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LECTURE 2

Geometrical properties of interfaces

Gyorgy Radnéczi
Research Institute for Technical Physics of the
Hungarian Academy of Sciences
H-1325 Budapest, P. O. Box 76, Hungary
radnoczi@mufi.hu

1. Introduction

Materials properties are strongly influenced or governed by the presence of
interfaces in metals (mechanical properties), semiconductors (electronic
properties), composites (mechanical properties), metal/semiconductor
systems (electronic properties: ohmie, Schottky contacts).

The basis for desired physical properties lays in the change of the crystal
structure close to the interface. The simplest way of describing this change
is in the terms of lattice parameter changes (compared to the bulk values)
in the vicinity of the interface. Stresses and elastic properties play
mmportant role in surface reconstruction and thin film multilayer
relaxation processes, so their role in the formation of the atomic geometry
of internal interfaces can also be accepted. The spatial extension or
relaxation of these interfacial stresses, their chemical consequences are
dependent on the macroscopic structure of the system considered.
According to this, interfaces can be classified as follows (fig. 1.);

a. Internal (bulk) interfaces:grain boundaries (GB)
phase boundaries (PB)

b. Semibulk interfaces thin film/substrate interfaces
surfaces

c¢. Thin film interfaces self-supporting thin films
multilayers

nanograin structure boundaries
(about 1 nm grain size)



2. Bulk interfaces

Other names of these interfaces are buried or internal interfaces. A bulk
interface is schematically shown in fig la. The interface is situated
between two bulk material volumes. The strains occurring at the interface
can relax in the direction of both interface normal and the lattice
parameter can reach its bulk value in both directions. The fraction of
atoms belonging to the interface is small. The interface is considered to be
atomically flat, ideal, without any defects.

2.1. The macroscopic geometry of GB
Degrees of freedom (DOF) of a grain boundary

A grain boundary (GB) possesses 8 degrees of freedom (DOF). From these
3 are microscopic, closely connected with the atomic structure of the GB,
and describing the rigid body displacement T(T,,T,,T, of the two grains
relative to each other. The 5 other DOF are describing the macroscopic
geometry, the relative position of the two adjacent crystals. Three from the
five macroscopic DOF are characterised by a unit length vector m, fixing
the rotation axis in the co-ordinates of one of the crystals and an angle, ¢,
the angle of relative rotation around n,, the remaining two defines the GB
plane by its unit length normal, n,in the same co-ordinate system. The five
macroscopic degrees of freedom are very suitable to describe and classify
different types of boundaries according to their common geometrical
properties.

Three different ways or schemes of descriptions are used, these are

equivalent, though explicitly expressing different geometrical parameters
of the five macroscopic DOF.

a) Interface plane scheme
b) Misorientation (CSL) scheme
¢) Tilt-inclination scheme

Interface plane scheme

This description focuses on the planes of the two crystals, parallel to the
GB plane. In this scheme the GB is described according to fig. 2. Two unit
length vectors n, and n, are chosen in the two halves of the crystal (in the
same co-ordinate system), and these will determine the normal of the
(atomically flat) lattice planes forming the GB in both of the grains. The
crystal is cut and the two GB normals n, and n, are turned parallel (this
is a tilt operation). The two crystals are joined again in a plane, the GB,
normal to the co-linear vectors n, and n,. An additional rotation to an
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angle (8) around n, of the first crystal will describe the twist of grain2
relative to grainl. In this way both tilt and twist GBs can be described by
the same formalism (fig. 3.). The five macroscopic DOF ( a general or
asymmetrical twist GB) can be specified in the form (fig. 4.):

DOF=(n, ,n_6) =5 (1)

The corresponding rotation operation can be denoted as R(n, 0), the

corresponding tilt operation can be denoted by the operation R(n_ ¥,
where:

- n,X n . -~ .
i, = ———=_ sSIny = I[n,xn2] (2)
sin y

If 6=0o0r 180", the GB is a pure asymmetric tilt GB (fig. 4b.), and the
remaining number of DOF will be 4.

DOF=((n, ,n,,0) = 4 (3)

An interface is called symmetrical, when the vectors n, and n, linearly
related, 1.e.

n, =Cn, (4)

where C is constant.
In addition, in cubic crystals the linear relation between two vectors can be

written in a more generalised form because of symmetry reasons for a set
of h,k,l coordinates:

[h k,1,1=C< th,tk *l, > (4a)

oy—Thoy—
for example: n=(3,2]1] and n,=[-1,2,3] denote crystallographically
equivalent planes.

