-end monomer can only
make one or the other depending on the position of its neighbors along the
chain.

same one used in our previous study’ (which can be con-
sulted for a more detailed explanation of the model). The
energy function is

E=N1E1+N”Eu, (1)

where N, is the number of contacts between monomers of the
same type {like contacts) and N, the number of contacts
between monomers of different types.

Although it is easiest to express the energy function in
terms of the £, and E, variables, some properties of the
model are more clearly understood by considering an equiva-
lent set of parameters, £ ,,, and A, defined as follows:

Eng=HE+E), A=(E,~E). 3

£ .. Tepresents the overall drive toward forming contacts or
compacting the chain. If it is less than zero, contact forma-
tion will be favored. A determines the heterogeneity of the
heteropolymer. In the limit that A=0 the model becomes a
homopotymer. In our previous work,” Epeg=—2and A=2,
giving values -3 and —1 for E, and E, respectively.”’ This
insures that the chain collapses rapidly, compared to folding,
and that the minimum energy state is a maximally compact
cube for the sequences considered here. When we say the
chain has folded we mean it is in the native state. This is
distinguished from collapse, which refers to chains that can
be in any compact conformation. The same parameters were
used for part of the results presented here. In addition we
show how the model behaves as these pararneters are varied.

The move set is shown in Fig. 1 and consists of local
one- or two-monomer moves. These moves are the standard
set used in lattice polymer simulations. They are believed to
produce reasonably realistic dynamics (see Refs, 28-31 for
details). For thermodynamics calculations, it is not necessary
to use a move set with this property, and other move sets
have been used.”'*' There are, however, two potential prob-
lems with realistic dynamic move sets: ergodicity and

J. Chem. Phys., Vol. 103, No. 11, 15 September 1995
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glassy behavior. If one is interested only in kinetics, then
these are not really problems bul rather properties of the
model. For thermodynamic calculations, inaccessibility is
not a preblem eithet, since we can consider the definition of
the model to include only the states accessible by the move
set specified (hence it will be by definition ergodic). There-
fore, as long as the minimum energy cube state is accessible
from an unfolded chain, there will be no problems.

The glass transition presents a more difficult problem for
thermodynamic calculations. At low temperatures, the dy-
namics of the system slow down substantially. In particular,
the correlation times become quite large and it takes longer
1o explore conformational space. This gives rise to two errors
in the Monte Cario calculations. First, it takes a long time for
the system to relax, making it difficult to get the system into
thermal equilibrium. This contributes a systemalic error to
the results and can give rise to the hysteresis effect seen in
the previous studies.”*? Second, because of the long auto-
correlation times subsequent samples are no longer statisti-
cally independent of each other. This has the effect of in-
creasing the variance of any observable (and the
corresponding statistical error), The actual variance is given
by

o’icmﬁ ( 142 Tac )0'2, (3)

samp
where o is the usual variance calculated from the samples.
Ta i the integrated autocorrelation time and T samp 18 the
number of time steps between samples (both measured in
units of Monte Carlo steps).™>* As T, iNCreases, longer
simulations are necessary to get statistically reasonable re-
sults. That is, in a simulation of N steps there will be N/ 7,
“effectively independent samples.”* At low temperatures
the time required to obtain enough independent samples be-
comes enormous. One solution is to use a different move set,
such as the Rosenbluth chain growth algorithm.22'?} The
autocorrelation time for this move set does not increase as
rapidly, allowing simulations at lower temperatures. Cur so-
lution instead is to run the simulations well above the glass
transition temperature, and then to use the histogram method
to extrapolate to lower temperatures.

B. Techniques for calculating thermodynamics
quantities

For short enough chains (usually in two dimensions) it is
possible to enumerate all lattice conformations and thereby
calculate the partition function for the system along with any
other quantity of interest."” For the three-dimensional 27
monomer chain, it is not practical35 to enuimerate all confor-
mations but it is possible to enumerate all of the maximally
compact (cube) conformations. One could then approximate
the partition function by just summing over the cube states.
Previous studies have used this method to calculate thermo-
dynamics quantities of this system. [t was hoped that at low
lemperatures this approximation might be reasonable. We
show later that, although it can give rough qualitative results,
using only the cube states leads to appreciable errors.

N. D. Socci and J. N. Onuchic: Analysis of proteinlike heteropolymers

Since exact enumeration is impossible, Monte Carlo
sampling is used for calculating thermodynamic quantities,
The usual technique runs the simulation at a given tempera-
ture, collecting samples to determine thermal averages. The
process is repeated for several temperatures to get the aver-
ages as a function of temperature. There are several draw-
backs to the standard Monte Carlo procedure. Calculating
extensive variables like the free-energy or entropy is diffi-
cult. Also, if one wants to find peaks or zeros of a given
quantity (like the specific heat peak, to identify the transition
temperature), one must scan over a range of temperatures to
located the critical value.

It is possible to extract more information from a single
Monte Carlo run than just the thermal averages at the tem-
perature the simulation was performed. The technique is
called the histogram method or density of states method. It
has a long history and it has been rediscovered recently by a
variety of authors.”?%*~ The actual Monte Carlo sampling
algorithm itself is unchanged. But instead of just calculating
thermal averages, one keeps track of the number of times a
specific energy is encountered in the simulation; i.e., an en-
ergy histogram is calculated. This histogram, #(E,T), mea-
sures the probability of energy E occurring at temperature T.
It is equal to the thermal average of the density of states:

n(E)e 5T
= 4
h(E,T") ZT) (4)
where Z(T') is the partition function at temperature 7"
Z(T')=2, n(E)e BT, (5)
E

and n(E) is the density of states for energy E (the number of
conformations with energy E). The Boltzmann factor k g has
been set equal to 1 and T’ is the temperature of the simula-
tion. One now has the density of states up to a multiplicative
factor:

n{EY=h(E,T)e"T'Z(T", (6)

where Z(T') is the unknown multiplicative constant. For in-
tensive quantities, thermal averages are calculated using

S E)n(EYe BT
Sen(E)e FT

(HiT)=

EE({IE)]_‘{E.TJ)E—E/T+E!T'
EEh(E,T' )e—EiT+E.fT'

%)

Note, Z(T"} cancels out of the above expression.

If one is interested in calculating extensive quantities
like the free energy or the entropy, it becomes necessary to
determine the constant Z(T") 4 For our system, it is possibie
to calculate this constant and therefore obtain the density of
states. To determine this constant, all we need is the multi-
plicity of any energy state. For example, the sequences we
stidy have a nondegenerate ground state. This means
n(£y)=1, where E, is the energy of the lowest energy
cube. Z(T’) can then be determined and the free energy is
then calculated using F= —T log Z and Eq. {5).
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FIG. 2. Energy histograms taken at high (T= 3.15) and low (T=141)
temperatures. Note that for each histogram there arc regions of energy that
are not sampled at all. In particular at high temperatures the ground state is
not probed while at low temperatures the high energy (unfolded) conforma-
tions are not probed.

There is a limit to the temperature range over which Eq.
(7) is valid. For temperatures too far from the simulation
temperature, the errors in the density of states calculated
from Eq. (6) become significant. At any given temperature,
the system is only sampling a given region of phase space.*!
For example, Fig. 2 shows energy histograms at high and
low temperatures. For the high 7 simulations, the ground
state is never probed, and likewise for the low T some high
energy states are never reached. Consequently, the density of
states will be incorrect for regions not sampled properly (in
fact it equals zero for regions that are never sampled). This
limits the temperature range we can extrapolate from any
sirulation. One needs to monitor the errors in the density of
states. A solution to this problem is the multiple histogram
method. The idea is to use several different simulations and
patch the histograms together. Although there are some
subtleties to this technique, it can be powerful.

For the 27 monomer long polymer used here, a single
histogram gives adequate results over the range of tempera-
tures of intcrest. The reason is that the width of the energy
histograms in general scale as 1/yN, where N is the system
size. As we shall show shortly, the system is small enough to
insure that the histograms are broad and a large region of
phase space is sampled at any given temperature.

lli. RESULTS AND DISCUSSION

Several Monte Carlo runs were performed over a range
of temperatures. Six sequences were used all with a fixed
ratio of monomer types (14 to 13). Table I lists the sequences
and the energy of their native states. To get some idea of
what a typical (i.c., randomly chosen) sequence is and how it
compares to the sequences used in this study, we generated
over 10 000 random sequences (with a 14:13 ratio of mono-
mer types). Approximately 1000 sequences had unigue
ground states. Figure 3 shows a histogram of the ground state
energies for these sequences. The distribution is roughly

S T e v - “ra

TABLE I. The various sequences used in this paper, The last four (005, 006,
007, 013) were generated at random. Sequence 002 was optimized by Sha-
khrovich (Ref. 42). Sequence 004 is a single monomer mutation of 005
(By3—A). Both 002 and 004 have the lowest energies possible for the
potential used and have native states that are completely unfrustrated. £, is
the energy of the native states. These same six sequences were studied in our
previous work (Ref. 9) which examined the kinetics of folding.

Run Sequence Egin
002 ABABBBBBABBABABAAABBAAAAAAB -84
004 AABAABAABBABAAABABBABABABRRB -84
005 AABAABAABBABBAABABBABARARBRE -82
006 AABABBABAABBABAAAABABAABBBB -8
007 ABBABBABABABAABABABABBBABAA -80
013 ABBBABBABAABBBAAABBABAABABA -76

Gaussian. The most probably energy is approximately -76.
One sequence examined (sequence 013) has a typical ground
State energy for random sequences. We did not generate any
of the minimum energy (—84) sequences at random. The two
that we used were both designed: one using a Monte Carlo
algorithm* and the other by mutating a —82 energy se-
quence. The thermodynamic averages of several quantities
(average energy, contacts, native contacts, specific heat, etc.)
were calculated at each of the simulation temperatures. In
addition, histograms of the number of like versus unlike con-
tacts (N; and N,) were calculated. We chose to histogram
these variables instead of the energy directly because these
histograms can be used to extrapolate not only other tem-
peratures but other parameter values (E; and E W

04 | : .
. .
03t :
oy
&
0z f . . 1
)
01} R
' .
ool o

-84 82 80 -78 -78 -74 72 7-70 -68
Energy

FIG. 3. Ground state energy histogram for nondegenerate sequences. 13 563
sequences with a fix ratio of monomer types {14:13) were generated at
random. The energy and multiplicity of the minimum energy cube was de-
termined from exhaustive enumeration of the cube conformations. 1061 se-
quences (7.8%) were found to have unique ground states. The histogram of
ground state energies from these sequences is plotted {solid circles). The
dotied line is a least squares fit of a Gaussian to the data. Note, we did not
find any minimal energy (—84) sequences in our random sample. The total
number of possibie sequences is (73)=20 058 300.
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Time (MC Staps)

FIG. 4. Folding and collapse times versus inverse temperature. Time is in
Monte Carlo steps. The solid lines represent the mean folding time. The
middle dotted lines represent the mean compaction time to any cube. The
bottom lines represent the mean compaction time to a partially compact
conformation with 25 (out of 28) contacts. Error bars are the standard de-
viation of the mean. Note, simulations were run for a set amount of time
Tmar - FOr high and low temperatures some nins were not able to find the
folded (or compact) stare in this time. In these cases 7,,, was averaged in,
so the times shown are lower bounds to the actual mean first-passage times.

Figure 4 shows the folding time and collapse times as a
function of the inverse temperature. The two different col-
lapse times are the time to find the first cube (i.e., a maxi-
mally compact state) and the time to form the first 25 (out of
28} contacts. For high temperatures, the collapse times are
sequence independent (self-averaging). The folding times are
sequence dependent. Similarly, the collapse times below the
glass transition are also sequence dependent. The kinetic
glass transition temperature was defined in our previous
work® as the temperature at which the folding time is half-
way between its minimum and maximum value (the maxi-
mum being determined by the time limit on the simulation
and chosen to be much longer than the fastest folding time).
Both the folding and collapse time show non-Arrhenius be-
havior at high temperatures.

A. Histograms: First- vs second-order transitions

Before using the histograms to calculate the density of
states, we examined them to determine how much of the
phase space is sampled at different temperawres. This (as
mentioned above) determines how far we can extrapolate
from the simulation temperature using the histogram tech-
nique. Figure 5 shows the energy histogram for sequence (02
for several temperatures. Because of the small size of our
system, they are all rather broad, with widths of roughly 30
energy units. Examining the behavior of the curves as a func-
tion of temperature, we see the both first- and second-order-
like behavior of the system. At high temperatures {between 5
and 2, see Fig. 5(a)] a single energy peak moves steadily to
lower values. This is what would be expected from a second-
order-like transition. At lower temperatures [Fig. 5(b)] the
plots now have a bimodal distribution and as the temperature
is decreased there is a shift from one peak to the other. This
is characteristic of a first-order-like transition. If we examine
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FIG. 5. Histograms of energy for several temperatures. The sequence is
number 002. For high temperatures (a) the plots have one peak which moves
to lower energies as the temperature decreases. For low temperatures (b) the
plots are bimodal.

the histograms as a function of the number of contacts, the
same behavior is seen (Fig. 6). At high temperatures the plots
are unimodal and shift to a larger number of contacts (higher
compactness) as the temperature is lowered. This continues
until the maximum reaches roughly 20 contacts around
T=2. At lower temperatures this peak remains fixed at about
20 contacts and another peak forms at 28 contacts. Because
this peak at 28 contacts occurs at low temperatures and when
there is a peak at —84 in the energy histograms, we expect
that it is due to occupation of the native state and the few
other low energy cubes. As the the temperature is decreased
there is a shift in population between the two peaks. This is
consistent with the idea that there are two thermodynamic
transitions: a collapse to compact structures and a folding
transition to the native state. The collapse transition occurs ar
a higher temperature and is second-order-like. The folding
transition 1s first-order-like.

Since the histograms are broad enough we used the
single histogram technique in the subsequent calculations.
Because we are interested mainly in the properties of the
ground state, we chose a temperature which is low enough
for the ground state to be sufficiently populated and yet high
enough so that we sample as much of the conformation space

J. Chem. Phys., Vol. 103, No. 11, 15 Septernber 1995



- AR - A& A A - e -

LEE A ALl Bl &

High Temperatures
020 T i v

015 ¢
g
oy 0.18

0.08 +

0.00
o [ 10 15 20 25 30
Contacts
Low Temperatures
0.20 T T T T
&)
0.15 +
g |
g o.10
0.06 F —— =142
— T=1.26
—m—= Tut.dt
_—— T=1.58 /:
0.00 a s
] 5 10 15 20 25 30

Contacts

FIG. 6. Histograms of contacts for several temperatures, again for sequence
002. The behavior of the plots is similar to that of the energy histograms
(see Fig, 5). As the temperature is lowered a single peak moves from a low
to a high number of contacts until it reaches roughly 20 (a). At this point a
second peak forms at 28 contacts and we see a first order-like transition
between the two (b).

as possible. At a temperature of 1.58 there is a sizeable peak
at the ground state and substantial sampling of the higher
energy conformations. Kinetically it turns out that at
T=1.58 the chains fold most rapidly {(ie., the mean first-
passage time to the folded state is smallest). So we expect at
this temperature that we are moving most rapidly through the
compact conformations. Since this temperature is far enough
away from the kinetic glass temperature (which was previ-
ously measured to be approximately 1 for this system) we do
not have to worry about the problem of long relaxation times
which would make it difficult to equilibrate and would re-
quire a long sampling time to reduce statistical errors. We
calculated the energy autocorrelation function:

(EE,.)—(E)
Cel)= =g —(pyr - ®)

where £ is the energy of the system at time step 7. At long
times this function should have the following form:

Cel(t)~e ¥, 9

sk St

v, (a)

sl gk

1° A N . » R . .
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FIG. 7. Density of states versus energy calculated using the Monte Carlo
histogram technique. Three different sequences are shown (002, 006, 013)
with different ground state energies. The first plot {a) is the full density of
states. The lines are from the Monte Carlo calculation. The points show the
density of states for just the cube conformations (determined by exact enu-
meration). The second plot (b) is 4 blowup showing the low energy region of
the first. At high energies the densities of states are sequence independent
while at low energies they are strongly sequence dependent.

where 7, is the autocorrelation time.™® At the temperature
T'=1.58 we get an autocorrelation time of roughly 500 000
Monte Carlo steps. For all our thermodynamic simulations
we equilibrated our system for 207, and ran it for
1.08% 10° steps (2000 times 7,. which gives roughly 2000
independent samples).

B. Density of states

Using the histograms from the Monte Carlo simulations
and equation 6 the density of states for the various sequences
is calculated. Figure 7 shows the densities for three se-
quences with low, medium and high values for E_,, (002,
006, 013). For comparison the cube spectrum, determined by
exact enumeration, has also been plotted. At low energies the
density of states is different for each sequence. In particular,
sequence 002 has more low energy conformations that are
not cubes as compared to 006 and 013. All three sequences
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FIG. 8. Comparison of the cube spectrum from exact enumeration and from
the Monte Carlo histogram calculation. Error bars are the standard error of
the mean from several Monte Carlo runs. The temperature of the simulations
was 1.58. At this temperature the average energy is —55.5 and the percent
of population in the ground state is 0.2%.

have a notch in their density, but the gap between the notch
and the folded state is larger for sequence 002 than for the
others.

At energies below —60 the densities of states for the
three sequences are roughly the same. This part of the spec-
trum is self-averaging as expected since it should depend on
only the ratio of monomer types. At very high energy there is
considerable scatter in the plots. This is due to the poor sam-
pling of this area of conformational space. In particular, the
curves in Fig. 7 for sequences 002 and 006 do not even
extend to zero energy, indicating that these conformations
are not sampled at all. However, we expect that for low
temperature thermodynamic calculations this will not pose
problems.

As a simple check of the accuracy of the Monte Carlo
histogram technique in this system, we compare the exact
cube spectrum {from enumeration of all cubes) to the cube
spectrum calculated from the histogram data. Remember that
there is an unknown normalization factor, which we deter-
mined by setting the density of states for the lowest energy
cube equal to 1. Figure 8 shows the comparisons. For cubes
Up to an energy of — 52 there is excellent agreement between
the histogram calculation and the exact answer. At high en-
ergies we see the same sampling problem: cubes with energy
greater than — 50 are not sampled at all, since they make up
a negligible fraction of the conformations at these energies.
However, for low temperature calculations the errors should
be negligible.

C. Computing thermodynamic quantities

Figure 9 is a plot of the average energy as a function of
temperature for the same three sequences (002, 006 and 013)
whose densities of states are shown in Fig. 7. At high tem-
peratures (7>>2.5) all their sequences have roughly the same
average energy. At lower temperatures the sequences are no
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FIG. 9. Average energy versus temperature for three different sequences
(002, 006 and 013). The lines are calcuiated using the histogram technigue
from simulations at 7= 1.58; the points are from normal Monte Carlo simu-
lations {i.e., they were calculated from the usuat averaging technique at
several different temperatures). For most temperatures there is excelient
agreement between the two. As we approach the glass temperature the nor-
mal Monte Carlo technique starts to deviate due to the divergence of the
relaxation (equilibration) time of the system.

longer self-averaging. The two sequences with the higher
energy folded states (006 and 013) have a fairly broad tran-
sition while the low energy sequences (002) have a compara-
tively sharper transition. A similar result is seen in the spe-
cific heat, which is plotted in Fig. 10. Sequence 002 has a
much sharper and higher specific heat peak which occurs at a
higher temperature. The other sequences have broader,
smaller peaks. The peak in the specific heat occurs at tem-
peratures slightly higher than the folding temperature (see
Table I1) and indicates the transition from the unfolded chain
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FIG. 10. Specific heat versus temperature for sequences 002, 006 and 0113,
The lines are calculated using the histogram technique from simulations at
T=1.58; the peims are from normal Monte Carlo simulations (ie., they
were calcolated from the usual averaging technique at several temperatures).
At the kinetic glass temperature (T=1) there is substantiai error in the
normal Monte Carto result.
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to the collapsed state rather than the transition to the native
state. At high temperatures the specific heat is sequence in-
dependent.