So, a symmetrical twist boundary (fig. 4c.) is a pure twist boundary since
has obviously no tilt component since [n,xn,]=0. The number of DOF:

DOF=(n, ,Cn, 6)=3 (5)
Correspondingly for a symmetrical tilt boundary (fig. 4d.):

DOF=(n, ,Cn,,0)=2 (6)



This description defines the symmetrical tilt boundary as a special twist
boundary without tilt component since n, =Cn,, but with a twist
component of 0 or 180° rotation. This seems to be some kind of
contradiction, however, from atomic geometry it is understandable, that
symmetrical tilt boundaries separate crystals with identical lattice planes
on each side of the boundary, but with a reversed stacking (C=1, 6=180",
C=-1, 6=0").

For the case of a centrosymmetric crystal this can be easily shown:
DOF=(n,,-n,,0)=(n,,n ,180°) (7)

Besides of the symmetrical tilt boundary (STGB), the same description (eq.
6.) applies to the stacking fault (SF) and the free surface (FS), which is
included here only for generalisation of the description and terminology.

In special cases like symmetrical twin and STGBs the IMacroscopic
operations can be equivalent to microscopic translation of one part of the
crystal relative to the other.

The interface plane scheme supposes, that a GB contains atomically flat
crystal planes. This is not a general case. If the GB plane differs slightly
from an atomic plane, then the GB becomes vicinal (fig. 5). This concept
has been known for surfaces already for decades, for GBs it was introduced
not very long ago. This will result in the formation of steps and plateaux
on the GB plane.

The CSL misorientation scheme

Focuses on the misorientation between the two grains, rather than on the
plane of the defect. The CSL scheme requires that a superlattice existed
between the two grains (fig. 6). This involves, that this description is
applied only to GBs and rarely to other (heterophase) interfaces.

The relative orientation of the two crystals is characterised by the rotation
matrix R(n. . ), and the GB plane is defined by the normal of the lattice
planes, parallel to the GB in one of the adjacent crystals m,. Thus, the
DOF can be given as:

DOFCSL:(nCSL’q)CSL’ nl) =5 (8)
consequently,
n,= R(nCSL’q)CSL) n, (9)



In this scheme a pure tilt boundary is defined by the condition (ngg,n,) =0
and a pure twist GB is defined by [n_ x n |=0. The tilt and twist

components can also be separated in the rotation matrix, and we can
write:

R0 0.4 )= R(nve)R(nT’W) (10)

where R(n,,0) is the twist component and R(n,y) the tilt component. The
order of the operations is not interchangeable. As we saw in the interface
plane scheme, the twist component does not change the interface plane, so
eq. 10. becomes:

n,= R(nCSL’qJCSL)nl:R(nT’W)nx (11)

From here we can see, that that the planes parallel to a GB are fully
determined by its tilt component and vice versa, the tilt component of a
GB is completely determined by the planes, parallel to it.

The CSL concept also allows deviations from the exact CSL orientations.
Analogously to the small angle GB and vicinal interfaces, deviations by
small tilt or twist misorientations can be compensated by edge or screw
dislocation networks, respectively, located in the interface. Beviations of
the GB plane from its atomic plane can be compensated by steps of the GB
plane. The angle of deviation (8) from a CSL misorientation (tilt or twist)
can be written in the form:

o=b/D
where: b is the length of Burgers vectors in the GB,
D is the distance between dislocations

D can not be shorter then the periodicity in the GB, which defines a
maximum deviation for each CSL orientation separately. This can be
approximated by the formula 8(max)= 80/@)4/2, where 8,=15 is limiting angle of
small angle GB(%’Q .6.).

The tilt-inclination scheme

This scheme uses the concept of the inclination of the GB plane. This
results in a selection of the macroscopic DOF that resembles an
experimental situation, in which the tilt misorientation between the two
crystals is fixed, while the GB plane can chose an inclination, leading to a
low energy GB (e.g. in growing bicrystals from two seeds). Since in this
scheme we want to determine the GB plane, we can start from the
interface plane scheme, where the two vectors n, and n, completely define
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the tilt component of a GB and the GB plane (this required 4 DOF). So,
defining the parameters n, and ¢, which means 3 DOF, one more DOF is
needed to fix the GB plane. For this purpose in this scheme an additional
angle o is used. This parameter is called the inclination angle. As a
consequence, the five DOF in the tilt inclination scheme is given by:

DOF=(n_9,0,0)= § (12)

The geometrical meaning of this scheme and the inclination angle o is
illustrated in fig. 7.