Also included in Figs. 9 and 10 are data points calcu-
lated using the standard Monte Carlo averaging technique for
comparison. There is excellent agreement between the histo-
gram curves and the points up until the kinetic glass tem-
perature (which is at T~1 for these sequences). At the glass
temperature the usual Monte Carlo technique has a problem
with the increasing autocorrelation time (all sirnulations were
equilibrated and sampled for the same amount of time). The
histogram method, however, allows us to probe beyond the
glass temperature since the low energy states can be sampled
accurately at higher temperatures (see Fig. 8).

One useful feature of the histogram technique is the abil-
ity to determine extrema and zeros of thermodynamic func-
tions. For example, the folding temperature T; is the tem-
perature at which the population of the native state equals
one-half:

e—Emt"Tf 1
Pna:(Tf)=_'2_=§ . (10

Once the density of states has been determined, one can
numerically solve for T, using any standard root-finding
algorithm.*?* Figure 11 plots P, (T) for the three sequences
along with the folding temperatures. Also shown is a plot of
the probability of being semicompact (which we define as
structures have 20 or more contacts):

E2ca2(E.Cle” ¥'T
7 ) (11)

2
Pcm( T) -

where n(E,C) is the density of states as a function of energy
and contacts. Note that in order to compute this quantity we
need to keep track of histograms as a function of energy and
contacts. Histograms of just the energy would not have al-
lowed us to sort out the compact states from the non-
compact ones. Similar to T, the compaction temperature T.
occurs when the probability of being semicompact (20 con-
tacts) equals one-half. Figure 11 shows the P curves along
with the values for 7,. We chose 20 contacts because that
was the point at which the histograms (see Fig. 6) changed
from their second-order- to first-order-like behavior, There-
fore, we expect that measuring this quantity will probe the
first transition from random coil to globule (semicompact)
states.

As expected the folding temperature (Ty) is sequence
dependent. Also, the transition curves for folding are much
sharper than they are for collapse. The lower the energy of
the ground state the higher the folding temperature for that
sequence. In contrast, the compaction temperature (7,) is
almost sequence independent (it varies by only 4% versus a
43% difference for Ty). One would expect the compaction
temperature to be self-averaging since it should depend on
the average composition of the sequence {which is the same
for all sequences used in this work). At the compaction tem-
perature the native state occupation { P,,,) is very small. This
is consistent with the previous observation from the histo-
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FIG. 11. Folding and collapse transitions for sequences 002, 006 and 013.
Figure (a) is a plot of the probability to be in the native state (Pa) versus
temperature, while Fig. (b) plots the probability to be compact {20 out of 28
contacts, P(m}. The folding temperature is defined as the temperature at

which P = % The collapse temperature is defined similarly, The folding
lemperature is a sequence-dependent quantity while the collapse tempera-
ture is roughly sequence-independent (self-averaging}. We expect the col-
lapse transition 10 depend on the ratio of monomer types {i.e., the overall
drive to compaciness) and therefore it should not depend on the specific
sequence.

grams (see Figs. 5 and 6). There are two separate thermody-
namic transitions: collapse from a random coil and then fold-
ing to the native state.

It is clear from Fig. 7 that using just the cubes to calcu-
late thermodynamics can lead to potentially large errors.
Table II compares the folding temperature calculated using

TABLE II. Compansen of the folding temperature T calculated using the
full density of states (from the histogram method) and just the cube states
{from exact enumeration). Numbers in parentheses are the uncertainty in the
tast digit. The last column is the percent error of the cube-only calculation.

Run Full DOS Cubes Percent error
002 1.29(2) 1.763 37.2%
004 1.26(1) 1.695 34.1%
005 1.15(2) 1.429 24.2%
006 0.94(6} 1.049 11.5%
013 0.83(5) 0.935 12.6%
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the full density of states with the temperature calculated
solely on the basis of cube states. The cube results consis-
tently overestimate the folding temperature. This is not sur-
prising since many low energy non-cube states are being
neglected. These states will reduce the stability of the native
state. The cube approximation is better for the non-folding
high energy sequences than for the low energy sequences.
Consequently, it fails more seriously for the sequence we are
most interested in, namely the good folding sequences.

D. Combining kinetics and
thermodynamlcs-—unfolding time

Much of the work (both experimental and theoretical) on
protein folding deals with the forward process (unfolded to
folded). However, studying the reverse process, the unfold-
ing of nascent proteins, may not only provide a wealth of
information, but may also be a great deal easier. In unfolding
simulations, the initial condition is well-defined {the folded
state) and by varying the various parameters it is fairly easy
to induce unfolding. There have been several works examin-
ing  unfolding using  detailed molecular dynamics
simulations.*4’ :

Using the data previously calculated, we can compute an
unfolding time for our lattice chains. We first make the twa-
state assumption, namely that there is an unfoided state (1))
that is in thermal equilibrium with the folded state (F):

F=U. {12)

We can then calculate an unfolding time (7,) as foliows:

[F]
Tu(T)=[T]']'Tf(T) (13)

where [U], [F] are the populations of the unfolded and
folded state respectively and TAT) is the folding time as a
function of temperature. The ratio [FI[U] is given by
P ol (1= P (), using P_.(T) defined by Eq. (10).
Figure 12 shows a plot of the unfolding time versus /T for
several sequences. Unlike the folding time (Fig. 4), the un-
folding time has a much simpler behavior. For temperatures
above the kinetic glass temperature (7 ,), the unfolding times
vary almost linearly with 1/T and have slightly different
slopes for the various sequences. The slopes are roughly pro-
portional to 7,; sequences 004 and 002 have the steepest
slopes and 013 has the shallowest. In contrast to the folding
time, which shows clear non-Arrhenius behavior over this
temperature range, the unfolding time is nearly Arrhenijus.
We expect due to the large enthalpic barrier that entropic
effects are less noticeable in unfolding than folding. At low
temperatures the unfoiding time rolls off due to the cutoff in
the simulation time (this is the same roli-off seen in the fold-
ing time at low temperatures; see Fig. 4).

E. Exploring parameter space

All the results so far have been for simulations with
contact energies Ewg=—2 and A=2 (Ey=-~3 and
E,=—1). These values were chosen to insure that the
Zround state (native state) would be a cube. For sequences
like 002 and 004 there exists a cube {out of the 103 346
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FIG. 12. Unfolding times versus I/T for several sequences, The time s
plotted on a log scale. The linear relationship between time and 1/T for
temperatures greater than Ty is much simpler than the behavior of the fold-
ing time.

possibilities) that has no weak contacts {contacts between
different monomer types). This cube will be the ground state
as long as E,z(Eavg—A/2)<0, irrespective of what E, is
(ie., E, can be greater than zero). We call these sequences
unfrustrated. All of the other sequences have at least one
weak contact between uniike MNonomers even in their lowest
energy cube (see Fig. 13). These are Srustrated sequences.
For frustrated sequences, it is not clear that the minimum-
energy cube will be the minimum-energy conformation,
There may be some noncube conformation with fewer total
contacts but more good contacts than the cube conformation,
For sequence 005, which has 27 geod contacts in its mini-
mum cube conformation, and 006 and 007, which have 26
good contacts, there are no other conformations that have
more good contacts. Consequently, the cube conformations
will be the éround states as long as Eﬂ=(Eavg+ Ay<0%
For sequence 013, which has 24 good comtacts in its
minimum-energy cube, it is possible that there is some non-
cube conformation with more than 24 good contacts. We
cannot exhaustively enumerate all the noncube conforma-

FIG. 13. The native conformations of sequence 002 (left) and 006 (right).
Note that 006 has 2 “weak"” contacts (indicated in the figure with dotted
lines} in its lowest energy state.
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FIG. 14. The minimum folding time and the compaction times plotted as a
function of E,,, /A for sequence 002. The line with the triangles is the mean
folding time (i.c., the time to find the native state). The squares are the mean
time to find the first cube state (not necessarily the native state) and the
diamonds are the mean time to find a conformation with 25 contacts. For
each of these times, there is 2 minimum point in the point of time versus
temperature (see Fig, 4), It is that minimum (fastest) time that is plotted here
for each value of E,, /A,

tions but we can state empirically that no conformation with
a lower energy was found in any of the Monte Carlo runs
(see Ref. 46).

We now explore how the model behaves as we vary the
potential parameters. Specifically, how do the various kinetic
and thermodynamic properties depend on these parameters?
Sequence 002 was examined in detail. As mentioned, this
sequence has an unfrustrated cube conformation (see Fig.
13). This cube will be the ground state whenever E,<0. If
E, is greater than zero then the minimum energy conforma-
tion is the completely unfolded chain with no contacts. This
clearly would not represent a protein under folding condi-
tions; thus we ignore this region of parameter space. Several
simulations with various values'’ of E,,./A ranging from 0
to approximately 2.5 were run.*® Figure 14 shows a plot of
the folding and compaction times versus E,,,/A. The times
plotted in these figures are taken from the temperature with
the fastest time (ie., the minimum point in Fig, 4) for each
value of E ,,,/A. As the absolute value of £, /A is de-
creased from 2.5 to 0, both compaction times (the time to
form 25 and 28 contacts) increase, although the change is
small. This is expected since the drive to form contacts de-
creases as |E ., /4| is reduced. For the folding time there is
an opposite and more dramatic effect. Decreasing |E avg! Al
decreases the folding time {7/}, almost two orders of mag-
nitude. Also, at E,,,=0, 7, almost equals 754 (the time to
make 28 contacts). What is happening is that as [E,., /4]
decreases, we are destabilizing non-native cubes relative to
the native state. At large |E,,/Al, these low energy non-
native cubes behave as traps slowing down the folding rate.
Reducing |E a.,glAl increases their energy relative to the na-
tive cube eliminating them as traps. This in turn increases the
folding rate. Alternatively, as E,,,/A—(, E, increases until
it becomes positive. At this point making weak (incorrect)
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FIG. 15. A plot of the folding temperawre (7,) and the kinetic glass tem-
perature (T,) as a function of the average drive to compactness (E wg)- Both
the temperatures and the energies have been scaled by A, The dotted line is
a linear fit of the glass temperatures. The solid line is not a fit to the T,
points but was calculated explicitly via the histogram technique. For values
of E,,,/A approximately less than 1.7 T¢>T, so the chains will fold before
hitting the glass transition. For £/ A greater than 1.7 the glass transition
occurs before folding so the chains do not reach their ground state within the
simulation time.

contacts is unfavored relative to breaking them. This keeps
the chain from forming these weak, incorrect contacts which
would trap it in states different from the native state. The
chain is more effectively funneled into the native conforma-
tion; i.e., the first cube made is almost always the native one.
By varying £ ,,,/A we can control the time-scale separation
between folding and collapse to maximally compact states.
Next, we examined how the folding temperature (Ty)
and the kinetic glass temperature (T',) varied as a function of
E /A In particular, for which values of E /A is T
greater than 7,7 For these values of E,,,/A, the chain wil]
fold before the native state becomes inaccessible. The histo-
gram method is used to calculate T, for various values of
Eq /4. The technique is the same as the one used to ex-
trapolate to different temperatures. In this case one needs
histograms as a function of good and weak contacts {which
can be calculated from the energy-contact histograms previ-
ously used). To calculate T, we must run simujations at vari-
ous values of £,,,/A since there is no way to extrapolate as
in the case of Ty. The two temperatures (T; and T,) are
plotted for sequence 002 in Fig. 15. Note that we plot the
temperature normalized by A (i.e., in units of A) just as we
plot E,,, normalized by A.*® The glass temperature varies
almost linearly with E,,,/A. Previous work on glass transi-
tions in heteropolymers have shown that the transition occurs
after the collapse of the system.*° In fact it was shown that
the polymer needs to collapse in order to have a glass tran-
sition. This is consistent with the behavior we see: as
|E 4yg/ 4| increases so does the collapse temperature (7). In
fact as we will see shortly T.>T, for all values of E,,/A.
As iEa\,g/At increases, the depth of the local minima in-
creases relative to the unfolded state. It becomes harder to
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escape from local traps so the chain “freezes” at higher tem-
peratures.

The folding temperature also increases as the absolute
value of E..5/A increases but reaches a limiting value. This
behavior of T with E,, is easy to understand. As |Eqvg/Al
is increased, the stability gap becomes larger; hence T; in-
creases. However, it eventually asymptotes to a limiting
value of approximately 0.87. This limiting value turns out to
be precisely the folding temperature that would be calculated
using just the cube conformations. In Table I we see that for
sequence 002 T,=1.763 for the cube-only calculation, In
calculation A=2 50 we need to divide the temperature by 2,
giving 0.88. The reason T; approaches the cube-only vaiue is
that as ]E,vglAl increases the cube states decrease in energy
more than the noncube states since they have more contacts.
Eventually, at low enough £, /A all the low energy states
are just cubes. It is the low energy states that determine
Ts. Once T, reaches this limit, it is unchanged by further
changes to Eove/A since the relative energy between the
various cube states is determined by A which we are holding
constant at I,

Looking at both the Ty and T, lines we see there is a key
point  at  which T, becomes greater than T,. At
E 4,/A=1.7 the chains become glassy before they become
thennodynamical!y stable; consequently, they will not be
able to fold. For E.g/A greater than 1.7, T,>T;. The chain
is trapped in local minimum and will not find the native state
within the simulation time. When Euvg/A is less than 1.7,
T,<T;, so the chains fold to the native state and will be
thermodynamically stable before the dynamics slow down.
By including the results for the collapse transition tempera-
ture (the temperature at which half the chains have at least 20
contacts) a qualitative phase diagram can be drawn (see Fig.
16). There are four regions: random coil, collapsed globule,
folded and collapsed frozen state. The phase diagram is very
similar to other lattice models and theoretical calculations of
heteropolymers.*'*? The vertical dotted fine represents the
transition from the glassy to folded phase. To the right of it
(ie., large |E /A T(/T,<1 and to the left of the line
(small |E,.,/A|) TpiTy>1. As |E /A is decreased the
folding and coliapse curves converge. This is the same be-
havior observed in the kinetic data (see Fig. 14). As
E.y/A approaches zero, £, becomes positive. Collapsed
states with weak contacts will be unfavored relative to states
with no contacts, This drives the potymer to form only cor-
rect (good) contacts, so the chains will collapse almost di-
rectly to the correctly folded state. Another way to under-
stand this is that non-native cube conformations are
unfavored as £, increases. At £2v¢/A=0 roughly half of the
cubes for sequence 002 will have positive energies. This re-
moves them as possible kinetic traps. For all values of
L/ A, the collapse {emperature is greater than not only the
folding, but also the glass, temperature. Previous heteropoly-
mer mean-field calculations® show that T, must be less than
Ty, the collapse temperature, consistent with what we find
here. Perhaps most interestingly, we see that by modulating a
single parameter in our model we obtain a range of qualita-
tively different folding behaviors. Recently, work has been
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FIG. 16. Phase diagram for sequence 002, There are four regions: random
coil, collapsed globule, collapsed frozen, and foided. The soiid line between
the random coils and the collapsed globule state is the collapse transition,
the temperature at which half the chains have 20 contacts. The second solid
line is equal to either T, or T,, whichever is greater at that value of
Eyg/A. The dotted line equals the iesser of T, or T;. The vertical dash-
dotted line shows the transition from the folding region (where I>T, o
the frozen region. It occurs at Egyla=—17.

done on the classification and examination of the various
possible folding regimes with a comparison to experimental
data,’

IV. CONCLUSIONS

We have continued our comprehensive analysis of the 27
monomer cube lattice heteropolymer, The Monte Carlo his-
togram method proved extremely useful, allowing us to de-
termine the density of states for this system and then to cal-
culate a broad range of thermodynamic quantities. In
particular, the method overcame the problem of dynamical
slowing down at low temperatures. Like many other het-
eropolymer studies (both analytical and numerical} we find
two different transitions: a collapse transition with a roughly
sequence-independent collapse temperature and a folding (to
the native state) transition with a sequence-dependent folding
temperature. The collapse transition has a second-order-like
behavior and the folding transition seems first-order-like.
The good folding sequences, ie.. the sequences that are
stable and have fast folding times, have sharper, more clearty
defined transitions, as viewed from the temperature depen-
dence of the average energy and the specific heat. Combining
kinetic and thermodynamic data, we studied the unfolding
behavior of the system. The unfolding rate has a much sim-
pler temperature dependence than the folding rate. The rate
varies roughly linearly with /T for a broad range of tem-
perature up to the glass point.

After the density of states was obtained we were not
only able to extrapolate to different temperatures but also to
difterent parameter values of the energy function. The sys-
lems were examined as a function of the average drive to-
ward compactness, where the average drive is the average of
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the two contact energies divided (normalized) by their differ-
ence (E,,,/A). There is a specific value for this energy drive
at which the kinetic glass temperature became greater than
the folding temperature, indicating that the system would no
longer be able to fold within the simulation time due to trap-
ping. We constructed a phase diagram as a function of this
average drive and temperature (also normalized by the split-
ting). As the average energy drive is reduced, the two tran-
sitions, collapse and folding, converge. At zero-average drive
the system collapses almost directly into the native state.

One criticism of these models is that they are too simple
to represent real proteins. However, even in this simple
model we see a broad and diverse range of behaviors de-
pending on the parameters used. It seems likely that some of
the behaviors of real proteins can be explained by some par-
ticular set of parameters. More importantly, it may well be
the case that different proteins have different folding behav-
iors. Some proteins may fold extremely rapidly to the native
state, literally collapsing into the native state, while other
proteins may have a clear separation in time scales between
collapse to a compact but non-native ensemble of structures
and the rearrangement of the chain to the final native form.
In our model we can interpolate between these two regimes
by modulating one parameter. In the future, more realistic
models that are still simple enough for a through analysis
may reveal more about the properties and functions of real
proteins.
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ABSTRACT Experimental information on the structure
and dynamics of molten globules gives estimates for the energy
landscape’s characteristics for folding highly helical proteins,
when supplemented by a theory of the helix-coil transition in
collapsed heteropolymers. A law of corresponding states
relating simulations on small lattice models to real proteins
possessing many more degrees of freedom results, This cor-
respondence reveals parallels between “minimalist” lattice
results and recent experimental results for the degree of native
character of the folding transition state and molten globule
and also pinpoints the needs of further experiments.

Recently a framework for understanding biomolecular self-
organization using a statistical characterization of the free-
energy landscape of protein molecules has emerged (1-5).
Bascd on the physics of mesoscopic. diserdered systems, it can
capitalize on the ubility to simulate “minimalist” models of
proteins, to characterize the folding mechanism through a few
energetic and entropic paramelers describing the frec-cnergy
surface globally. The cnergy landscape of u foldable protein
resembles a many-dimensional funnel with o frec-energy gra-
dient toward the native structure. The funnel is also rough,
giving rise 1o local minima, which can act as traps during
folding. Most random heteropolymers have numerous funnels
to globally different low-energy states just as do glusses und
spin glasses. The search through the encrgy minima of a rough
landscape is stow and becomes more difficult as the plass
transition is approached. Typically 4 random heteropolymer
will not fold to its lowest free-energy minimum in times less
than that needed to explore completely the configuration
space if there were no barriers. This supposed difficulty for
natural protein has been called the Leviathal paradox (5). For
most random  heteropolymers, the search problem ot the
Levinthal paradox is real, but the guiding forces engineered by
moleculur evolution carn overcome the Levinthal paradox
provided they are strong cnough. in accordance with the
“principle of minimal frustration” (1-4). Most simply, the
landscape of a protein funnel is characterized by three param-
eters: the mean square interaction energy Fluctuations, AL-,
measuring ruggedness: a gradient toward the folded state, 3/
and ar effective configurational cntropy, 8. deseribing the
search problem size. Our goal here is (0 use CXperiments.
theory, and simulations to estimate these topographic param-
elers that determine the folding mechanism. Bryngelson et al.
(5) clussify several regimes of folding. In part of the proteins
phase diagram, folding is entirely downhill in a free-energy
sense; e, as the ensemble of intermediate structures becomes
progressively more native-like, the energy gradient completely
overcomes the entropy loss. This occurs for folding funnels
with very large 3E, and is calied tvpe O folding, Under
thermodynamic conditions near the folding transition mid-
point, entropy and encrgy do not completely compensate cach
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other; thus, intermediates are not present at equilibrium (i.c.,
a free thermodynamic energy barrier intercedes). In a type |
transition, activation to an ensemble of states near the top of
this frec-energy barrier is the rate-determining step. Type 1
transitions occur when the encrgy landscape is uniformly
smooth. When the landscape is sufficiently rugged. in addition
to surmounting the thermodynamic activation barrier, at an
intermediate degree of folding, unguided search again be-
comes the dominant mechanism. At this point, a local glass
transition has occurred within the folding funnel. If the glass
transition occurs after the main thermodynamic barrier, the
mechanism is classified as type Ila. Here specific kinetic
intermediates occur late in folding but are native-like. On the
other hand, if the glass transition occurs before the main
thermodynamic barrier, intermediates are misfolded traps,
which can be deseribed by a multistep chemical kinetic scheme,
The details of this type Ilb mechanism are VCEY SCsitive (o the
thermodynamic state, interaction potentials, and the specific
sequence,

Starting with Levitt and Warshe] {6). a variety of simple
models of protein folding calied minimalist have been devel-
oped. Recent studies with continuum maodels by Honeyeui
and Thirumalai (7) and others have been interpreted using
cnergy landscape ideas. Another class of minimalist models
studies folding of heteropolvmers on a lattice using Monte
Carlo kinetics (4. 8-11). Both these studies and the exact
cnumeration schemes pioncered by Dill and co-workers (12}
provide a characlerization of the cnergy landscape for such
minimalist models. The simplicity of these models strikes some
as being terribly vnrealistic. since real proteins POSSESS many
details not present in most minimalist models such as hydro-
gen-bonded secondary structure and side chain conforma-
tonal degrees of frecdom important for packing. Each of these
has o different energy scale, Can these features be at all taken
into account when muking the connection between mininulist
models and experiments on real proteins without studving
highly complex models?

The encrgy landscape philosophy and the analogy to phase
transitions provide the key. The broad mechanism of phiise
transitions depends only on gross features of (he energy
function. When appropriately scaled. the part of the phase
diagrams relevant w boiling of liquids as disparate as water and
wnon can be superimposed. At the empirical level, this
remarkuble similarity is known as the law of cotresponding
states {13 and #7 15 also the basic idea of the renormalization
group {14).

‘The energy landscape picture suggests that there is also a lw
ol corresponding states mapping the phase diagram and
Kinctic mechanisms of real proteins onto those for minimalist
muodels. It separate phase transitions for ordering the addi-
tional degrees of freedom possessed by real proteins intervene
during folding. a multistep mechanism can stll result. but in a
major part of the more complex phase diagram. the effect of
the extra degrees of freedom in real proteins will be to
“renormalize”™ energy and entropy scales for the protein-
folding funnel,
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Here we explore a correspondence of real proteins with
minimalist protein-folding models that uses an analytic theory
of helix-coil transitions in collapsed heteropolymers to effec-
tively renormalize out secondary structure formation. When
combined with experimental measurements of the amount of
secondary structure, the theory quantifies the effective num-
ber of degrees of freedom of a helical protein through the
configurational entropy. Dynamical measurements on the
molten globule state crudely characterize the energy landscape
ruggedness, The funnel’s slope is then inferred using the
thermodynamics of the molten globule to folded transition.

The reduction of configuration entropy through helix for-
mation in the collapsed state yields an energy landscape
comparable in extent or complexity with that for minimalist
models with fewer residues but lacking explicitly secondary
structure. The corresponding energetic topography for an
optimized three-letter code minimalist lattice model roughly
corresponds with the energy gradient and ruggedness of a
realistic folding funnel.

The parallel between the gross features of the landscape of
real proteins and the three-letter code lattice models allows us
to quantify aspects of the folding mechanism in real proteins
by using computer simulations of the model. By simulating
many folding trajectories and characterizing the free energy as
a function of several order parameters, we can identify the
location of the relevant thermodynamic free-energy barrier,
which is rather small, and determine the position of glass
transition within the folding funnel. While the broad transition
state occurs early, the glass transitions occur rather late in the
tolding processes for this model. At the denaturation midpoint,
folding occurs via a type lla scenario but 1s rather close to the
downbhill type 0b scenario. The details of a protein’s folding
after the glass transition late in the funnet cannot be studied
using the corresponding states principle. but the earlier events
can.

Establishing the Correspondence Between Minimalist
Models and Real Proteins

Collapsed statcs have been cstablished as rather general
intermediates in folding (15). Some compact intermediates
contain a substantial percentage of helical secondary struc-
ture. At least two views of the collapsed states are prevalent.
Some argue that the molten globule state has a specifically
defined tertiary structure comparabic to the native protein.
Others view the equilibrium collapsed state as stilt conforma-
tionally fluid in terms of the backbone structure resembling a
polvmer below its # point (16). Both Kallenbach and co-
workers (17) and Engelman and co-workers (18) have found
compact states with varying degrees of helical structure. thus
suggesting its lability. The two pictures may not be so clearly
separable since the guiding forces of the tunnel do induce «
significant amount of fluctuating tertiury order in the disor-
dered giobule. The relevant collapsed states are the dynamic
ones of the early stages of folding and not necessanly the
equilibrium states found elsewhere in the phase diagram (e.g..
the ~acid molten globule™).

The degree of helical content of equilibrivm collapsed states
has often been measured to be quite high. The relation
hetween helicity and the conformational entropy shown in Fig.
1 can be tound trom the theory developed by Luthey-Schuiten
et al {19), since both depend parametrically on the eltective
hvdrogen bond energy, The theary due to Bascle er al (20)
could also be used with appropriate modification. Taking 63%
helicity as a rcasonable estimate. our theory gives a contor-
mational entropy of {(Lokg per monomer unit. The effective
number of states to be searched is related to this Levinthal
entropy, e % Though the states differ in character. the
number of states in the mechanism here is comparable to that
for the framework model (ref. 21 and references therein: ref.
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FIG. 1. Configurational (Levinthal) entropy versus helicity accard-
ing to the theory of Luthey-Schulten er af (19). Both quantities depend
parametrically on the effective hydrogen bond strength divided by &s7.

22). Diffusion—collision calculations assume only the correct
helices can be formed and direct construction of the fold from
the high entropy random coil. A free chain has an entropy of
2.3kg per monomer unit (23). Unlike the framework picture,
the dramatic reduction in entropy upon collapse arises from
confinement, indiscriminate helix formation, and the con-
strained orientation of the helices, not from strong local biases
toward correct secondary structure. The molten globule from
which further guided scarches take place in our mechanism 1s
a collapsed liquid-crystalline polymer. The compact configu-
rations of simple lattice model polymers have an entropy of
=1.0kg per unit considering ounly the rcasonably compact
states after fast collapse. Thus the renormalized entropy or
scope of configuration space of a 60-amino-acid helical protein
is a bit bigger than the 27-mer lattice model often studied.

Comparing the dynamics of free and collapsed chains yields
the ruggedness of the landscape. In a frec chain, fhickering
secondary structural elements reconfigure in roughly w = |
nsec {(24). This time is similar to interdiffusion times over
distances of the size of the molien globule diameter as
calculated using the Rouse-Zimm theory (25). Thus, to first
order. we can be agnostic as to the nature of the underlying
move sct in comparing real proteins and minimalist models.
The dynamics of a condensed molten globule is slower than
that for free chains because of transient trapping in low-energy
states. The reconfiguration time Teeanip N @ rough encroy
lundscape (3. 26) is given by Treconig = ToeXp(AET/2T7).

Few experiments directly measure reconfiguration times
within the globule. For lactalbumin, Baum et al (27) observe
ficld-dependent broadening of '"H NMR resonances, suggest-
ing reconfiguration rates slower than | per millisecond. Wand
and co-workers (28) interpret their NMR studies on the
apocytochrome hs,> molten globule with similar times. In the
fastest folding, the downhill scenario (type 0), folding takes
only a few times the typical reconfiguration time. Thus an
upper bound on the ruggedness is known since collapsed states
can completely fold in times ranging from a millisecond to a
second. These estimates fOr Treconsic suggest the ruggedness Qf
the energy landscape. at the folding temperature, AEY2TS,
ranges trom 11 to 18 The typical size of hydrophobic forces
needed for protein collapse gives directly a similar estimate
(29). The actual entropy of the molten globule state is lower
than S;. since low-cnergy states are prefereatially occupied.
For the 60-amino-acid chain at 60% helicity, the random
energy model gives an entropy S(T} = $i, — AR?/2T7 = 21ky
to 28k, AL the folding transition, the energy loss in falting
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down the funnel must equal the temperature times the entropy
loss. Thus the stability gap or energy gradient of the funnel is
8E,/Ty = S1. + AE?/2T7. The stability gap 8E, measures the
difference in energy of the native protein and the average
compact state. The dimensionless ratio of the energy gradient
of the funncl to the overall ruggedness is then {8E./Ty}/
{VAE/2T?} ~ 14. Using the configurational entropy esti-
mate, the thermodynamic glass transition temperature is T, =
AE/N28 ~ 0671 If interaction strengths were temperature
independent, the thermodynamic glass transition temperature
for a compact denatured state would be 160 K. The dynamical
glass transition in folded myoglobin actually depends strongly
on solvent and occurs in glycerol at 180 K (30). The coingi-
dence might support the ideas of Frauenfelder and Wolynes
{31} and of Honeycutt and Thirumalai (7) that some taxonomic
substates of folded proteins correspond with the final protein
folding intermediates.

Comparing the estimate of gradient-to-ruggedness ratio
with the 27-mer simufations shows that the landscape s
smoother than landscapes generated for optimally designed
sequences using a two-letter code. The ratio between 7t and
the kinctic Ty (relevant to the folding time scale) is about 1.3
for the two-letter code sequences {32). The thermodynamic
glass temperature for the collapsed states of the two-letter
code 27-mers calculated using the random energy model
estimate is close to this kinetic 7,. Two-letter code lattice
models in the bulk limit usually exhibit ground-state degen-
eracy, probably connected with microphase separation (33).
Yue er al (34) suggest that designing foldable two-letter code
proteins is nontrivial.

Simulations have becn performed with three-letter codes—
i.e., strong interactions for residues of the same kind and weak
interactions for different. When the valucs of the couplings are
the same as for the two-letter code, an optimized three-letter
code folded configuration still has only correct sLrong contacts,
but most three-letter code compact configurations have fewer
wrong stroug contacts than for the two-letter code, Optimized
three-letter code proteins have a larger 77 and a smaller kinetic
T, than two-letter ones. The Ti/ T, ratio increases to 1.6, close
to the ratio for realistic folding funnels. The mechanisms of
folding of the two- and three-letter code results differ since the
two-letter code madet is closer to its global glass transition,

The Folding Scenario for a Realistic Foiding Funnel

The corresponding state analysis allows us to skeieh the
foltowing folding scenario, based on the three-letter code
simulations, and to picture a folding funne! whose main fea-
tures are shown in Fig. 2. We have rendered this folding funnel
reasonably accurately to scale. The width is a measure of the
entropy, whereas the depth is illustrated with both an energy
and two correlated structural scales. Although no once-
dimensional scule reflects properly the multidimensionality of
the funnel and the multiple minimé. the barrier heights in the
figure represent AE, whereas the total depth is scaled 1o the
energy of the folded state. The molen globule region, o
transitien state region representing an ensembie of SIFGCtures
that acts as a bortleneck, and a focafly glassy region are
identified based on detailed examination of many folding
trajectories for the three-letter code model coupled with
numerical measurements of densitv of states. free energies,
and related quantitics, Defining several collective coordinates
compresses much information about the trajectorics into a
simple form. Our characterization of the transition state region
for a realistic folding tfunnel differs from the resuits of Salj or
al, (35), which apparently model proteins near the border of
kinetic foldability.

Two coordinaies examined are ones like that of Bryngelson
and Wolynes (26), the fraction of angies in their native
configuration. A, and the fruction of native contacts, (2 The
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FiG. 2. The schematic funnel for a realistic 60 amino acid heiical
protein corresponding to the three-letter code. This shows the position
of the molten giobule, the transition state ensemble, and the local glass
transition where discrete trapping states emerge as a function of the
order parameters described in the text, the energy K. the fraction of
native contacts (. and the fraction of angles in their native configu-
rations A. () and 4 have been normalized to their maximal vaiuces tor
a 27-mer lattice model, 28 and 25, respectively. For the three-letler
code, the molten globule is stabilized by nearly half the native encray
(Ena) relative to the random coil. The stability gap 8F, quantifies the
specificity of the native contacts.

rcaction coordinate 4 only changes by a small amount on cach
elementary step, so local gradients of free energies are
meuningful. For a random cuil, the value of A should be
=(L68. (2 is intimately connccted with the interaction cnergy
function and is useful in describing overall topology. Care
must be used in interpreting gradients of free cnergics with
respect to ) since the elementary moves can lead to large ()
changes. Both coordinates refer to overall structure features,
For larger heteropoiymers. additional coordinates deserib-
ing distinct parts of the chain are needed to define critical
nuclei (36, 37) for large single-domain proteins or indepen-
dent folding of parts of multidomain proteins.

Time series of the reaction coordinates and interaction
cnergy are two-state-like with fast transitions between the
folded and untolded regions, The mean folding time for this
sequence of = 3 3 10° time steps corresponds 10 3 msec of real
lime using the estimates for 7. As for simple reactions, the rate
for transition between the two main regions depends vn short
Lime events,

The duration of a transition event fluctuates. hut most
events are over in less than 10,000-30.000 time steps, ¢ and .-
vary in a correlated manner through the transition. Sometimes
they quickly traverse between the stable regions. whereas in
other cases they are transiently trapped during the Crossing.
The duration of the trapping cvents is much shorter than the
average folding time. indicating two-state kinetics.

The Monte Carlo histogram technique (38) was used (o
determine the density of states as o function of cnergy and the
order parameters. This technique is similar to that used by
Hansmann and Okamoto (3%) and Hao and Scheraga (40 to
determine overall thermodynamics. The densities of states
vield the free-energy plots. precisely locate the folding tem-
perature. and determine a local thermodynamic glass transi-
ton region where discrete intermediates appear.
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At Ty, the free-energy function for the optimal three-letter
code 27-mer is plotted as a function of  and A. Projected onto
these plots ate two illustrative trajectories out of 86 cxamined
(Fig. 3). The free-energy function is bistable. The disordered
globule has @ ~ 0.28 and 4 ~ 0.73, The globule has a much
greater amount of native structure (Q) than that expected for
a random coil, but clearly an enrichment of pair contacts by a
factor of 10 does not by itself imply a “unique” structure for
a molten globule {(41). The two-dimensional free energy has a
saddle at 4 = 0.88 and @ = 0.6. The Q value of 0.6 means that
each native contact is made three-fifths of the time in an
ensemble of configurations of the transition state. This is in
harmony with recent observations on chymotrypsin inhibitor
folding where the transfer coefficient for mutations at each site
¢ varies between 0.3 and 0.7 (42). Since chymotrypsin inhibitor
has a good deal of 8-sheet as well as a helix, the agreement may
be fortuitous. The superimposed trajectories agree with as-
signing a transition state region encompassing Q) values from
=~(0.57 to ~0.64 and A values from =0.84 to ~0.92. Late
barriers depending on ¢ alone are kinetically meaningless,
since reactive trajectories jump across such barriers in the ¢
direction through crankshaft moves in which an entire arm of
the protein is retracted into its native position. The A coor-
dinate on the other hand varics unly by one or two units per
elementary move and is a more appropriate reaction coordi-
nate (1). Because of the flatness of the free energy, the
thermodynamic barrier from the free-energy plot is small but
broad. There are numerous recrossings of the transition state
region caused by the trapping due to the landscape’s rugged-
ness. Thus, as Bryngetson and Wolynes (26) suggest, folding
times must be computed using a diffusive picture instcad of
standard transition state theory. which neglects recrossings.

Monitoring correlated fluctuations of the collected coordi-
nates gives the diffusion constants for 0 in the molten globule
D = 3.5 x 107 (correct contacts)® per time step. A crude
diffusive rate theory that assumes the free energy well is
harmonic and that the barrier top curvature equals the well's
gives a folding time 7 = 277 exp{F /kgT}, where F* is (he
activation barricr of 2.4ky7y from the (wo-dimensional plot
and 7., is the correlation time for the harmonic fluctuations.
Teorr fOT both 4 and @ is approximately 20,00k} time steps. The
resulting 7 = 1.4 X 10% is a bit shorter than the simulated

o 02 04 08 08
Q
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value, Since this system becomes glassy only after the transition
region is traversed, landscape ruggedness should be well
accounted for by the diffusion picture. The folding time tfrom
the Bryngelson-Wolynes (26) approximation is good, but there
are more near-ballistic trajectories through the transition
region than expected, suggesting the relevance of the fre-
quency dependence of the structural diffusion or of additional
geometrical variables.

After leaving the transition region, the protein progresses to
become more native-like. Occasionally, the trajectory becomes
caught in a few longer lived native-like states whose lifetime is
shorter than the average folding time. These discrete states
arise from a local glass transition, which can be located by
computing ¥ = X.P?, where P; is the Boltzmann occupation of
4 microstate. Y measures the inverse number of the thermally
accessible states and reveals the replica symmetry breaking of
spin glasses (43) and of random heteropolymers (44). To define
the local glass transition, we compute Y(() using only states with
a given value of the coordinate Q. Since the protein is of finite
size, Y{(?) never vanishes but instead varies from the inverse
density of states at  up to unity. At T a rapid rise of ¥(Q) occurs
at @ = 0.7, defining a local glass transition (Fig. 4).

At Ty the transition state region occurs before the local glass
transition, so folding conforms to 4 type Ila scenarjo. Kinetic
constraints, which vary from sequence to sequence, are en-
countered afier the transition state is reached for strong
folders fust as in simulations of Honeycutt and Thirumalai (7}
and of Chan and Dill and co-workers (10, 12).