According to the DOF in this scheme, a symmetrical tilt GB (STGB) is
represented by n_,y (eq. 2.), a=0 or 90° (for a cubic crystal), and 6=0. For an
asymmetric tilt GB o can be any angle and 8=0. For a general GB also 620.
A symmetrical twist GB is characterised by n.vy, =0 or 90° (for a cubic
crystal), and 6+0.

2.2 The atomic geometry of GB.

Both sides of a crystalline interface contains stacks of well defined lattice
planes (by n, ,n,). The crystal lattice can be considered to be built from
primitive (one atom) unit cells (Bravais lattice) In this case each atom
position can be written in the form of linear combination of the basic
vectors of the Bravais unit cell.

According to the interface plane scheme a crystallographic plane is parallel
to the interface, and the Bravais cell can be selected in such a way, that
two of its vectors were co-planar with this plane. Then the third vector will
point to the closest atom of the next plane parallel to the GB, defining by
this the staggering of the atomic planes, parallel to the interface.

The projection of this third Bravais vector onto the GB normal n, will
define the interplanar spacing parallel to the interface. Since all such cells
are primitive, for all possible selections of the Bravais cell, the volume of
the cell will be the same, and identical to the atomic volume of the crystal.
As the parallel planes are staggered, the stacking period P(hkl) (like
ABCABC for FCC crystals, P(111)=3) can be defined according to the eq.:

c.xP(hkl)=xa+yb, or P(hkD)=8h*+k*+1%)

where: ¢, is the projection of the third (out of the GB plane vector of the
Bravais cell on the plane of the GB,
a and b are the lengths of the in-GB plane Bravais vectors,
x and y are integers.
d=1or2



From the above considerations for the Bravais lattices follows, that
A(hkl)d(hk])=Q= const,

A(hkl) being the size of the planar unit cell in the GB plane

GBs with macroscopic DOF=(n, ,Cn,0)=2

These GB are the symmetrical tilt GBs (STGB), the stacking faults (SF)
and free surfaces (FS).

An important feature is, that all these interfaces have identical planar
unit cells (dimension and area) and this unit cell is identical to the
projection of the unit cell of the perfect crystal on the same plane. The
difference between the SF and STGB on the same plane is only,in their
stacking sequence, the STGB has an inverted sequence relative fo the SF.
For SF C=1, for STGB C= -1, i.e. the atomic planes making up the
interface have the same atomic arrangement and (h,k,1) (Fig. 8). On this
basis one can expect their physical properties to be also similar.
Nevertheless, STGB are treated as large angle grain boundaries between
two crystals, and SF are treated as planar defects in a single crystal.
According to their classification on the basis of the DOFs, and their atomic
geometry this notation is not quite correct, and it would be more natural to
refer to STGB as inverted SF which would just mean the broadening of the
definition of the SF (not only rigid body translations but also inversion of
the stacking sequence). On the other hand, STGB are very sensitive to the
translations in their plane in terms of their energy. This is the reason of
the deep energy cusp of the symmetrical GBs, when the STGB orientation
(8=180") is approached (fig. 9.).

The similarity between STGB and free surfaces (FS) is not so
straightforward. Besides of the identical number of DOF, cleaving along a
STGB can reveal some of the geometrical consequences in the atomic
arrangement. Since the planar unit cells are the same, upon cleaving two
identical surfaces are created. Edge dislocations in the STGB will be
converted to steps in the surfaces. Revealing closer relationships in these
transformations can bring us closer to the understanding of the
mechanism of cleavage for example.

The atomic geometry of a STGB can not be understood without considering
the atomic arrangements obtained after inversion. The inversion of the
two halves of the crystal can be carried out in different ways, resulting in
structures of different atomic arrangements and stability. Fig. 10. shows
the possible inversion geometry in a system consisting of five fold stacking.
When the GB plane is a mirror plane but not an atomic plane the STGB is
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called unstable, because atomic positions are located on the top of each
other, resulting in an increase of the mterplanar spacing between the two
adjacent planes. This instability can be removed by a translation, bringing
the GB into the position of an atomic plane, either simultaneously being
the mirror plane as well, or not (Fig. 10b and c). The configuration fig. 10b.
is called special twin, in the threefold stacking system (e.g. FCC, its
common name is coherent twin), the one showed in fig. 10c. is called
general twin, while all three configurations are coherent,

From the atomic arrangements of fig. 10. it is also clear, that at least
threefold stacking is necessary to create a STGRB configuration. STGB
operation on onefold or twofold stacking will lead to a single erystal, no
interface.