The small size ot the thermoedynamic barrier as opposed o
kinetic barriers from transient trapping suggests that proteins
are not just overall marginally stable but that a realistic folding
funnel describes a marginally stable system even for interme-
diate degrees of order—surprisingly much like a system near
a critical point. [ vive. proteins are not poised at 7y but are
stable by several kg7, The additional slope to the funnel’s
cnergy gradient should suffice to make folding occur by a
downhill type Ob scenario where the only intermediates arc
ncar native kinetic traps. Since folding does not dramatically
speed up with increasing stability once a downhill scenario is
reached. perhaps there is no evolutionary drive to greater
stabiiity. The combination ot marginal stability and proximity

0 0.2 .4 0.6 0.8 1
Q

Fio. 3. Two transition trajectories projected onte the Q-1 plane. The time span is roughly 237 of the folding time, which is =3 » 10* Monie
Carlo steps. (1.eft) The transition event ocears in = 107 Monte Carlo steps. Tor this trgjectory. there is some trapping in the transition region. In
the early part ol the trajectories, the individual points are not conneeted. whereas in the latier segments the points are connecied. The trajectories
are superimposed on a contour plot of the free energy with levels spanning the range from - 67.5 10 —82.5 in increments of 2.5, (Right) A very
fast event in which the system moves almost ballistically through the transition region. The last event oceurs in roughly 3000 Monte Carlo steps.
The trajectories shown were chosen at random from a sample of 86, The sequence used was ABABBBCBACBABABACACBACAACAB and was
studied at the folding temperature (7, L309), The model is a three-dimensional cubic lattice heteropolymer with a contaet potential. If the twe

monomers are of the same tvpe. then the energy for the comact is £ —

3 and it the monomers are not the same the energy s £y, = -1, The

above sequence was designed to have an unfrustrated nondegenerate native states: Le.. in the native state all contacts are between monomers of

the swme tvpe.
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FiG. 4. A plot of Y((3) = PO vs. @ for three temperatures,
While at the global T, discrete states arc apparent even for smali
degrees of nativeness, at 7; = 1.509 the discrete intermediate is highly
native-like.

to the local glass transition may explain the mutation sensi-
tivity of some collapsed globules (17,

Discussion

Experimental data along with simple geometrically based
statistical mechanics help locate small helical proteins in their
phase diagram, allowing an estimate of the parameters needed
to describe folding by staristical energy landscape analysis. A
law of corresponding states relates simple lattice models to the
laboratory situation, leading to an outline of the topography of
a realistic folding funnel, which can serve as a starting point for
other investigations. On the experimental side, our analysis
pinpoints a great need for more dynamic measurements on the
molten globule state itself, one of the weaker peints in the
numerical estimates. Also the order of collapse and sccondary
structure formation still needs resolution. The quantitative
features of the funnel should help guide and can be refined by
tast folding experiments made possible by laser-induced ini-
tigtion of folding (43). For the tolding funnel of the three-letter
code maodel, the minimal frustration of the protein results from
harmony between tettiary contacts. Direct tocul biases like
those in the framework picture (46) can be included as an
additional slope to the funnel through 4 rather than (. Sim-
itarly secondary structure may be more directly coupled to the
landscape if cffective pair inleractions depend specificallv on
the helicity of segments. These considerations reguire a still
more multidimensional view of the funnel. but the low dimen-
sional picture here can serve as a zeroth order starting poini,
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ABSTRACT  The understanding, and even
the description of protein folding is impeded by
the complexity of the process. Much of this com-
plexity can be described and understood by tak-
ing a statistical approach to the energetics of
protein conformation, thatis, to the energy land-
scape. The statistical energy landscape ap-
proach explains when and why unique behav-
iors, such as specific folding pathways, occur in
some proteins and more generally explains the
distinction between folding processes common
to all sequences and those peculiar to individual
sequences, This approach also gives new, quan-
titative insights into the interpretation of ex-
periments and simulations of protein folding
thermodynamics and kinetics. Specifically, the
picture provides simple explanations for folding
as a two-state first-order phase transition, for
the origin of metastable collapsed unfolded
states and for the curved Arrhenius plots ob-
served in both laboratory experiments and dis-
crete lattice simulations. The relation of these
quantitative ideas to folding pathways, to uniex-
ponential vs. multiexponential behavior in pro-
tein folding experiments and to the effect of mu-
tations on folding is also discussed. The success
of energy landscape ideas in protein structure
prediction is also described. The use of the en-
ergy landscape approach for analyzing data is
illustrated with a quantitative analysis of some
recent simulations, and a qualitative analysis of
experiments on the folding of three proteins.
The work unifies several previously proposed
ideas concerning the mechanism protein folding
and delimits the regions of validity of these ideas
under different thermodynamic conditions
© 1995 Wiley-Liss, Inc.*
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INTRODUCTION

The apparent complexity of folded protein struc-
tures and the extraordinary diversity of conforma-
tional states of unfolded proteins make challenging
even the description of protein folding in atomistic
terms. Scon after Anfinsen’s classic experiments on
renaturation of unfolded proteins,’ Levinthal recog-
nized the conceptual diffieulty of a molecule search-
ing at random through the cosmologically large
number of unfolded configurations to find the folded
structure in a biologically relevant time.? To resclve
this “paradox,” he postulated the notion of a protein
folding pathway. The search for such a pathway is
often stated as the motive for experimental protein
folding studies. On the other hand, the existence of
multiple parallel paths to the folded state has been
occasionally invoked.? Recently, a new approach to
thinking about protein folding and about these is-
sues specifically has emerged based on the statisti-
cal characterization of the energy landscape of fold-
ing proteins.*-5

This paper presents the basic ideas of the statis-
tical energy landscape view of protein folding and
relates them to the older languages of protein fold-
ing pathways. The use of statistics to describe pro-
tein physical chemistry is quite natural, even
though each protein has a specific sequence, struc-
ture, and function essential to its biological activity.
The huge number of conformational states immedi-
ately both allows and requires a statistical charac-
terization. In addition folding is a general behavior
common to a large ensemble of biclogical molecules.
Many different sequences fold to essentially the
same structure as witnessed by the extreme dissim-
ilarities in sequence which may be found in families
of proteins such as lysozyme.” Thus for any given
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observed protein tertiary structure, there is a statis-
tical ensemble of biclogical molecules which fold to
it. Many studies suggest that the dynamies of many
parts of the folding process are common to all of the
sequences of a given overall structure, while others
are peculiar to individual sequences. Distinguishing
folding processes common to all sequences from those

peculiar to individual sequences is a major goal of

physical theories of protein folding. The statistical
energy landscape analysis will show which features
are common and which are specific taxonomic as-
pects of protein folding.

Depending on the statistical characteristics of the
energy landscape, either a unique folding pathway
or multiple pathways may emerge. A biological rel-
evance of the distinction between the two pictures is
that mutations can more dramatically affect the dy-
namics through unique pathways than through
multiple pathways.

The organization of this paper is as follows: in the
next section we describe the energy landscape of pro-
tein folding, discuss the properties of smooth and
rough energy landscapes, and indicate that it ap-
pears that protein folding oceurs on an energy land-
scape that is intermediate between most smooth and
most rough. In the third section we describe a simple
protein folding model that interpolates between
these two limits and exhibits both the smooth and
the rough energy landscape properties that are
present in folding proteins. The equilibrium thermo-
dynamic properties of this model are also discussed
in this section. The fourth section starts with a short
survey of the differences between the kinetics of
complex chemical processes, such as protein folding,
and the kinetics of the simple chemical processes
whose understanding forms the basis of the most
commonly used reaction rate theories. We review
how these common theories should be modified to
cope with the complexity of a process like protein
folding. Then we present the necessary modifica-
tions of kinetics and apply them to the simple pro-
tein folding model of the third section. Each scenario
has its own characteristic behavior. The folding sce-
nario observed in any given experiment depends on
the specific sequence and the refolding conditions.
The fifth section shows how the scenarios presented
in the fourth section can be understood in terms of
the phase diagram for protein folding. This phase
diagram is also discussed in detail. In the next sec-
tion we show how the energy landscape ideas can be
used to analyze data by presenting a rough but
quantitative analysis of some computer simulation
data. In the seventh section, we give a flavor of the
issues in energy landscape analysis of experimental
data through an examination of some previously
published experimental results. We also present a
tentative assignment of the folding scenarios ob-
served in these experiments. The concluding section
then summarizes the results, and discusses the sig-

nificance of the energy landscape for understanding
protein folding, for protein structure prediction, and
for protein engineering.

SMOOTHNESS, ROUGHNESS, AND THE
TOPOGRAPHY OF ENERGY LANDSCAPES

Protein folding is a complex process, typically oc-
curring at a constant pressure and temperature, in-
volving important changes in the structure of both
the chain and the solvent.®® The natural thermo-
dynamic potential for describing processes at con-
stant pressure and temperature is the Gibbs free
energy,'®*! so we will use an effective free energy
that is a function of the configuration of the protein
to describe the protein—solvent system. Notice that
this description implicitly averages over the solvent
coordinates. This averaging means that the forces
that arise from this potential function are tempera-
ture dependent. To make these considerations more
concrete, consider the forces on two apolar groups
immersed in water. The apolar group~solvent sys-
tem has a lower free energy if the two apolar groups
are close to one another, so the solvent-averaged free
energy, mentioned above, has a minimum when the
two groups are close and becomes larger when the
groups are further apart.’? The change in the sol-
vent-averaged free energy as a function of distance
between the groups causes the groups to attract one
another. This attraction is the hydrophobic force.
Since the free energy of the apolar group-soivent
system changes as the temperature changes, like-

wise the solvent-averaged free energy and the hy-
drophobic force also change. %13

The need to consider the form of the free energy as
a function of protein conformation, which we call the
energy landscape, stems, in part, from a well-known
argument of Cyrus Levinthal.? The argument starts
by noticing that the number of possible conforma-
tions in a protein scales exponentially with the num-
ber of amino acid residues. Thus, if each amino acid
has only two possible conformations, then the num-
ber of possible conformations for a protein with 100
amino acids is 2'® = 10°°, If, as a conservative es-
timate, at least 1 ps is required to explore each con-
formation, then the time required to explore all con-
formations of the 100 amino acid protein is
approximately 10'® 5, or more than 10'°? years. From
this estimate Levinthal argued that the protein did
not have enough time to find its global free energy
minimum, so the final, folded conformation of a pro-
tein must be determined by kinetic pathways. This
argument is easily criticized. For example, one could
equally well apply it to the formation of crystals,
and conclude that crystallization can never occur!
More seriously, the argument can be used to ques-
tion how the protein could reliably find any partic-
ular conformation. In this form the argument is of-
ten called Levinthal’s paradox. The weak point in
Levinthal’s argument is the assumption that all con-
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formations are equally likely in the path from the
unfolded to the folded states. In fact, conformations
with lower free energy are more likely than those
with higher free energy. Levinthal's argument as-
sumes a free energy landscape that looks like a flat
golf course with a single hole at the free energy min-
imum. The argument breaks down completely for a
free energy landscape that looks like a funne}.*-*4-1¢
A central purpose of this paper is to further develop
this intuitive notion of energy landscape and to de-
scribe quantitatively kinetic behavior on the kinds
of energy landscapes that are encountered in protein
folding. Interestingly, Levinthal’s paradox will reoc-
cur, albeit in a complstely different form.

The most detailed description of the energy land-
scape of a folding protein molecule would be ob-
tained by specifying the free energy averaged over
the solvent coordinates as a function of the coordi-
nates of every atom in the protein. At this fine level
of description, the free energy surface of a protein is
riddled with many local minima.'"*® Most of these
minima correspond to small excitation energies con-
nected with individual local conformational changes
such as rotations of individual side chains. The en-
ergies involved in these small conformational
changes are typically on the order of kg7, that is, the
size of the thermal enerygies of the atoms in the pro-
tein. Interconversion between these shallow local
minima will be rapid on the time scale of protein
motions. Sometimes many side chains can shift, giv-
ing quite different minima with a large energy bar-
rier between them. Changes of backbone conforma-
tion can lead to globally different protein folds
involving many different interresidue contacts. The
energies involved in these larger conformational dif-
ferences can easily become many times kpT, and in-
terconversion between these deeper, globaily differ-
ent local minima can be quite slow.!”®

The interesting features of protein folding dynam-
ies concern the free energy surface viewed on this
more coarse-grained structural scale. Very different
behavior occurs, depending on whether this coarse-
grained energy landscape is “smooth” or “rough.” In
Figure 1 we show representative smooth and rough
energy landscapes. A smooth energy landscape has
only a small number of deep valleys and/or high
hills. For smoother energy landscapes there are typ-
ically many high energy structures and only a few
low energy structures. The more closely the system
resembles a few low energy structures, the lower the
energy. Thus, each of the low energy structures is at
the bottom of a broad energy valley. A protein mol-
ecule that was in one of the valleys would find itself
dynamically funneled to the lowest energy state.
Therefore, we will refer to the valley associated with
a low energy structure as a “funnel.” In this lan-
guage, a system with a smooth energy landscape has
a few deep minima, each having a large, broad fun-
nel. Systems with smooth landscapes exhibit coop-
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Fig. 1. The energy of a system (vertical axis) is sketched
against a single coordinate (horizontal axis) for representative
smooth and rough energy landscapes. The top sketch shows a
smooth landscape with only a few energy minima each having a
broad funnel leading to it. The bottom sketch shows a rough en-

ergy landscape with many energy minima each with a narrow
funnel leading to it.

erative phase transitions, illustrated by such phe-
nomena as crystallization of simple materials and in
biological macromolecules by phenomena such as
the helix—coil transition.'"® The thermodynamic
phases of systems with smooth energy landscapes
are determined by the temperature. At high temper-
atures, the large number of high energy structures
predominate, but as the temperature of the system
ig lowered, the system will occupy the lower energy
states. Dynamically, below a transition tempera-
ture, such systems will fall into a funnel of low en-
ergy states and may remain trapped there. In typi-
cal cooperative transitions such as erystallization,
once a large enough nucleus of low energy structure
is formed, the rest of the low energy structure forms
rapidly.*-22

Thermodynamically, protein tertiary structure
formation for smaller proteins has been shown to
exhibit this type of cooperative behavior. For small,
single domain proteins, at most two states are ob-
served on the longest time scales under physiologi-
cal solvent conditions: One a high entropy high en-
ergy discrdered phase corresponding to the unfolded
protein, and a lower entropy low energy phase de-
scribing the folded protein.®® The fact that the phase
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space is divided into two main parts is confirmed by
the coincidence of transitions measured by different
probes such as optical rotation or fluorescence.?*~2¢
In addition on the longest time scales, one sees only
a single exponential in the kinetics of folding. Sim-
ulations of protein folding have shown evidence of
nucleation-like behavior.?’ Thus these aspects of
tertiary structure formation are characteristic of a
system with a smooth energy landscape.

Smooth energy landscapes are so commonly used
in the description of problems that systems with
rough energy landscapes are considered exotic and
have only recently been studied by chemists and
physicists. A rough energy landscape would be one
that, when coarse grained, has many deep valleys
and very high barriers between them. In such a
rough energy landscape there are a very large num-
ber of low energy structures that are entirely differ-
ent globally. Each of these diverse low energy struc-
tures has a2 small funnel leading to it.

The thermodynamic and kinetic behavior of sys-
tems having rough energy landscapes is quite dis-
tinct from those with smooth landscapes. Rough en-
ergy landscapes occur in problems in which there
are many competing interactions in the energy func-
tion. This competition is called “frustration.” The
paradigm for a frustrated system is the spin glass, a
magnetic system in which spins are randomly ar-
rayed in a dilute alloy.?®3° The interactions be-
tween spins are equally often, and at random, ferro-
magnetic {the spins want to point in the same
direction} and antiferromagnetic (the spins want to
point in opposite directions). These two conflicting
local tendencies (one to parallel spins, the other to
alternating spins} cannot be satisfied completely in
any arrangement of spin orientations. Thus, the sys-
tem is said to be “frustrated.” Many optimization
problems that arise in economic contexts have rough
energy landscapes because of frustrated interac-
tions. An economic example of a rough landscape is
provided by the traveling salesman problem. In this
problem one attempts to minimize the total length of
a journey which visits each of a set of randomly ar-
rayed cities precisely once during the trip. Here
searching for the minimum length trip leads to an
optimization problem in which there are many al-
ternate routes that have very nearly the same value
of the required length (equivalent to multiple min-
ima). The frustration here arises from the constraint
of a single visit to a city because of an occupancy tax;
no central location can be used as a base. Finding
the optimal solution to this problem is a difficuit
task. Computer scientists have developed a set of
ideas that describes many problems that are hard to
solve.?? Although the precise technical framework
of these ideas is elaborate, the basic idea is simple;
there exists a set of difficult problems that cannot be
solved by any known polynomial time algorithm,
and it is generally believed that no such algorithm

exists. These problems are called NP-complete. Here
by polynomial time algorithm we mean that the
amount of computation time required to solve the
problem grows no faster than some fixed power of
the problem size, e.g., the number of cities in the
traveling salesman problem. Furthermore, the gen-
eral mode!l of computation used in NP-completeness
proofs is thought to be able to simulate any natural
system, so the limitations that NP-completeness im-
pose on computation probably hold for all natural
systems, e.g., folding proteins, the human brain ete..
Thus, solutions to NP-complete problems require an
exponential, rather than polynomial, amount of
time. In practical terms, NP-completeness means
that the amount of time required to solve even mod-
est size problems can become astronomically large.
The traveling salesman problem is an example of an
NP-complete problem; that is, its solution for the
general case requires exponentially more computa-
tional time as the size of the problem grows. Finding
the lowest free energy state of a macromolecule with
a general sequence also has been shown to be NP-
complete.®® NP-completeness is a worst case analy-
sis; if a problem is proven to be NP-complete then
finding the selution to at least one case requires an
exponential computation time. In economic situa-
tions these computational difficulties are avoided by
choosing to be satisfied with an acceptable solution
or by selecting the conditions of the problem so that
easy answers can be found. An example of the latter
is the introduction of the “hub” system to airline
traffic. A central city, perhaps not usually visited, is
introduced as a place that can be multiply visited at
little cost. Similarly for the physicist’s spin glass,
there are some specifically chosen arrangements of
ferromagnetic and antiferromagnetic interactions so
that each interaction can be satisfied in a single con-
figuration. The arrangements of interactions which
do this are relatively improbable. Therefore, in the
context of proteins, NP-completeness means that
there are amino acid sequences that cannot be folded
to their global free energy minimum in a reasonable
time either by computer or by the special algorithm
used by nature. Thus, in analegy with the economic
situation, either naturally occurring proteins fold to
a structure that is not a global minimum or they
have been selected to be members of the subset of
amino acid sequences that cen fold to their global
free energy minimum in a reasonable time. The NP-
completeness proof alone does not distinguish be-
tween these two possibilities, If the latter possibility
is correct then one approach to predicting structure
is simulated annealing.?* Starting at high temper-
ature, the system is slowly brought to low tempera-
ture while following its dynamics. These stochastic
search algorithms parallel the Levinthal paradox
for protein folding kinetics. Such an approach can
work only if the computer’s energy landscape is suf-
ficiently close to the one that nature used.
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In any case, even if proteins fold to a structure
that is not a global minimum, i.e., folding is kinet-
ically controlled, they must reliably fold to a single
structure. Recent experiments on random and de-
signed amino acid sequences have shown that reli-
able folding is not a universal property of polypep-
tide chains, and that multiple folded structures are
the rule rather than the exception.***® Thus both
theory and experimental evidence indicate that such
reliable folding characterizes only a small fraction of
amino acid sequences. Proteins are a subset of this
fraction of reliable folders. Later in this paper we
discuss a property we call minimal frustration. Ev-
idence from theory and from simulation indicates
that amino acid sequences with minimal frustration
are likely to fold reliably.

What are the possible sources of frustration in the
general case of a heteropolymer? Consider the hy-
drophobic effect, which for illustration we think of
as a contact interaction favoring hydrophobic pairs
or hydrophilic pairs. Because of the constraint of
chain connectivity for most random sequences
bringing together a hydrophebic pair distant in se-
quence will require bringing together other pairs in
the sequence which will often be dissimilar and
therefore unfavorable.* This situation could be
avoided in natural proteins by choosing simple pat-
terns of hydrophobic-hydrophilic alternation like
those seen in B-barrel proteins.®” Similarly, for most
sequences the hydrophobicity pattern favoring a
particular secondary structure (a-helix or B-sheet)
might or might not be consistent with the tendency
of each amino acid to be in that secondary structure.
Indeed, in general there is usually some conflict of
this sort, since the ends of a-helices have unsatisfied
hydrogen bonds, but the helices must be broken so
that a compact structure can form, satisfying the
hydrophobic forces. Sequences may need special
start or stop residues to form terminal hydrogen
bonds gracefully, using side chains.33-%%

Polymers can also exhibit another kind of frustra-
tion. A molecule often needs to overcome an energy
barrier to change from one structure to another.
This notion has been used explicitly in the simula-
tion studies of Camacho and Thirumalai and of
Chan and Dill where they constructed paths with
minimal energy barriers between similar configura-
tions in their protein folding models and used this
network of pathways to map out several features of
the energy landscape.*®~*2 If this energy is too high
to overcome in a reasonable time, for example, some
fraction of the folding time for a protein, then we
may say that the two structures are not “dynami-
cally connected.” Two different structures may re-
semble each other, and even have similar free ener-

*It is useful for the reader to study Figure 2, in which we
illustrate the varying degrees of frustration for twe sequences
of a lattice tnodel of a heteropolytmer.

gies, but they may be unable to reconfigure from one
to the other one in any reasonable time scale. Such
structures would not be dynamically connected. In
particular, for polymers, geometric constraints arise
because the polymer chain cannot pass through it-
self. This effect is called excluded volume, and may
give rise to an enormous energy barrier. In this case
one can easily have two structures that resemble
each other but are not dynamically connected.
Leopold et al. have explicitly shown that this situa-
tion occurs in some simple models of protein fold-
ing.'® We will refer to this kinetic phenomenon as
geometric frustration.

Systems with rough energy landscapes also ex-
hibit effective phase transitions.?®-3® When the
temperature of such a system is lowered, it tends to
occupy the lower energy states and at a transitien
temperature will become trapped in one of them.
Generally, these transitions are accompanied by a
considerable slowing of the motion as the system
tries to exit over the high energy barriers. In the
case of liquids being supercooled below their freez-
ing point, this phenomenon is known as the glass
transition.*®* Below the glass transition tempera-
ture, the liquid is trapped in a single deep minimum
and thus it looks like a solid. The thermodynamics of
this solid depends on its detailed thermal history.
Typically, systems with rough energy landscapes ex-
hibit glass transitions analogous to those that occur
when liquids are supercooled below their freezing
point. As the system approaches the glass transi-
tion, the slow transitions between minima leads to
strongly nonexponential time dependences for many
properties.

Typically a heteropolymer with a random se-
quence interacting with itself has a rough energy
landscape. One source of the roughness is the frus-
tration arising from conflicting interactions but geo-
metric constraints may be important too. In either
case, energetic or geometric frustration, there will
be a large barrier to reconfigure between these con-
figurations. This is a natural starting assumption
for thinking about heteropolymer dynamics since
one expects this behavior generically for heteroge-
necus systems. The implications of the roughness of
heteropolymer energy landscapes for protein folding
were first discussed by Bryngelson and Wolynes who
postulated that the energies of the states of a ran-
dom heteropolymer could be approximately modeled
by a set of random, independent energies.* This
model is known as the random energy meodel in the
theory of spin glasses.*~*" The random energy
model approximation used by Bryngelson and
Wolynes was later shown to be equivalent to a more
conventional replica mean field approximation by
Garel and Orland*® and by Shakhnovich and Gu-
tin.*? A direct demonstration of the roughness of the
energy landscape for heteropolymers has been car-
ried out for small lattice model proteins with simple
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Fig. 2. The ground state of two different sequences for a 27-
mer, with two different types of monomers (two letter code) on a
cubic lattice. If two monemers are adjacent in space, but not along
the chain, then there is an attractive interaction between them,
This interaction is strong if the monomers are of the same type
and weak if they are of different types. For all figures we use the
following notation: solid lines represent covalent bonds, dashed
lines represent spatial contacts with weak interactions, and no
fines are drawn for spatial contacts with strong interactions. The
model for this 27-mer is presented fully in the section on Energy
Landscape Analysis of Foiding Simulations. The strong interac-
tions are equal to —3 and the weak ones to — 1 in arbitrary energy
units. The most compact configurations will be cube-like and they
have 28 spatial (nonbonded) contacts. Sequence (A) has only
strong contacts in its ground state. For this reason we call it a
nonfrustrated ground state. (A1) The ground state structure for
this sequernce. We calf it nonfrustrated because all contacts are
optimal. We show in the section on Foiding Simulations that this
sequence is a good folding sequence. This is not the case for
sequence (B). Its ground state configuration has 4 weak interac-
tions, as shown in B1. For this reason we say that this sequence
is frustrated, i.e., it is unabie to optimize all the interactions

k

A2

and it has to compromise with some weak ones. We show in the
section on Folding Simulations that sequence (B) is not a good
folder. However, there is a more interesting way of observing
frustration. Let us call & a measure of similarity between the
ground sfate configuration and any other configuration (cormpact
or noncompact) for a given sequence. The quantity O measures
the number of contacts between pairs of residues that are the
same for a given configuration and its ground state one. There-
fore, Q is a number between 0 and 28. Most of the configurations
with energy just above the ground state in sequence (A) have Q
between 18 and 26, i.e., very similar to the ground state configu-
ration. An example of such a configuration is shown in A2 where
the energy is —78 and Q is 26. The situation is compietely differ-
ent for sequence (B). There are configurations with energy just
above the ground state configuration that have a @ between 4 and
12,1.e., they are very different from the ground state. An example
of one of these configurations is shown in B2 where the energy is
—72 and Q is 9. In this case, there are lots of low energy states
that are completely different but energetically very similar. When
the system gets trapped in one of these low anergy states, it takes
a long time to completely reconfigure before it can try to fold again.
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interactions. Here the exact enumeration of config-
urations can be carried out and it can be directly
established that there are configurations very close
in energy to the ground state that have topelogically
distinct folds for most random sequences.?*~55 Work
on realistic lattice models for small proteins con-
fined to their proper shape (where complete enumer-
ation can be carried out) suggests the possibility of
deep low energy structures that are globally differ-
ent in form.**37 Even for a well designed sequence
(i.e., one designed to have a smooth energy land-
scape) some roughness may remain. Early direct ev-
idence for roughness in the energy landscape of pro-
tein folding simulations of designed sequences is
provided by the work of Honeycutt and Thirumalai,
who looked for and found deep multiple energy min-
ima in their simulations of B-barrel folding.>®5° Fi-
nally, the historical difficulty of predicting protein
structure from sequence arises from the “multiple
minimum problem,” that is, the existence of many
minima in the empirical potential energy functions
used to predict these structures. The large number
of minima indicates that the energy landseape of
these potential functions is rough. The importance
of the multiple minimum problem, and therefore the
roughness of the energy landscape, as an impedi-
ment to structure prediction has been emphasized
by Scheraga and collaborators.®?

Some experimental features of protein folding
suggest a considerable roughness to the energy
landscape. Although protein folding appears to be
exporential in time, short time scale measurements
show the existence of intermediates. Also, multiex-
ponential decay of relaxation properties is seen in
these early events.®® Many of the time scales in-
volved in protein unfolding have very large appar-
ent activation energies, suggesting high energy bar-
riers. There is the occasional report of history
dependence to protein folding, although, this is ab-
sent from studies on smaller proteins in vitro 2?

QUANTITATIVE ASPECTS OF THE
STATISTICS AND THERMODYNAMICS OF
A FOLDING PROTEIN

In the previous section we found that a folding
protein exhibits behaviors that are characteristic of
both smooth and rough energy landscapes. Thus,
from the phenomenoclogical viewpoint it is evident
that protein folding occurs on an energy landscape
that is intermediate between the most smooth and
the most rough. A simple model proposed by Bryn-
gelson and Wolynes interpolates between the two
limits and illustrates the basic ideas of the energy
landscape analysis of protein folding."®* When

'In this section we use the word “energy” to describe the free
energy of a given complete configuration of the protein. Such a
configuration has many selvent configurations consistent with
it. Thus our energy landscape has a temperature dependence

stripped down to its bare essentials, this picture of
the folding landscape is based on two postulates: The
first captures the rough aspeets of the energy land-
scape. It is postulated that (for natural proteins) the
energy of a contact between two residues which does
not oceur in the final native structure of a protein or
the energy of a residue in a secondary structure
which does not turn out to be ultimately correct can
be taken as random variables; that is, in its non-
native interactions, a protein resembles a random
heteropolymer. In its extreme form this suggests
that we can take the energies of globally distinet
states to be random variables which are uncorre-
lated, provided no native contacts are made and no
native secondary structure is formed. A second pos-
tulate captures the smooth aspects of the folding
landscape. When a part of the protein molecule is in
its correct secondary structure, the energy contribu-
tions are expected to be stabilizing. In addition,
when a correct contact is made, although occasion-
ally the energy may go up, on the average over all
possible contacts, the energy will go down. Thus if
the similarity to the native structure is used as a
distance measure, the surface may have bumps and
wiggles but the energy generally rises as we move
away from the native structure. Thus there is an
overall energetic funnel (of the sort discussed in the
previous section} to the native structure.

Bryngelson and Wolynes used the term “the prin-
ciple of minimal frustration” in describing the
smoothness postulate, insofar as it is what distin-
guished natural proteins from random heteropoly-
mers. The smoothness of folding landscapes arises
from the selection of protein sequences by evolution.
If the necessity to maximize the ability of folding
quickly is the dominant selection pressure, the
smooth part of the energy landscape will be para-
mount. On the other hand, there are other selection
pressures as well. Thus evolution may rot be able to
remove some frustrated interaction from natural
proteins. Indeed, neutral evolution would suggest
that randomness and frustration would continue to
exist to an extent that allows only adequate stability
and kinetic foldability, The minimal frustration of
natural proteins is evident in several ways. Exami-
nation of X-ray structures shows that side chains
are in fact chosen by evolution to make coherent
contributions to supersecondary structures. Clear
examples are leucine zippers® and the B-barrel am-
phiphilicity mentioned earlier. Symmetric se-
quences like these often lead to low frustration in
symmetric structures. Consistency between second-
ary structures and global tertiary structures is also
important. This is the “principle of structural con-
sistency” enunciated by G4.53

Purely kinetic effects also limit the folding of pro-

due to hydrophobic forces. We do not consider this effect when
we discuss the pure effects of temperature in this section.
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teins. For example, if the minimum energy struc-
ture is not dynamically connected (in the sense de-
scribed in the previous section) to any other low
energy structures, then it would be kinetically inac-
cessible in spite of its low energy. The importance of
kinetic effects for protein folding was investigated in
the previously mentioned study of Leopold et al.l®
They simulated the folding of two “sequences” with
their simple model, one of which folded rapidly to its
global energy minimum, the other of which failed
to find its global energy minimum in several long
runs. Analysis of the dynamic connectivities pro-
duced by the two “sequences” showed that the min-
imum energy structure of the rapidly folding se-
quence had a rich network of dynamic connections to
most of the other low energy structures. In contrast,
the minimum energy structure of the other sequence
was sparsely connected to other low energy struc-
tures.

A figure encompassing the qualitative consider-
ations about the folding landscape is pictured in Fig-
ure 3A. Of course, no low dimensiona] figure can do
Jjustice to the high dimensionality of the configura-
tion space of a protein, but one sees that the domi-
nant smooth features of the landscape depend on
how close a protein configuration is to the native one
and this coordinate is specifically shown as the ra-
dial coordinate in the figure. There are a variety of
ways of measuring the similarity of a protein struc-
ture to the native structure. One can take the frac-
tion of the amino acids residues which are in the
correct local configuration. This is a choice used in
the original papers of Bryngelson and Wolynes.*-¢
Another possibility for measuring tertiary structure
is the fraction of pairs of amino acids which are cor-
rectly situated to some accuracy. This measure is
related to the distance plots used by crystallogra-
phers.®*®% The similarity measure may also be
thought of as a measure of the distance between the
two structures, so that similar structures are con-
sidered to be close to one another. We denote the
similarity of a protein structure to the native strue-
ture by n. We will take n = 1 to denote complete
similarity to the native state and n = 0 to denote no
similarity to the native state. The radial coordinate
in Figure 3A should be thought of as this similarity
measure n. The average energy of a state with a
certain similarity to the native structure has a value
that gets lower as the native structure is ap-
proached—thus the overall slope of the energetic
funnel. On the other hand the rugged part of the
energy landscape means that no individual state has
precisely this energy and we can characterize the
fluctuations in energy with a given similarity to the
native structure by the variance, AE%(n). The rug-
gedness of the energy landscape as measured by this
variance clearly depends on the compactness of the
protein molecule since it arises from improper three-
dimensional ¢ontacts. In general, the variance may

also conceivably decrease as the native structure is
approached, but this is not essential for our picture.

The energy of a given state arises from the con-
tributions of many terms, so it is natural to assume
that the probability distribution of energies for any
similarity to the native structure is given by a Gaus-
sian distribution,

1 {E - E(n))?
PE) = —— =
V2wAEXn) exp 2AFE%n) (1

The other important feature of the statistical
landscape description is the number of conforma-
tioral states of a protein as we move away from the
native structure. The total number of conforma-
tional states grows exponentially with the length of
the protein. If there are vy configurations per residue,
this total number of configurations is O = .y
depends on the level of description of the model. It ig
of order 3, 4, or 5 for the backbone coordinates, but
might rise to roughly 10 if the side chain configura-
tions are also included in the analysis. As noted
above, the ruggedness of the energy landscape is
most important when the protein is compact. The
number of compact configurations is considerably
smaller than the total number and can be estimated
from Flory's theory of excluded volume in poly-
mers.%®%7 O(R) decreases quite considerably as the
radius of gyration of the protein falls. For maxi-
mally compact configurations of the backbone, (I{R)
= v*¥ where v* is of the order 1.5.

The completely folded protein has a much smaller
degree of conformational freedom. Essentially a sin-
gle backbone structure exists. Thus the number of
configurations of the protein decreases as we move
toward the native structure. Therefore, if (Xn) de-
notes the number of structures with a similarity
measure with the native structure of n, then Q{n}
and

Syiny = kg log Qn} (2)

decreases as n gets larger, The exact similarity mea-
sure determines the behavior of Sy(n). For our pur-
poses here we need only take a simple form of Sy(n)
that decreases as the native state is approached.
Roughly speaking, we can approximate  as a func-
tion of n by 1 = y*Vii-m

As one moves away from the native structure
there is a huge increase in the number of accessible
states, which we can think of as living on the
branches of a highly arborized tree as is shown sche-
matically in Figure 3B. Not all of the states on a
statistical landscape are thermodynamically or ki-
netically important, since the high energy states
cannot be thermally occupied. The number of states
with a specified energy E, which have a specified
similarity, n, to the native structure, is given by

UE,n) = vN1-mpgy (3)
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Fig. 3. (A) Sketch of an energy landscape encompassing the
qualitative considerations about the folding. The energy is on the
vertical axis and the other axes represent conformation. This land-
scape has both smooth and rough aspects. Overall, there is a
broad, smooth funnel leading to the native state, but there is also
some roughness superimposed on this funnel. Of course, no low
dimensional figure can do justice to the high dimensionality of the

configuration space of a protein. {(B) A schematic drawing of pra-
tein conformations in refation to their similarity to the native state.
The vertical direction is a folding reaction coordinate. The confor-
mations that are higher in the figure are more similar to the native
state. As one moves away from the native structure there is a
huge increase in the number of possible conformations.
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At thermal equilibrium, oniy a small band of en-
ergy is occupied with a certain similarity to the na-
tive structure. For a large protein, this band will be
relatively well defined in energy. The most probable
value of the energy in this band can be obtained by
maximizing the thermodynamic weight of states of a
given energy. This is a product of the Boltzmann
factor and the number of states of that energy

1
pER) = Z NE n)e E/%eT 1)

[Note: Do not confuse p(E) above with the P(E) de-
fined in Eq. (1).] Here Z is the partition function,
which ensures normalization of the probability func-
tion. Thus the most probable energy with a certain
similarity to the native structure is given by

AE(n)?
kgT
and the number of thermally occupied states is

Eqp(ny = E(n) — (5)

Soln)  AE(n)?
QEmp(nin] = exp[ 22 o } 6)

ks 20kgT)>

The entropy of the thermally occupied structures
that have a certain similarity to the native structure
is

S[Enp(n)n] = kg log[UEw 4 (n),n)] . (7)

We see from these expressions that there are two
oppesing thermodynamic forces involved in the fold-
ing process. The growth in the number of thermally
occupied states as we move away from the native
structure favors a large number of highly disordered
configurations. On the other hand, the decreasing
average energy as one approaches the native struc-
ture favors folded configurations. These two features
are combined by thinking of the free energy as a
function of the configurational similarity n at a
fixed temperature T,

Fln) = Em_p_(n) - TS[EmAP_(n),n]
_ AE(n)?
= ~ - TSyn). :
Ein) SET Spln) (8

This free energy function is the logarithm of the
thermodynamic weight of states with a certain sim-
Harity to the native structure. We see in Figure 4 a
representation of this free energy and of the proba-
bility of occupation. At high temperatures, the band
of states with nearly no native structure is favored,
corresponding to an unfolded state. At very low tem-
peratures the folded configurations would be favored
and, in between, a double minimum effective free
energy pertains. The folding temperature is deter-
mined by the condition that the two global minima
be equal in thermodynamic weight. The unfolded

minimum can correspond to two distinct sets of
states corresponding to different values of a distinct
order parameter, the radius of gyration.® If the ran.
domness is large and nonspecific interactions are
important, or the chain is highly hydrophobic in
composition, this minimum itself can be collapsed.
This may well correspond to the molten globule
state.®® On the other hand, if there is little average
driving force to collapse due to nonspecific contacts
[AE(r)? small] the disordered configurations will be
noncompact and this corresponds to the traditional
denatured random coil state. We note that many in-
termediate degrees of order can exist in the molten
globule phase and these can and should be taken
into account in a complete analysis. However, the
simple one-parameter analysis captures the essen-
tials and sheuld fit data over an appropriately re-
stricted range of thermodynamic conditions.

QUANTITATIVE ASPECTS OF THE
KINETICS OF A FOLDING PROTEIN

The theoretical formulation of the kinetics of pro-
tein folding differs from the classic formulation of
transition state theory in some important ways.
Most of our ideas concerning rate thecry had their
origin in studies of gas phase reactions of smaill mol-
ecules and simple unimolecular reactions in lig-
uids.®*™ Four important properties of these simple
reactions will illustrate the most important points of
contrast with protein folding. First, in the simple
reactions solvent is either absent or plays a passive
role, e.g., as a heat bath or source of friction. Second,
the initial state, final state, and transition state all
refer to single, fairly well-defined structures so en-
tropy considerations are not important. Third, there
is a single, fairly well-defined reaction coordinate.
Fourth, the effective diffusion coefficient for moving
along the reaction coordinate changes very little as
the system moves from the initial to the final state.
Protein folding is completely different from these
simple reactions.>**#!""! First, in protein folding,
the solvent plays a vital role in stabilizing the foided
state. As explained above, the important role of the
solvent means that the potential of mean force,
which here plays the role of the energy as a function
of configuration, is a function of temperature and
solvent conditions. Second, the initial denatured
state, final folded state, and transition states all re-
fer to sets of protein structures, so the configura-
tional entropy of the protein chain is a Nnecessary
part of the description of protein folding. Third,
there are many possible reaction coordinates and
pathways. Fourth, the dynamics of the protein chain
changes qualitatively during the course of folding;
in particular, an open chain has far greater thermal
motion than a collapsed chain. Therefore, the effec-
tive diffusion coefficient for motion along a reaction
coordinate for folding probably can also change
qualitatively between the initial and final states.
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Fig. 4. Sketches of the free energy (solid lines) and probability
of occupation (dashed lines) against a folding reaction ceordinate
for three different temperatures. The value n = 1 corresponds to
the native structure. The top sketch shows the situation for high
temperatures, where the free energy function has a singie mini-
mum near n = 0, 1.e., in highly unfolded states. Here the molecule
15 far more likely to be in an unfolded conforrnation than it is to be
a conformation similar to the native structure, as it is shown by the

Below we will discuss the modifications to the tran-
sition state theory framework that are needed to de-
scribe protein folding kinetics.

The gradient of the free energy function F(n), de-
scribes the overall tendency for the system te move
and change its value of n. The average flow in con-
figuration space will tend to minimize the free en-
ergy. For typical forms of the expressions for the
energy and the entropy as a function of similarity to
the native state, n, F(n) will tend to have one or two
minima, so the system will be unistable or bistable.
If the system is unistable and the conditions are fa-
vorable for folding, then the single minimum of the
free energy function must occur near the native
gtate. A unistable free energy function with its min-
imum near the native state would require a huge
thermal driving force. We call this situation “down-
hill” protein folding. Downhill folding is rare in slow
timescale in vitro protein folding experiments car-
ried out in conditions near the transition between
equilibrium foiding and equilibrium unfolding.

dashed lines. As the temperature is lowereq, the free energy de-
velops a second minimum, one of them similar to native structure.
There is a a free energy barrier between these minima. At these
temperatures the probability of occupation is bimodal, with one
unfolded and one nearty native peak. Finally at low temperatures,
there is again a single minimum in the free energy, but this min-
imum is near the native structure. Here the molecule is very sim-
itar to the native structure.

Downhill folding may be common in strongly nativ-
izing conditions, in the initial stages studied in fast
timescale folding experiments,%! and in vivo. In
downhill folding the protein felds by making a
straight run down the average free energy gradient.