As far as an STGB has DOF=2, in the tilt inclination scheme it is
determined (eq.12) by three, but not independent, parameters:

DOF=(n, ,y)=2 (13)

The apparent contradiction is even more emphasised, when on the basis of
eq. 6, in the interface plane scheme description we see, that no tilt axis can be
really prescribed to this boundary, since the surface normals are parallel
vectors. This apparent contradiction can be resolved, when the symmetry
of the crystal is also considered, and the really parallel planes are replaced
by their equivalent. In a cubic crystal e.g. 90° rotations around <100> type
directions bring the crystal into coincidence with itself, so a change from
n,(hk1) to n (hk,-l) will not change the GB geometry, but removes the
apparent lack of the tilt axis. This also shows, that the three parameters
in eq. 13. are not uniquely defined and a finite number of tilt axes and
angles exist describing the same R(n_ ,y) operation.

Relation between miller indices of the crystallographic planes of the STGB
and geometrical parameters

The parameters in eq. 13. can be written through and are determined by
the Miller indices h, k, | of the STGRB plane:

-k
ﬁT:(hz +k2)—1/2 h
0
Gy 2 k)
\lj h2+k2+12 (14)



Other geometrical features can be expressed through the Miller indices of
the GB plane in the following manner:;

3= BP(hkl),
where $=0.5 or 1 for odd and even P(hk]), respectively.
(15)
2= f"a’ [d(hkl)]*
where "= 1, 0.5, 0.25 or 0.125 (£ must be odd)

Where a is the size of the unit cell of the crystal, d is the spacing of (hkl)
lattice planes.

The number of planes in the repeat stacking sequence P(hkl) for FCC and
BCC lattices are shown in table 1.

The geometrical consequences, which may be drawn from the above
considerations can be summarised as follows:

1) All symmetrical boundaries can be characterised by
DOF=(n,,n,.0), with linearly related n,, and n,, where the tilt boundaries
belong to the value of 6=180°. In cubic Bravais lattices n,, and n, can be
written in the form to formally display a tilt axis in the case of 8=180° by
using symmetrically equivalent but not linearly related h,k,!l indices for n,,
and n,.

2) The properties of the STGB are the following:

-They represent a special subset of twist boundaries
-they represent GBs with the smallest planar unit cell
dimension, equal to those of a perfect crystal. This gives rise to

the deep energy cusp and special properties of these
boundaries.

-The geometry of the tilt boundaries can be expressed through
the Miller indices of the GB plane (eq. 14.).
- The value of X is governed by the number of planes in the

repeat stacking sequence of the planes parallel to the GB,
therefore by their Miller indices.

- For a nontrivial ( not equivalent to the single crystal) STGB at

least three planes are required in the repeat stacking sequence
of the GB plane.

Atomic geometry of asymmetrical GBs

Asymmetrical GBs are those, for which n, and n, are not linearly related
i.e. the lattice planes parallel to the GB on the two sides of the GB are
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different (fig. 4). The asymmetrical tilt GB (ATGB) are a subset of general
(asymmetrical twist GB) boundaries, and to each tilt axis belongs two
ATGB, at 0" and 180" of twist angle. Generally, an asymmetrical GB must
be formed by two sets of lattice planes, each with more than two planes in
the stacking period for the two configurations to be different, according to
the removal of the difference by an in plane translation for P(hkD)=1 or 2
stacking periods as discussed for STGBs above (fig. 10).

Coherency, incoherence

An interface is called coherent, when atom by atom matching is perfect
(fig. 11) in the interface. This also means, that no dislocations are allowed,
and atom planes and lines are continuos across the boundary. If this
condition 1s not fulfilled even locally, the interface is called incoherent.
Coherent interfaces usually form in heterophase interfaces, when the
misfit, e=(a,-a,) /a,is small, and can be compensated by the elastic strain of
the lattices. This strain can result in the relative tilt of the two lattices
(fig. 12.). An incoherent interface is called semicoherent, when coherent
areas are separated by defects like misfit dislocations. These dislocations
in contrast to the regular lattice dislocations are an inherent part of the
atomic geometry of the GB.