An analogy with transition state theory%®7°
yields a simple estimate for the folding rate, or
equivalently, the folding time.® In transition state
theory the reaction rate is given by the rate of going
through the bottleneck for the reaction. Tradition-
ally, this bottleneck is the highest free energy state
in the reaction coordinate pathway from the reac-
tant state to the product state. This bottleneck is
called the transition state. In transition state theory
the rate of going through the transition state de-
pends on the free energy barrier, i.e., the difference
between the transition state free energy and the re-
actant state free energy. In downhill folding there is
no free energy barrier. However, there is a bottle-
neck for folding in downhill folding, because the ef-
fective diffusion coefficient for motion along a reac-
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tion coordinate changes qualitatively during the
course of folding; the region with the smallest diffu-
sion coefficient is the kinetic folding bottleneck. Let
n) denote the typical lifetime of an individual mi-
crostate with a similarity n to the native structure,
This lifetime is 2 measure of the rate of motion along
the reaction coordinates for folding; the larger 7 the
smaller the effective diffusion coefficient and the
slower the folding rate. The kinetic bottleneck for
folding occurs at the value of n that maximizes ¥(n),
which we denote by n{;,. The subscript kin stands
for kinetic and the reason for using this subscript
will become apparent below. Therefore, a simple es-
timate of the folding time, 1, in analogy with tran-
sition state theory, is given by

T =Hnly . )}

Notice that the time in Eq. (9) is a lower bound on
the folding time, hence an upper bound on folding
rate. This property is expected because the transi-
tion state technique gives upper bounds on reaction
rates.” We shall discuss the meaning of nijn in more
detail below. For now notice that ny,, is not the lo-
cation of the top of the free energy barrier, as in
conventional transition state theory.

The roughness of the energy surface determines
the lifetime of individual microstates. The detailed
distribution of these lifetimes can be determined
from a detailed analysis and it is rather broad. How-
ever, a reasonable first approximation to the typical
escape time is easy to obtain. Most minima along a
perimeter of constant n are surrounded by ordinary
states with nearly the average energy, E(n). Thus
the barrier height for hopping is £ — E.. = (AE/
kgT)?. This gives an escape time with a super-Ar-
rhenius temperature dependence

Hn) = el 38 kD" (10)

The prefactor ¢, is the timescale for a typical motion
of a large segment of the chain. It depends on local
barriers and on the solvent viscosity, which is itself
temperature dependent. Isoviscosity studies of pre-
tein folding are therefore quite interesting. The non-
Arrhenius temperature dependence exhibited here
is sometimes called the Ferry law™ and it describes
the slow dynamics of many glassy systems. As ex-
pected, increasing the roughness of the energy land-
scape greatly slows down folding.

What happens to the escape process as the tem-
perature is lowered? The above estimate assurnes
many channels for escape exist and an average one
can be taken. But as the temperature is lowered it
becomes preferable to find an unlikely channel with
an improbably low barrier. A subtle analysis® shows
that, for a given value of n, the escape time goes no
lower than a “search” time

= ggeSimiihe (11)

This is the average number of steps taken by the
protein to find a state of negligible barrier. This is
the Levinthal time for searching states at fixed pe-
rimeters, i.e., fixed value of n. For a given n this
escape time is reached at a temperature

(12)

AE(R)g 172
Tyln) =

2kgSo(n)

The analysis of Bryngelson and Wolynes also shows
that for T > T {n) the protein has kinetic access to
representative section of the perimeter (see Fig. 2)
$0 the behavior of a typical protein molecule can be
replaced by the behavior of a statistical ensemble. In
this case Eqs. (9) and (10) for the folding time are
valid.* For T < T,(n) the protein has kinetic access
to very few structures. These structures are not nec-
essarily representative of the statistical ensemble,
so the proteins behavior is dominated by the details
of its specific energy landscape. In this case Eqgs. (9)
and (10} for the folding time must be modified. Tech-
nically, the kinetic behavior of the protein molecule
becomes non-self-averaging, a term we discuss later
in this section.

A system with a fixed n also undergoes a thermo-
dynamic second-order phase transition at T (n) in
which the protein is effectively frozen into one or few
of a small number of low energy states. Using Eq.
(6), we see that for T = T (n), the number of ther-
mally occupied states no longer scales exponentially
with the size of the protein.’ Conversely, as a pro-
tein folds at a fixed temperature 7', the similarity to
the native structure, n, becomes larger. However,
the entropy, SIE, , (n),n], decreases as n becomes
larger, i.e,, there are fewer states available to the
protein molecule as it approaches its native struc-
ture. A typical protein runs out of entropy at some
value n, of n. This vanishing of configurational en-
tropy is precisely the previously noted second-order
phase transition, this time taking T rather than n to
be constant. The critical values of the temperature
and the fraction native structure are related by T =
Ty(n,), where T is the temperature at which the
folding experiment is carried out. In addition, Bryn-
gelson and Wolynes have shown that the glass tran-
sition can occur only for a protein that already has
collapsed.® Therefore, for any given temperature T,
for values of n = n_(T) the kinetic description pre-
sented in this section is valid and the folding kinet-
ics are self-averaging, and for n > n{(T) the protein

“The more subtle analysis by Bryngelson and Wolynes shows
that the full time dependence of ¢ is slightly more complicated:
For T > 2T (n), Hn) = teexpl(AE(n)ikyT)?, as in Eq. 10)
above, but for 2T 4n} > T > T (n), this equation must be mod-
ified o Hn) = toexp(Sy(ny + (UkgT (n) — 1k, TIAE(R),

*Applying Eq. (6} literally would imply a thermally accessi-
ble perimeter with less than one state because the entropy
analysis neglects finite size corrections.
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is in the glassy phase, and its kineties becomes non-
seif-averaging.

For bistable systems, there are two minima of free
energy with a maximum of free energy between
them. In folding conditions the minimum close to
the native state has a lower free energy than the
minimum corresponding to the unfolded state. The
free energy barrier for folding, ¥\, .., i8 given by
the difference between the free energy of the un-
folded minimum, F(n ) and the free energy of the
barrier top, F(nf},). The subscript th stands for ther-
modynamic and the reason for using it will become
clear momentarily. Systems to the right of the top of
the free energy barrier, i.e., with n > aj,, tend to
become folded; those to the left, i.e., with n < n},
would become unfolded on the average. A straight-
forward generalization of transition state theory®
indicates that the overall folding time is given by

1 = Hafy)e" kT (13)

where Fi,, = Fi (Risq) — Fn,o) and Aiin is the value of
n that maximizes the above expression for 1. One
may think of ni;, as the similarity to the native
state where the bottleneck for folding occurs. The set
of states with n = Rim acts like the transition state
for folding when we consider influences of external
agents on rates.

Although Eq. (13) for the folding time has the
same form as analogous expressions from tradi-
tional transition state theory, there are three impor-
tant differences. First, the prefactor is ¥(ny;,), the
typical lifetime of an individual microstate at a sim-
ilarity n;-m to the native structure. The correspond-
ing prefactor in absolute rate theory would be an
expression involving only fundamental constants.
The need for the prefactor based on the lifetime of
the microstates stems from the greater complexity of
protein folding as compared with the gas phase re-
actions which absolute rate theory was originally
designed to describe. This lifetime strongly depends
on the roughness of the surface. Ignoring this fact,
we see that the folding is considerably less than the
Levinthal estimate, because some of the configura-
tional entropy loss is balanced by the gain in energy
as the native structure is approached. The second
difference is that nim, the analogue of the transition
state in Eq. (13) for the folding time, is determined
by maximizing the entire folding time expression in
this equation. In contrast, in traditional transition
state theory, the transition state is a maximum of
the free energy, which would here correspond to
nf,. If the average lifetimes £(n) were constant, i.e.,
independent of n, then nf;, would equal n},. How-
ever, in protein folding, we expect the average life-
times #(n) to vary strongly with n, so nj, will ot
always equal n}, and the difference can be large and
important. More concisely, the position of the kinetic

folding bottleneck, niin, is not necessarily the same
as the position of the thermodyramic folding bottle-
neck, nfh. Third, whereas in traditional transition
state theory the transition state typically is a spe-
cific configuration, the transition state in our fold-
ing time expression (13) corresponds to an entire
band of states in the full configuration space and
should not be thought of as a unique configuration.
Furthermore, since the potential of mean force of the
protein chain is dependent on temperature and sol-
vent conditions, the location of the transition state
band will change as the temperature and solvent
conditions change. This situation is in marked con-
trast to the case of small molecules in the gas phase
in which the transition state can be thought of as a
single structure which is fixed for all reaction con-
ditions.

Notice that the free energy gradient provided by
the minimal frustration principle leads to multiple
paths approaching this transition state surface as
long as the glass transition has not been reached
and that this is crucial to overcoming the entropy
loss on folding. The expected temperature depen-
dence of the folding time is obtained by combining
Eq. (13) for the folding time and Eq. (10) for the
average lifetime of a microstate. The result, after
taking the logarithms in order to simplify the resul-
tant expressions, is

(14)

( z ) Fln AE(nfn?
log = =
ty

to)  kaT  kgTR

Notice that if F;, and AE(niin) are assumed to be
temperature independent, then Eq. (14) implies that
an Arrhenius plot of folding time versus inverse
temperature would be curved, and in fact parabolic.
Such curved Arrhenius plots are frequently ob-
served in protein folding experiments.” Unfortu-
nately, these plots can not be used to derive values
for F iiu and AE(ni,-n) directly. First, our discussion of
microstate lifetimes is rather rough. A more carefi1l
treatment shows that the exponent in the expression
for the lifetimes (10) must be replaced with a gen-
eral quadratic in AE(n)kzT when the system gets
close to the glass transition. Second, and more im-
portant, Ffd,, does depend on temperature, because
the free energies of the unfolded state and the fold-
ing bottleneck, the position of the folding bottleneck,
the potential of mean force of the protein molecule
all change with temperature. Similarly, AE(ni;,)
also depends on temperature. The main point here is
that a curved Arrhenius plot of the folding time
should be expected as an elementary consequence of
energy landscape properties of protein folding.

The glass transition, discussed above for downhili
folding, also occurs in systems with bistable free en-
ergy functions, in exactly the same way. As before,
when the system T > T, {(n) the behavior of a typical
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protein can be replaced by the behavior of a statis-
tical ensemble, so Eqs. (13) and (14) for the folding
time are valid. For T < T'(n) the kinetics are dom-
inated by the details of the energy landscape, so Egs.
(13} and (14) for the folding time must be modified.
The kinetic behavior in this glassy regime is non-
self-averaging, a term we now discuss.

An important feature of protein folding below the
glass transition is non-self-averaging behavior, The
idea of non-self-averaging is best approached by first
discussing its opposite, self-averaging behavior. In
simple terms, a self-averaging property is one that
depends on the overall composition of an object,
rather than its detailed structure. An illustration of
this idea is provided by alloys, for example, brass, an
alloy of copper and zinc. No order determines
whether a particular lattice site is occupied by a
copper atom or a zinc atom, so each piece of brass is
different on the atomic scale. However, in spite of
these differences, all pieces of brass with sensibly
the same composition share many properties, for ex-
ample, hardness, density, electrical conductivity,
etc. These properties are called self-averaging be-
cause the value of the property, say hardness, of a
member of a statistical ensemble, here pieces of
brass with the same composition, is almost always
nearly equal to the average value of that property
over the statistical ensemble.** Notice that self-av-
eraging is a characteristic of the ensemble and the
property taken together. Going back to the alloy ex-
ample, density is a self-averaging property for all
pieces of brass with a specified composition, but is
not a self-averaging property for all pieces of metal.
As a biochemical example, consider the ensemble of
amino acid sequences with the same length and
amino acid composition as hen lysozyme. The ability
to form a collapsed globule with approximately the
radius of gyration as a lysozyme molecule is proba-
bly a seif-averaging property for this ensemble,
whereas the ability to fold to a structure that hydro-
lyzes glycosidic bonds is almost certainly a non-self-
averaging property.

The presence or ahsence of self-averaging of a
given property has important practical implications.
If a property is self-averaging over some ensemble,
then studying that property in one member of the
ensemble suffices to learn about the property for all
members of the ensemble; if the property is non-self-
averaging, then studying that preperty in one mem-
ber of the ensemble provides no information about
the property for other members of the ensemble, The
question of whether or not a given property is self-

**More precisely, consider a statistical ensemble of objects,
and some property of the objects in the ensemble, A property iy
called self-averaging if the fluctuations of the value of that
property in the members of the statistical ensemble are small
compared to the average value of the property over the ensem-
ble. More detailed discussions of self-averaging can be found in
the references on spin glasses that we cited.

averaging is also intimately related to the question
of whether or not that property is strongly affected
by mutations. A mutation will create a new se-
quence, i.e., a new member of the ensemble. A self-
averaging property will behave in the same way in
the mutant as in the rest of the members of the
ensembie, but a non-self-averaging property will be-
have differently in each member of the ensemble,
including the mutant.

In protein folding there are several different en-
sembles over which one can average, a few of which
we now list, going from the largest, most general
ensemble to the smallest, most specific ensemble.
First, there is the most general ensemble relevant to
protein folding, that of all possible polymers of
amino acids. Experiments on random polypeptide
sequences explore this ensemble.?® Next is the set of
ensembies of amino acid sequences with fixed amino
acid composition. Experiments that investigate ran-
dom sequences with only a few types of amino acids
have studied instances of these ensembles.?®7* In-
terestingly, there is some evidence from computer
simulations of protein folding that the collapse time
for a sequence depends only on its composition; this
evidence indicates that collapse time may be a self-
averaging property over these ensembles.®® Finally,
there are the ensembles of sequences that fold to a
specific structure, e.g., the different lysozyme se-
quences mentioned in the introduction. These en-
sembles are studied in research programs that in-
vestigate the properties of different mutants of a
particular protein.

How do these considerations of the location of a
second-order phase transition corresponding to an
ideal glass transition along the folding coordinate
relative to the extrema of the unimodal and bimodal
free energy functions affect the kinetics of folding?
We see that there are several distinct folding sce-
narios, which are illustrated in Figure 5 and which
we now discuss. As stated above, for a unimodal free
energy function, downhill folding, the rate of folding
will depend mainly on the lifetimes of the individual
microstates. We call this situation a Type 0 scenario.
It is analogous to spinodal crystallization studied in
materials science.” In this case the unfolded state is
unstable; from almost any configuration there is a
conformational change that will lower the energy
with little cost in entropy. Nevertheless, this type of
foiding transition can still have a folding bottleneck,
like the folding transitions in a bimodal free energy
funetion, if the diffusion constant becomes small as
in a glass transition. The difference here is that the
folding bottleneck in a Type 0 transition will be en-
tirely kinetic, so nim will occur at the maximum of
t(n). In contrast, for a bimodal free energy function
the folding barrier will have both kinetic and ther-
modynamic contributions. The Type 0 scenario can
further be broken into two subclasses. In the first
subclass, which we call Type 0A, the glass transition
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Fig. 5. Schematic illustrations of the folding scenarios dis-
cussed in the text. Each sketch shows a qualitative plot of the free
energy against the folding coordinate. In the type O scenarios
shown at the {op, the free energy function has only one minimum
near the folded state, i.e., n = 1. In a type (A transition, shown at
the left, there is o glass transition. In a type 0B transition, shown
at the right, at some value of the folding coordinate, n,, the protein
undergoes a glass fransition and it exhibits the glassy dynamics
described in the text for the remaining of the folding process, n >
n,. The type | scenario is shown in the middle of the figure. Here

does not occur at any value of n. In this case the
folding is fast and dominated by a single rate, the
rate of going down the free energy gradient. The
kinetics in this regime are self-averaging. In the sec-
ond subclass, which we call Type 0B, the glass tran-
sition occurs before the protein reaches its native
state. Then the first part of the folding is a rapid
descent down the free energy gradient, as before, but
the glass transition intervenes and slows the folding
considerably. The overall kinetics is slower and mul-
tiexponential because different protein molecules
find themselves stuck in a few different microstates
after the glass transition, and each of these states

F(n}

— -
0 ng n 1 N

the free energy has two minima, an unfolded one and a folded
one, and there is no glass transition during the folding process.
The free energy functions in the type W scenarics, shown at the
bottom of the figure, aiso have two minima but the protein under-
goes a glass transition during the foiding process. in a type liA
scenario, shown at the jeft, the glass transition occurs after the
thermodynamic folding bottleneck at n§,. In a type 1B, shown at

the right, n§, > n,, making the folding protein glassy beiore the
thermodynamic fglding bottleneck is reached.

will fold at a different rate. Some of the microstate
lifetimes can be very long. These long-lived mi-
crostates will be observable as kinetic intermedi-
ates. The paucity of occupied microstates will lead to
discrete pathways as shown schematically in Figure
6. The kinetic behavior is strongly non-self-averag-
ing, so mutations easily change the folding kinetics.
Intermediates in one form of the protein are absent
in others.

The kinetics of the folding of proteins with bimo-
dal free energy functions fall broadly into two
classes. In the first of these, which we call Type I,
there is no glass transition at any point in the fold-
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Fig. 6. A schematic representation of the emergence of fold-
ing pathways. In this figure the native structure is on the left, so
that n increases from right to lefi. Before the foiding protein
reaches the glass transition there are many accessible paths be-
tween corformations. In this regime each molecule would take a
different path as it approached the native structure, After the toid-
ing protein goes through the glass transition it has access to oniy
a few paths, so most moiecules will take one of a few, or perhaps
only one, path to the native structure.

ing, just like the Type 0A folding scenario noted
above. Type I scenarios are analogous to nucleation
followed by rapid growth.” In this case the folding
is dominated by a single rate, the folding time being
given by Eq. (13). The protein has kinetic access to a
representative section of the folding bottleneck, so
the rate of folding can be calculated by considering
the rate of folding for a statistical ensemble of struc-
tures at the bottleneck. In this regime, the protein
can take many possible pathways through the bot-
tleneck, so the overall folding time will be indepen-
dent of the initial unfolded configuration of the pro-
tein. The folding kinetics are self-averaging, so
mutations will have only small effects on folding
rates.” In the other class the glass transition oceurs
at some point in the folding process. We call these
folding events Type IL Type II folding processes are
analogous to nucleation followed by slow growth: a
situation much studied in the metallurgy of alloys.”
Type 1I folding scenarios can be broken into two sub-
classes, depending on where the glass transition oc-

""To be more precise, rates of individual events depend on the
exponentials of free energies. Above the glass transition these
free energies should all self-average and the significant rates
will have a log-normal distribution. A few factors of two
change in the rate is not considered significant here. In the
glassy phase a much wider distribution of the logarithm of the
rate is anticipated, as pointed out by Bryngelson and Wolynes.®

curs relative to the thermodynamie bottleneck loca-
tion nf,. Recall that n, is the location of the
maximum of the free energy and need not be the
same as the kinetic bottleneck coordinate niin that
appears in Eqs. (9) and (13) for the folding time.
Thus, for folding at a fixed temperature in a situa-
tion where a glass transition occurs, we expect to
find two distinct kinetic scenarios, one, which we
call Type ITA, occurs when nf, < n_, and the other,
which we call Type IIB, occurs when nf, = n,.

As the roughness of the energy landscape is in-
creased, a glass transition occurs between the fold-
ing bottleneck and the final folded state, so that dis-
crete pathways occur after the transition state. We
call this situation a Type IIA scenario. In this re-
gime passage through the folding bottleneck will be
dominated by a single rate, but there may be some
nonexponential behavior, and discrete pathways
and kinetic intermediates will be observed in the
late stages of folding.

In the Type B scenario the protein has already
gone through the glass transition when it reaches
the maximum of free energy. Since the protein can
take only a few pathways after the glass transition,
and these pathways can be different enough to lead
to wildly different folding times, the overall folding
time will strongly depend on which of the few paths
to the folded state is taken. Each of these paths will
have its own kinetic transition state and the free
energies of these states will differ appreciably, i.e.,
they will not self-average. The importance, and even
the meaningfulness, of the typical kinetic transition
state, nim, is diminished considerably in this re-
gime. Therefore we have used the location of the
glass transition relative to nj, rather than Nkin IN

defining the difference between the Type IIA and
Type IIB scenarios.