Commensurability

In a commensurate interface the atoms are arranged on both sides of the
interface in a long range order parallel to the interface, and a common
planar unit cell exists, which describes this long range ordered
(crystalline) structure. If the structure is nonperiodic, the interface is
usually referred to as incommensurate (fig.13.). The mathematical
formulation of the condition of commensurability can be given on the basis
of the Bravais lattices of the two crystals, forming the interface, and their
projection onto the interface. Let us characterise these projections by unit
cell vectors a, and a, as well as b, and b, respectively for the two adjacent
crystals. The unit cell vectors of the common superlattice ¢, and ¢, must
exist and be defined.

The condition of existence of such a superlattice is, that infinitely many
points exist, for which:

n,a, +n,da, =mb, +m,b, (16)

with n, and m integers.
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A commensurate interface is coherent only, when all the points of the two
Bravais lattices, a and b belong to the superlattice e¢. Otherwise the
interface is incoherent.

An interface can also be commensurate if n, and m, are irrational, but a
rotation of one unit cell relative to the other is allowed.

This can be written in the form:

nA=mB=|lex ¢)]]|, (17)

where: A= |[axa]| and B=|[bxb)]],
n and m are positive integers.

From this also follows, that ¢, and ¢, are not parallel.
Vicinal and spatial interfaces.

For surfaces the terminology is used for almost a century, and a surface is
called spatial when it is atomically smooth, and its surface normal n is a
low index crystallographic direction. The surface energy has a cusp at this
orientation, and any deviation from this special surface will result in a
stepped surface, consisting from spatial terraces and steps of usually
monoatomic height.

The same terminology can be extended to the interfaces in a little more
generalised form.

An interface will be called spatial, when the orientation of its plane
corresponds to a (low index) crystallographic plane. Mistilting relative to
this low index GB plane one or both of the crystals will lead to inserting
steps into the interface. In addition, the symmetrical and asymmetrical
low angle twist GBs can be considered as vicinal to the corresponding tilt
boundaries.

The symmetrical low angle twist boundary can be considered as a vicinal
to the perfect crystal. The disorientation is taken by inserting screw
dislocations into the interface, which similarly to the steps on vicinal
surfaces preserve areas of perfect interface between themselves. The
planar unit cell area increases by inserting the dislocations. According to
Frank's formula the spacing between these dislocations D is:

- b b (17)
2sin(®8/2) 6
where b is the length of the Burgers vector.

As long as the linearization in this equation is valid we can talk about low
angle GBs (up to 15°), otherwise the GB is called a high angle one.
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Table 3.2 Interplanar spacing, d(hk{) (in units of the lattice
parameter a), for the 11 most widely spaced planes in the fcc and
bee lattices. These planes also correspond to the ones with the
highest planar density of atoms, i.e. the smallest planar repeat
unit cells. Also listed is the number of planes in the repeat planar

stacking unit, referred to as the ‘period’, P(hkl) (see also
Chapter 1 of this volume)

fcc bcc

No. (hkl) d(hkDia  P(hkl) (hkl)  d(hkD/a  P(hkl)
1. (111) 0.5774 3 (110)  0.7071 2
2. (100) 0.5000 2 (100)  0.5000 2
3. (110) 0.3535 2 (112)  0.4082 6
4. (113) 0.3015 11 (310) 0.3162 10
5. (331) 0.2294 38 (111)  0.2887 3
6. (210) 0.2236 10 (321) 0.2673 14
7. (112) 0.2041 6 (114)  0.2357 18
8. (115 0.1925 27 (210)  0.2236 10
9. (513) 0.1690 35 (332) 0.2132 22
10, (221) 0.1667 18 (510)  0.1961 26
11.  (310) 0.1581 10 (341) 0.1961 26

Tabkle L




FIGURES

Fig. 1. Classification of interface geometry on the basis of dimension
Fig. 2. Interface plane scheme

Fig. 3. Twist GB in interface plane scheme.

Fig. 4. Tilt and twist GBs, schematic geometry
Fig. 5. Vicinal GB planes

Fig. 6. CSL geometry

Fig. 7. Tilt -inclination scheme

Fig. 8. Sacking in symmetrical GB

Fig. 9. Cusp in GB energy at 0 and 180 degrees
Fig. 10. Stacking Sequences for STGB

Fig. 11. Coheren interface, schematic

Fig. 13. Coherent interface

Fig. 14. Commensurate- incommensurate relation

Tables
Table 1. CSL misorientations
Table 2. P(hkl) values for FCC and BCC lattices

Reading Material:
1. V. Randle: The measurement of GB geometry, Ins. of Phys. Publ.

Bristol, 1993.
2. D. Wolf, S. Yip: Materials Interfaces, Chapman& Hall, NY, 1992.
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