THE PHASE DIAGRAM AND PROTEIN
FOLDING SCENARIOS

The phase diagram is a powerful tool for under-
standing protein folding. It reduces much of the dis-
cussion about folding scenarios in the previous sec-
tion to a single, clear, coherent picture which is
useful for thinking about and planning experiments,

The simplified viewpoint of protein folding, using
the energy landscape framework that we discussed
in the last section, can be used to classify different
mechanisms of protein folding in the laboratory and
in computer simulations. The analysis discussed
above uses only a single parameter, n, to character-
ize the difference between the native structure and
the unfolded structures. In fact, native proteins dif-
fer from unfolded ones in several ways, 30 this re-
quires the introduction of several different similar-
ity measures in thinking about folding processes. It
is important, however, that the number of addi-
tional parameters is relatively small, thus giving a
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Fig. 7. Phase diagram for a folding protein. The horizontal axis
is the energy landscape roughness parameter, AE, discussed in
the text. The vertical axis is the temperature divided by the stability
gap E,. The stability gap is the energy gap between the set of
states with substantial structural similarity to the native state and
the lowaest of the states with littte structural similanty to the native
state. The coilapse transition and the (first-order) folding transition
are represented by solid lines and tha (second order) glass tran-
sition is represented by a dashed line. In comparing this phase
diagram with experimental phase diagrams, one must bear in
mind that both AE and E, are temperature dependent because of
the hydrophobic force. In addition, the collapse transition depends
on the average strength of the hydrophobic ferce, and this is both
temperaiure and pressure dependent. The average strength of
the hydrophobic force could be considered as a third dimension in
the phase diagram.

reduced description of the folding process. Indeed,
many of the discussions of folding pathways have
concentrated on these additional similarity mea-
sures or order parameters. Thus in many pictures of
protein folding, e.g., the framework meodel,’® one
gives considerable emphasis to the initial formation
of secondary structures. In other scenarios, the col-
lapse and formation of secondary structures are con-
sidered to be separate events.® Additicnally, pro-
teins may consist of subdomains for which we may
discuss the tertiary structure formation separately.
This is particularly important in hierarchical pic-
tures of protein folding.”” With each of these simi-
larity measures we can ask the way in which the
formation of order is related to the roughness of the
energy landscape and whether the transition occurs
through many pathways or through a small number
of distinct pathways. It is helpful to consider a phase
diagram like the one illustrated in Figure 7.

In this phase diagram, we plot the possibie equi-
librium states of a protein as a function of temper-
ature and roughness of energy landscape. The phase
diagram contains a region of random coil, a col-
lapsed phase, a folded region with transition lines
between these places, as well as a dotted lire indi-
cating the presence of a frozen glassy state.

A given protein will exist at equilibrium some-
where in this phase diagram, thus the diagram tells
us the final state which we would obtain in an ex-
periment. The folding process begins by starting in a
configuration characterized by one of the regions on
this diagram, but is carried out at a temperature
such that the folded protein is the lowest free energy
state. The roughness of the energy landscapes is im-
portant in determining the equilibrium phase but
plays a bigger role in the kinetics of the folding pro-
cess as described before. In the lefthand part of the
diagram, folding will occur by a Type I mechanism
in which discrete pathways are not observed. As the
roughness is increased, the folding can occur by a
Type IIA mechanism in which discrete pathways oc-
cur after the transition state. As the roughness of
the energy landscape increases more, and the equi-
librium glass transition occurs before the transition
state is reached, the folding occurs through a Type
IIB mechanism in which discrete pathways are ob-
served and misfolded states play a role in the dy-
namics. Structurally unique thermodynamic transi-
tion states can occur only if T < Tin{y), ie., if the
folding is Type IIB, because that is the only case
where there are order one accessible paths through
the folding bottleneck. In all other folding scenarios,
there are many accessible paths through the folding
bottleneck, hence many possible transition states.

The temperature at which the folding experiment
takes place also plays an important role in whether
a Type 0, Type 1, or Type II scenario for folding is
observed. At low temperatures, (relative to the
roughness energy scale} one expects to see nonexpo-
nential kinetics characterizing a Type IB scenario.
On the other hand, at higher temperature, at the
midpoint of the felding transition, one expects Type
I or IIA mechanisms to be more prevalent. Since
ruggedness appears only when contacts are made,
when there is little frustration, as well as little av-
erage driving force toward hydrophobic collapse, a
Type 1 mechanism is most probable. This is very
close to the framework model™ or diffusion colli-
sion-picture™ %% that was so often thought to de-
scribe protein folding. In the original versions of
such models, only correct structures are formed ini-
tially and these can dock to form completed struc-
tures. Such a highly unfrustrated situation seems to
be uncommon and certainly does not occur in the
computer simulations of protein-like models.

Good folding sequences are ones that have a
strong free energy gradient leading to the ground
state structure. To achieve this they must separate
in energy the native conformation and those confor-
mations that are structurally similar to the native
conformation from the bultk of most of the other con-
formations with no structural similarity to the na-
tive conformation. Goldstein et al. have shown that
this qualitative criterion is equivalent to finding se-
quences that maximize T'/T, for a suitable simpli-
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fication of the Bryngelson—Wolynes model.?® Notice
that the energy gap that is being maximized when
T¢/T, is maximized is not the energy gap between
any two specific states, but rather the gap between
the set of states with substantial struetural similar-
ity to the native state and the lowest of the set of
states with little structural similarity to the native
state. We call this gap the “stability gap” (E ). The
stability gap should not be confused with the energy
gap between the native configuration and the con-
figuration with the next highest energy. This state
will usually be native-like itself. There are too many
fluctuations in the folded state for this two-configu-
ration energy gap to have any signifieance for pro-
tein folding or stability.’”*#%88% 5 fact, Frauen-
felder and collaborators have interpreted the results
of their experiments on folded proteins in terms of a
hierarchy of “substates.” These substates correspond
to slightly different structures found in the popula-
tion of folded proteins.'® Evidence for the highest
level of this hierarchy has been seen in protein fold-
ing simulations.’® Unfortunately, this issue of en-
ergy gaps has been clouded by lattice simulations
that have studied the energy spectrum of only the
maximally compact states.”!- ® Since the maximally
compact states are a small fraction of all possible
states and since they are often not dynamically con-
nected (in the sense described in the second sec-
tion),'?- 4° the interpretation of the results of these
simulations requires more subtlety than has been
found in the literature so far. Notice, however, that
since local excitations from a maximally compact
state are not themselves maximally compact, the en-
ergy gap between the native state and the next low-
est energy maximally compact state is often corre-
lated with the stability gap. Thus, the results of
these simulations can be interpreted as a confirma-
tion of the older and more general idea that the se-
quences with large stability gaps fold quickly at the
equilibrium folding temperature.*—%43#4

In the Bryngelson—Wolynes energy landscape the
stability gap iz a tautological consequence of the
greater degree of stability of native-like interactions
demanded by the principle of minimal frustration.
Goldstein et al. calculated a set of parameters that
maximized T/ T for the model used in their protein
structure prediction algorithm, and found that these
parameters gave excellent results for practical
structure prediction, in accord with the predictions
of the theory. In addition, molecular dynamics cal-
culations using associative memory Hamiltonians
optimized in this way reliably gave native-like
structures.®#* These results provide independent
evidence that sequences that satisfy this criterion
(of having a large stability gap) should be good fold-
ing sequences. This work alse is a good illustration
of the power of using energy landscape ideas to help
solve practical protein folding problems. We also
mention that the stability gap idea has been used by

Wodak and co-workers to predict persistent second-
ary structures in small peptides relevant to early
folding events.®”

The phase diagram, of course, becomes more com-
plex as additional order parameters or similarity
measures are used to characterize the folded states.
The phase diagram is a useful way of thinking about
any folding process because it allows us to consider
the couplings between the various order parameters
as well. For instance, as one sees in the computer
simulations, one can first have a collapse which is
ascribed by a single-order parameter, radius of gy-
ration, followed later from this collapsed phase by
a transition to a unique folded protein struc-
ture.*?%-% The coupling between these two param-
eters is cructal in obtaining that sort of description.
The so-called molten globule intermediates which
are often an ensemble of individual configurations
really should be described by these additicnal order
parameters.®®

ENERGY LANDSCAPE ANALYSIS OF
FOLDING SIMULATIONS

Simulations of simple protein-like lattice models
provide an ideal ground to illustrate the energy land-
scape ideas. Lattice models have a venerable his-
tory 20752.91-190 Thera i5 widespread agreement that
they capture some of the underlying physies of pro-
tein folding. There are also excellent reviews that
discuss lattice simulations in the context of the
general problem of understanding protein fold-
ing 53194192 Many groups have interpreted their
simulation results using some of the qualitative and
semiquantitative ideas of energy landscape analysis,
finding features in agreement with the overall pic-
ture that we have just discussed,9-12.58.59.71,103.104
Here we illustrate this kind of discussion by focusing
on some recent results of Socei and Onuchic which
find evidence for specific features arising from en-
ergy landscape analysis.®® [n addition, these simu-
lations provide an excellent example of the kind of
quantitative analysis which should be carried out for
real experimental data. We will use simplified quan-
titative relations that can be deduced from the en-
ergy landscape analysis. This sort of quantitative
analysis should also be carried out for laboratory
experiments, but in the laboratory the temperature
dependence of the various free energy contributions
must also be included explicitly for a fully convincing
analysis. Simulations based on reduced models avoid
these issues since the energy function is itself not
temperature dependent.

The simulations were performed on polymers that
were 27 monomers long which have maximally com-
pact states of 3 X 3 x 3 cubes. Because the configura-
tions on the 3 x 3 x 3 cube can be completely enumer-
ated in a reasonable amount of computer time, the
energy landscape among the maximally compact
states can be explored in great detail. This 27 mono-
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TABLE 1. Various Sequences Used*

Run Sequence

E_,. Tmin T, Ty
002 ABABBBEBABBABABAAABBARAAAAAB -84 2.0 x 107 1.00 1.285(15)
004 AABAABAABBABAAABABBABABABEB -84 1.6 x 107 0.96 1.26 (1)
005 AABAABAABBABBAABABBABABABEB -82 2.3 x 107 0.98 1.15(2)
006 AABABBEABAABBABAAAABABAABDBB -80 52 x 107 1.07 0.95 (6)
007 ABBABBABABABAABABABABBBABAA —-80 9.3 x 1¢7 1.09 0.93 (5)
013 ABBBABBABAABBBAAABBABAABABA -T76 9.7 x 107 1.01 0.83 {5)

*The last four (005, 006, 007, 013) were generated at random. Sequence 002 is from ref. 132. Sequence 004 is a single monomer
mutation of 005 (B,; — A). Both 002 and 004 have the lowest energies possible for the potential used and have native states that are
completely unfrustrated, i.e., very native contact is individually stabilizing. 7, is the fastest folding time for each sequence. T, is
the glass transition temperature (calculated with a r__, = 1.08 x 10%, T, is the folding temperature calculated using the Monte
Carlo histogram method. The numbers in parentheses indicate the uncertainty of the last digit.

mer cubic simulation has been a paradigm of study
in this field because of this feature,34-55-71.86.195 The
simulations of Socei and Onuchic contain two mono-
mer types. Pairs of monomers that were nearest-
neighbors on the lattice but not connected along the
chain contributed an interaction energy to the po-
tential. The potential for the two monomer code was
—3 for contacts between monomers of the same type
and —1 for contacts between different types. The
folded configuration was taken to be the maximally
compact configuration with the lowest energy.

The characteristic energy scales and tempera-
tures for different sequences are easily obtained for
these models. The folding temperature, Ty, may be
defined in the usual way as the temperature at
which population in the folded configuration is
equal to the populations in all other configurations.
These populations can be obtained by a Monte Carlo
sampling procedure for each of the sequences. The
folding temperatures correlate rather well with the
energy of the folded configuration. This is shown in
Table 1. Figure 8 shows the equilibrium folding
curves for these sequences.

A kinetic glass transition temperature can be de-
fined without appealing explicitly to the energy
landscape analysis. Just as in a laboratory, a kinetic
glass transition temperature is defined by asking
where a characteristic timescale in the problem ex-
ceeds some large value. In the simulations the max-
imum running time was 7,,,, = 1.08 x 10° Monte
Carlo steps. This number was chosen because it was
significantly longer than the folding times over a
broad range of temperatures. It would be appropri-
ate to define the characteristic time through the typ-
ical time for a large-scale rearrangement. However,
it is simpler here to use the folding time itself as a
timescale. A kinetic glass transition temperature,
T, then is defined by the criterion 7{T,) is (70x +
Toint2 where 1{T?} is the folding time at tempera-
ture T. As you can see from Table I, this transition
is nearly self-averaging, that is, it depends very lit-
tle on the particular sequence which is studied, and
is roughly 1.0.

According to the energy landscape analysis this

004 T1.26(T) i
| 2008 T=1.15(2) H
3 i 006 T,=0.95(6) |
08 - : - 013 T,=0.83(5) i
!
3
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Fig. 8. Folding curves for four of the sequences used in the
simulation. The probability of a sequence occupying the native
structure is plotted on the vertical axis versus temperature on the
horizontal axis. The folding temperature, T, is defined as the tem-
perature where P_..(T)) = 0.5, i.e., the probability of the occu-
pancy of the native structure is one-half. The numbers in paren-
theses indicate the uncertainty in the last digit.

kinetic glass transition is most strongly influenced
by the thermodynamic glass transition. The simula-
tions bear out this expectation. Changing the fidu-
cial cut-off time by a factor of 8 causes only a 10%
change in the kinetic T. Similarly, small changes to
the algorithm for selecting the moves have a small
effect on T,.**

The thermodynamic glass transition of the BW
analysis depends on the entropy and roughness en-
ergy scale of the compact states. This thermody-
namic T, is also a self-averaging quantity. Using
only the maximally compact cube states, one obtains
T, = 1.17. This estimate of T, is likely an upper
bound, since semicompact states also contribute to
the entropy. At the same time, kinetic constraints
could create additional restrictions on this connec-
tivity. These effects seem to cancel, so the kinetic
and thermodynamic glass transitions are rather

*Quly if the number of crankshaft moves is reduced to less
than 10% of the corner moves is there any very dramatic
change in T
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close and one can take them both to be approxi-
mately 1 in analyzing the figures.

Figure 9 shows a plot of the folding time, that is,
the time it takes for a random unfolded initial con-
dition to reach the native structure, for different
temperatures.®® Sinee the 27 monomer length het-
eropolymer is so small, it is possible to analyze fold-
ing both above and below T, for quite a range of
temperatures. Above T, the folding process is essen-
tially an uphill one but with a modest slope. The
first noticeable feature about the folding data is that
they are strongly sequence dependent at intermedi-
ate temperatures. In the simulations folding times
greater than a maximum of v, were assigned the
folding time T,,,,. This is the origin of the saturation
at the high and low temperature ends of these
curves. At high temperature the folding is slow be-
cause it is so strongly uphill entropically. At low
termperatures the folding is slow because of the
roughness of the energy landscapes for all of these
sequences. Another characteristic feature, however,
is that the folding time at intermediate tempera-
tures is most strongly correlated with the stability of
the folded state for each of the sequences. The fastest
folding sequence has the highest folding tempera-
ture, while the slowest has the lowest folding tem-
perature. Indeed, the slowest folding sequence has a
folding temperature less than the glass transition
temperature.

Also plotted in Figure 9 are two different collapse
times for the same sequences. The lower curve is the
time that it takes the sequence to encounter, for the
first time, a structure with 25 contacts. The middle
curve is the time needed by the protein to achieve any
maximally compact 28 contact cube. The remarkable
qualitative feature of these collapse time curves is
that at the moderate to high temperatures where the
folding times vary greatly, all of the sequences have
essentially the same collapse times. In this temper-
ature range collapse is a self-averaging process that
depends primarily on the average composition of the
protein molecules. Another remarkable feature,
however, is that the collapse time begins to fluctuate
greatly between different sequences at and below the
kinetic glass transition temperature. The energy
landscape analysis suggests that individual transi-
tion times between states fluctuate greatly below T,
and this is reflected in the collapse process. The dis-
tribution of folding times becomes broader as you
approach T, reflecting the emergence of a multiex-
ponential collapse process. We note that Flanagan et
al. have observed sequence-dependent collapse in
staphylococcal nuclease.’® This suggests the phase
observed is near its glass transition.

A rough quantitative understanding of these data
for folding and collapse comes from energy land-

WTechnically, these times are mean-first-passage times.
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Fig. 9. Plots of important imes (in Monte Cario steps) against
temperature for the sequences used in our simulations. The top
curves are the folding times , (the number of steps required o
reach the native structure for the first time). The saturation at the
wings of the curves occurs because runs were stopped at a max-
imum time of 1.08 x 10° Monte Carlos steps. The other curves
are plots of collapse times. The middle curves are the times re-
quired for the sequences to reach a conformation with 28 contacts
for the first time. Similarly, the bottom curve is the time required to
reach a conformation with 25 contacts for the first time. Notice that
there is a much greater time spread in the folding curvas than in
the two collapse curves.

scape analysis. The availability of both folding and
collapse results allows us to roughly separate fea-
tures connected with the glassy dynamies from the
thermodynamic changes that also result from rough
energy landscapes. The first important observation
1s that both folding and collapse times give parabolic
Arrhenius plots, just as most experimental data do
for the forward and reverse rate of folding.”® In the
laboratory this curvature is usually ascribed to the
thermodynamic dependence of the effective interac-
tions, the difference of heat capacity between the
folded and unfolded states arising from the hydro-
phobic effect. Since the force laws in the simulation
are taken to be independent of temperature, the tem-
perature dependence of the hydrophobic effect is not
at all involved in the simulation data. The simula-
tion of Miller et al. also effectively finds a curved
Arrhenius plot.?°” A simple analysis can be carried
out by assuming that the location of the folding
bottleneck, nim, is independent of temperature.
Roughly speaking then, the folding time will be
given by Eq. (13} with the energy barrier F tin given
by the difference in free energy between the folding
bottleneck states and the free energy of the bottom
of the unfolded free energy minimum, i.e., the lowest
free energy unfolded states. This involves motion on
the free energy gradient for the reaction coordinate
based on the number of correct contacts. At this
level of analysis, the collapse time can be treated in
a similar way using the total number of contacts of
any kind as a reaction coordinate. In the tempera-
ture range of 1.0 to 2.25 (the reason for considering
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this temperature range will become clear below) the
time required for collapse to configurations with 25
contacts varies by a factor of less than 4, indicating
that there is little, if any, free energy barrier to col-
lapse. Therefore, collapse is essentially downhill in
free energy and behaves like a Type 0A scenario.
The dynamic reorganization timescale will become
longer as the protein becomes more compact because
excluded volume has a stronger effect on dynamics
in compact states. Therefore, in the generalized
transition state approximation of the section on
Quantitative Aspects of the Kinetics of a Folding
Protein, the collapse time will be given by Eq. (9) for
the time for a downhill process,

Teollapse = Eca:nlla]me (15)

where ... is the typical lifetime of an individual
microstate in a random collapsed state. For the pur-
poses of calculating the barrier height, Fii,,, we set
the free energy of the bottom of the unfolded free
energy minimum equal to the free energy of the col-
lapsed states. Then the folding time involves the
free energy difference of the folded and compact con-
figurations. Another way of obtaining a folding time
that depends on this free energy difference is to con-
sider folding to be a three state unimolecular reac-
tion, random coil = collapsed — folded, where the
second step, collapsed — folded is rate-limiting. The
data are consistent with such a reaction scheme.

We can eliminate the purely dynamic factors by
taking the ratio of the folding to the collapse time
and assuming that F(nj;,) = ¥ ollapse- Then using Eq.
(13} for the folding and collapse times and using Eq.
(8) for the free energy predicts that a plot of the
logarithm of the ratio of the folding to the collapse
times is parabolic,

10g( i ) = - [Sﬁ(nijn) - SO,co]]apse] (16)
Teollapse
i [E(nim) - En:ullapse':]
kyT
_ [-'-\E(n;in)z - L\Egnllapse]
2kpTY? ’

where the subscript collapse indicates that the
quantity is evaluated in a random collapsed state.
The log of this ratio is plotted versus /T in Figure
10. We show here the data only between tempera-
tures 1.0 and 2.25 because outside this range the
folding times exceed the time used as a cut-off in the
simulations. These curves can be fit very adequately
with parabolas. The coefficients of the parabolas are
shown in Table IT. In the fit all of the constant terms
are positive and all of the linear (in U/T) terms are
negative, which imply the inequalities Sy(niy) <
Socottapee 0 E(nfin) < Epitaee Both of these in-
equalities are consistent with the bottleneck for
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Fig. 10. The logarithm of the ratio of the folding time to the
time for collapse to 25 contacts against the inverse temperature.
The lines are parabola fits to the data. The coefficients of these
parabolas are shown in Table ().

folding occurring after the collapse, in agreement
with both intuition and the simulation data. The
curvature reflects the value of the roughness of the
energy landscape of the collapsed configurations.
This analysis shows that for a rough energy land-
scape, the heat capacity of the collapsed configura-
tions arises from fluctuations in structure and cor-
responding energy differences between collapsed
eonfigurations. The linear term in I/T reflects pri-
marily the enthalpic part of the activation free en-
ergy for achieving a transition state. It should be
strongly correlated with the stability gap.

One can also check the theory by using indepen-
dently derived information about the simulation
model to make order-of-magnitude estimates of the
sizes of the coefficients in the parabola fits. The con-
stant term is the difference of the configurational
entropies of the collapsed states and the folding
transition bottleneck states. The number of states
with 25 contacts has been estimated to be 10°, yield-
ing a configurational entropy of 9 log 10 = 21. The
configurational entropy of the folding bottleneck
states is more difficult to estimate, but it is clearly
less than that of the collapsed states. Therefore, the
constant coefficient is expected to be of order 10, ie.,
between = 3 and =~ 30. This expectation is very well
confirmed by Table II, where the constant coeffi-
cients are seen to lie between 16 and 19. The coeffi-
cient of the 1/T term is the difference between the
average energy of the folding bottleneck states and
the collapsed states. We have defined a collapsed
state to be a state with 25 contacts and the average
contact energy in our model is —2, therefore, the
average energy of a collapsed state is —50. The av-
erage energy of a folding bottleneck state must be
greater than the energy of the native state, which is
—84 for sequences 002 and 004 and B0 for se-
quences 006 and 007 (see Table ). Therefore, we
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TABLE IL The Coefficients of the Parabolic Fits,
108(T/Teqiiapee) = A + BIT + CIT?,
to the Data Shown in Figure 10*

A = S)in{) B = Bng) C = (12 AE(nj ;)

Run - Sc,mlhpu - Emlllpge - -\Egollapae]
002 19.0 —34.9 23.8
004 17.0 ~30.1 201
006 16.9 ~25.2 16.1
007 16.1 -222 15.0

*The sequence numbers refer to the sequences displayed in
Table L. The ¢olumn headings also show the physical chemical
interpretations of the coefficients given in Eq. (16) in the text.

expect the coefficient of the 1/T term to lie between
0 and —34 for the first two sequences and to lie be-
tween 0 and —30 for the later two sequences. Table
If shows the coefficients to lie within these bounds,
within reasonable error estimates. The coefficient of
the 1/T® term is one-half times the difference be-
tween the roughnesses of the collapsed states and
the bottleneck states. Each interaction energy in the
model differs from the average interaction energy by
+1 or —1, so the roughness of the set of random
collapsed states with 25 contacts is AE = 25. The
roughness of the bottleneck states is smaller than
this number, but difficult to estimate. Thus, we ex-
pect the coefficient of the 1/7% term to be somewhat
less than 12.5. The values for this coefficient range
from 14 to 24, as shown in Table II. This estimate is
not as good as the previous ones, but it does give the
right sign and order-of-magnitude, which is the best
that can be expected from such an approximate the-
ory and such simple estimates.

A quantitative relationship between protein fold-
ing kinetics and the thermodynamic stability of the
native state can be obtained with linear free energy
relationships.”®'®8-11° In the past these relations
have been applied to the interpretation of data from
site-directed mutagenesis experiments.!*"''* They
are also the mainstay of the analysis of many other
biochemical reactions.’*®*~''7 In this analysis the
differences in the free energies of the transition
states, folded states, and unfolded states for two dif-
ferent sequences obey the linear relation

8F(ntin) = adF(1) — (1 — «}8F0) (an

The transfer coefficient « is a measure of the resem-
blance of the transition state to the folded state. The
value of a is easily obtained from the data. If we make
the obvious assumption that the dynamic factors are
approximately the same for the different sequences,
then Eq. (17) implies that a plot of the logarithm of
the folding rate against the logarithm of the equi-
librium constant for folding will be a straight line
with a slope of @.!'® When we plot the logarithm of
the folding rate versus the logarithm of the equilib-
rium constant for different sequences, we see such a

nice linear free energy relationship, shown in Figure
11. At the temperature T = 1.0 the folding time
seems nearly independent of the driving force, while
the driving force is entirely reflected in the unfolding
rate. Thus folding here is nearly entirely “downhill,”
a Type 0 scenario. {The large fluctuations suggest a
Type 0B.) At T = 1.26 there is a clear nucleation
barrier, but it is small. The transfer coefficient of o
= 0.1 suggests a rather early transition state, i.e., at
this temperature the bottleneck configurations are
collapsed but have little native structure. The fur-
ther increase of a at higher 7T reflects a later tran-
sition state as the entropy terms become more im-
portant. This shows that the transitions are only
weakly Type I and essentially Type 0 under these
thermodynamic conditions. The success of this anal-
ysis is remarkable because the native structures cor-
responding with the sequence are not strongly re-
lated te each other unlike the situation in site-
directed mutagenesis experiments.

An Arrhenius plot of the unfolding time versus
UT is shown in Figure 12. This curve shows the
dynamic effects as T', is approached. There is a clear
change in the behavior of the activation energy for
unfolding near T, where the curve starts to level off.
This behavior reflects the change in dynamies at T,
suggested by the energy landscape analysis. The
loss of dynamic flexibility caused by the entropy cri-
sis leads to dynamic reorganization times liraited by
the entropy of search and the activation energy of
the elementary step [see Eq. (11)]. This analysis of
the computer simuiation shows many of the ways in
which data can be reduced when the thermedynamic
dependence of the underlying forces is understood.

ENERGY LANDSCAPE ANALYSIS AND
FOLDING EXPERIMENTS

We now turn to the analysis of some particular
proteins that have been studied extensively in the
laboratory, lysozyme, chymotrypsin inhibitor, and
cytochrome c¢. Despite the significant work already
done on these systems, we believe that there are
insufficient data to uniquely classify the mecha-
nisms of folding via our energy landscape frame-
work. However, it is possible to use the existing data
to give a flavor of how these ideas can be used in
laboratory situations. As we have seen in our dis-
cussion of the computer simulations, many qualita-
tive features of experiments, such as curved Arrhe-
nius plots, can be obtained from the energy
landscape scenario, and can even be quantified if the
underlying driving forces are understood. A consid-
erable difficulty in the experimental studies is that
these driving forces are temperature dependent.'? Tt
is, however, important to realize that we can sepa-
rately change the driving force by such devices as
the use of denaturant or mutation and separate this
effect from those effects which are directly due to the
ruggedness of the energy landscape due to thermal
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Fig. 11. Plots for the linear free energy relationship analysis.
Each plot shows the folding rate against the folding equilibrium
constant for each of the six sequences studied here. On the hor-
izontal axis [F] represents the probability of the native structure
being occupied and [U] represents the probability of a non-native

energies. Ruggedness is a more nearly self-averag-
ing quantity. A further analysis of this type for spe-
cific systems will, we hope, be made soon.***

**xA¢ this point the reader may wish to review the folding
gcenarioa discussed in Figure 5.
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structure being occupied. (A) A linear free energy piot for temper-
ature T = 1.0, that is, at about the glass transition ternperature for
these sequences. The rest of the plots (B—E) are for temperatures
above the glass transition temperatures.

In some ways, the simplest experimental situation
occurs for those proteins and conditions which ex-
hibit a Type I folding mechanism. The kinetics in
such system should be simple exponential. These
systems have moderate driving forces and are stud-
ied in the near equilibrium range near the midpoint
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- Fig. 12.  An Amheniug piot of the unfolding time against the
nverse temperature for five of the sequences. The unfolding time
was calculated by multiplying the foiding time by the ratio of the
tolded population to the unfolded population at a given tempera-
ture. Consequentty, there is the Same saturation effect at low
temperature as in Figure 9 caused by the finite simulation time.

of the transition curve. One feature favoring a Type
I transition as opposed to a Type I transition is the
avoidance of premature collapse. When collapse oc-
curs corresponding changes in the ruggedness of the
energy landscape can arise and play a role. Appar-
ently Type I behavior occurs upon the cold denatur-
ation of lysozyme as studied by Chen and Schell-
man M9120 q o substantially a uniexponential
process.

The folding of chymotrypsin Inhibitor 2, an 83 res-
idue monomeric protein with no disulfide bonds, has
been studied by Jackson and Fersht.!21-122 |, many
respects their experiments resemble a Type I sce-
narie. Jackson and Fersht used fluorescence mea-
surements and scanning microcalorimetry to study
the refolding of this protein. The equilibrium dena-
turation experiments found strong evidence for a
simple two-state transition without intermediates.
The kinetic measurements, however, reveal three
phases, but it is clear that these are due to the five
proline residues in the molecule, of which at least
four are in the trans state in the crystal structure.
Seventy-seven percent of the protein molecules fold
with a time constant of 0.02 s and the two cbservable
slow phases have time constants of 43 and 500 s. The
slow phases are catalyzed by peptidyl-proly! isomer-
ase, which catalyzes proline isomerization. The fast
phase is not affected by this enzyme. The protein
molecules that start with all the prolines in the
trans configuration have very nearly exponential ki-
netics on the timescale studied.

In the energy landscape view, proline isomeriza-
tion appears as a high ridge separating the config-
urations with a cis isomer from those with a trans
isomer.'**'24 One such ridge appears for each pro-
line in the protein. Each of these separate partsof the
configuration space can be analyzed with the simple

energy landscape concepts that we have already dis-
cussed. Thus, the mere observation of multiexponen-
tiality is not enough to imply that these systems obey
Type I kinetics in which a glass transition is present.
These ridges in the energy landscape come from the
simple effect of single amino acid residues, whereas
the glass transition comes from the composite effect
of all the amino acid residues in the protein.

An example of apparent Type O behavior is pro-
vided by hen lysozyme at its high temperature de-
naturation transition. The evidence for Type IO be-
havior of lysozyme at this transition is largely based
on the CD measurements and pulsed hydrogen-ex-
change labeling carried out by Radford et al %
These studies suggest multiexponential behavior for
the protection of the amide hydrogens, which Rad-
ford et al. have interpreted as due to the existence of
multiple parallel folding pathways. The Type II na-
ture of this transition apparently occurs because of
the possibility of early collapse. In addition, misfold-
ing is apparently present since the CD shows, after
the first 100 ms, considerably more a-helix present
than is present in the native state. Thus, in this
situation, the folding protein adopts a locally favor-
able conformation which must be partly unfolded to
get into the globally favored native state. The initial
strong local tendency toward helix formation 18 giv-
ing rise to frustration in the technical sense of com-
Peting interactions discussed earlier in this paper.
The Type II behavior suggests that the roughness of
the energy landscape for lysozyme is actually larger,
compared to 25T, at the high temperatures than at
the low temperatures, apparently due to the temper-
ature dependence of the hydrophobic forces.

Cytochrome ¢, with its heme constraints, appar-
ently has little roughness to its energy landscape
compared to the free energy gradient. The heme is
covalently bound to the protein chain and after the
iron coordination sphere is completed, folding of dif-
ferent parts of the protein oceurs rather rapidly. On
the other hand, the heme group can alse be misli-
gated by some of the amino acids in the protein and
this misligation can be detected spectroscopically.
The misligated population cannot follow the free en-
ergy gradient all the way to the native structure s0
the presence of the heme also facilitates the study of
the different misfolded structures present in an en-
semble of folding proteins. Sosnick et al. have stud-
led the folding of ecytochrome ¢ under conditions
where the misligation does not occur.2?® They found
that about 50—-70% of the molecules in this popula-
tion acquired native secondary and tertiary struc-
ture with a time constant of approximately 15 ms.
They estimated, from fluorescence quenching, the
time constant for collapse to be approximately 12
ms, that is, of the same order as the folding time.
These experiments suggest that cytochrome ¢ fold-
ing is Type 0 under these conditions though it is
difficult to assign it to Type 0A or Type 0B with the
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data from these experiments. Experiments on cy-
tochrome c folding provide a good illustration of how
the folding of a particular protein can vary qualita-
tively as the conditions of the folding experiment
vary. For example, when cytochrome c is refolded at
pH 6.2, the folding is multiexponential and takes on
the order of seconds. Sosnick et al. have also shown
that the slow folding at pH 6.2 is due to the forma-
tion of misfolded, collapsed structure, rather than
the specific misligation of the heme, in agreement
with the picture of a glassy phase presented here.

CONCLUSION

The energy landscape picture allows us to com-
bine various disparate ideas about the nature of bi-
omolecular self-organization in protein folding. The
energy landscape picture can accommodate multiple
parallel path scenarios, as well as unique, sequence-
dependent pathways for protein folding. The crucial
concept in understanding particular experimental
and computer simulation situations is to organize
the kinetics of the problem through the consider-
ation of a phase diagram and to study the dynamics
of the crucial order parameters for folding which dis-
tinguish folded states from unfoided ones. In a ge-
neric energy landscape picture, several different
phase transitions oceur and are coupled. At the very
minimum, one must consider the two purely ther-
modynamic transitions of folding and of collapse.
The collapse transition temperature depends upon
both the overall tendency for self-association and
also on the ruggedness of the energy landscape.
Above the glass transition collapse is a largeiy self-
averaging process, that is, it depends on the overall
composition of the sequence and on little else. The
folding transition, on the other hand, is always sen-
sitive to the details of the sequence. In addition to
these conventional, understood phases, a rough en-
ergy landscape exhibits a glass transition which oc-
curs near a thermodynamic glass transition temper-
ature, T,. This temperature is also a self-averaging
property of different sequences of similar composi-
tion.

Different scenarios for protein folding mecha-
nisms occur, depending on the relationship of these
various temperatures and the conditions under
which the experiment is carried out. The simplest
situation to understand occurs when there is a mod-
erate driving force toward the folded state. Near the
midpoint of the denaturation curve, there will be an
overall double minimum potential of free energy
function and the roughness of the energy landscape
simply acts to modulate the rate of passing over the
transition state. This transition state is actually a
set of many configurations and couid be said to con-
sist of numerous microtransition states in a funnel
toward the folded state. The kinetics in this situa-
tion are simple exponential. If the driving forces for
folding are considerably smaller, the folding temper-

ature can become close to the glass transition tem-
perature. In this case one encounters considerable
slowing of the folding process itself; a Type II sce-
nario emerges in which individual pathways for
folding can be dissected. Here there will be multiple
exponential processes typically. The great irony, of
course, is that in the situation where we can find
individual pathways, folding will be typically very
slow. Indeed, nearly kinetically unfoldable proteins
would exhibit the most clearly defined pathway for
folding. These discrete pathways, however, are not
self-averaging aspects of the dynamics and are sen-
sitive to individual mutations in sequence.

For very large driving forces, one can encounter
Type 0 scenario folding in which essentially all of
the dynamics goes on in a downhill manner. If a
Type 0 scenario can occur much above T, this gives
rise to processes that are very fast {of the order of
ordinary homopolymer collapse times).'’*’” On the
other hand, if the glass transition intervenes, which
is likely if nonspecific collapse cccurs, individual
pathways can still be found, and, again, they will be
strongly sequence dependent and sensitive to muta-
tions.

If the qualitative nature of the interaction energy
scales is understood, detailed temperature depen-
dences can be obtained by the energy landscape
analysis. A typical feature of this analysis is that
one obtains curved Arrhenius plots for folding times,
much like those actually occurring in experimental
situations. This curvature reflects the roughness of
the energy scale of the particular protein and enters
in both a thermodynamic and dynamic way. The
other energy scale is related to the folding temper-
ature itself and to the stability gap in the energy
spectrum of kinetically foldable proteins. Simple lin-
ear free energy relations between the folding time
and the stability gap energy scale are obtained. A
most remarkable feature, however, is that there are
discontinuities in these relations and in the appar-
ent activated energies themselves as the glass tran-
sition is approached. The main difficulty in using
energy landscape analysis to interpret laboratory
experiments is the temperature dependence of the
underlying thermodynamic forces. Still, the self-av-
eraging nature of the roughness energy scales ver-
sus the specific sequence dependence of the stability
gap scale should allow some insight to be obtained in
real experiments. The employment of different
modes of denaturation will be essential in differen-
tiating these emergy scales of the protein folding
landscape. One can think of the use of chemical de-
naturants, such as urea and guanidine, that largely
bind to unfolded configurations as primarily affect-
ing the stability gap rather than the roughness en-
ergy scale. On the other hand, pressure will strongly
affect all solvent-mediated forces and thus will cor-
relate with the roughness energy scale.**-*3

Ancther complexity in laboratory experiments is
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that there can be multiple order parameters for real
proteins, since folded structures differ in several
ways from the typical unfolded ones. The point is,
however, that there are probably only a few such
parameters and a few overall energy scales that are
relevant. If the dynamic reorganization timescales
for each of these order parameters are similar, the
many reaction coordinate situation does not differ
dramatically from the one effective coordinate pic-
ture we have discussed in detail in this paper. If the
timescales for different motions differ appreciably,
either through local energy barriers or glass transi-
tion temperatures that vary with these order param-
eters, a more complex scenario in which the folding
bottleneck is largely independent of the equilibrium
free energy barrier can arise. Still the few coordi-
nate generalization of the present analysis would be
applicable. Experimentally this situation would re-
semble Type II or Type OB one coordinate scenarios,
in that mulitiexponential kinetics would be preva-
lent.

The most important additiona! order parameters
are those measuring the degree of collapse, second-
ary structure, e.g., helical content, and side chain
ordering. The glass transition characteristics de-
pend greatly on collapse, so this is one possible
source of decoupling of the bottleneck from the equi-
librium free energy barrier ® The ruggedness of the
energy landscape also can depend on side chain ori-
entation since some misassociations may simply not
be sterically allowed for some side chain orienta-
tions. In addition, the configurational entropy of the
backbone depends on its helical content, again af-
fecting the dynamic glass transition. Certainly in
multidomain proteins one must use different reac-
tion coordinates for each folding unit. Even single
domain proteins may have different folding sub-
structures. Some analyses such as that of Bryngel-
son and Wolynes, suggest that the critical nucleus
for folding is large,® but other studies suggest
smaller sizes for the critical nucleus and concomi-
tantly smaller folding units with separate reaction
coordinates.?” In any case, an energy landscape
analysis allows us to reduce, in many circumstances,
a huge number of variables down to only a few de-
grees of freedom and a statistical characterization of
the roughness of the energy landscape. The true di-
versity of the energy landscape only comes through
in the Type Il scenarios in which the glass transition
has intervened. A study of most experiments sug-
gests that many proteins are near the glass transi-
tion and may show Type OB and Type II scenarios.
Since the roughness of the energy scale is self-aver-
aging, it will be interesting to explore the phase di-
agrams for different proteins and especially to ex-
amine different protein compositional classes to see
if there are systematic differences in energy scale
roughness in in vitro folding.

One of the major fruits of the energy landscape

analysis of protein folding has been a simple varia-
tional criterion for achieving fast-folding proteins.
The minimal frustration principle, which at first
seemed a qualitative concept, has been formulated
now as a criterion for the maximization of the fold-
ing temperature compared to the glass transition
temperature. This principle has already been used
to reverse engineer proteins to discover correla-
tions that are important in predicting protein struc-
ture.®*#* In addition, it has been used to design pro-
teins that can fold on reasonable timeseales on com-
puters.’® It will be interesting to see whether the
combination of the reverse engineering and engi-
neering approaches will allow the design of kineti-
cally foldable proteins in the laboratory.
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