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OPTIMAL CONTROL OF CONTINUQUS CASTING

The optimal control problem of a continuous casting process

is characterized by the following points :

- the state equation is associated with a free-boundary problem (two

phase Stefan problem) ;

- the dimension of an installation is very large. So very efficient

algorithms for the simulation and the optimization are necessary.

Two lectures are devoted to this problem :

Lecture 1 : 1} Physical system and its formulation as an

optimal control problem.

2) Theoritical point of view,

Lecture 2 : 1} Numerical algorithms,pratical implementation

and numerical results.

2) Some open problems.

This work has been done at INRIA in collaboration with IRSID (French

Research Institute of Steel Making). For details we refer to J. HENRY -

M. LARRECQ - J. PETECNIEFF - C. SAGUEZ [4] , €. SAGUEZ [5}

I - THE CONTINUQUS CASTING PROBLEM.

I-i) The physical installation.

The principle is to cast the steel in a mold,the bottom of which
is constitwedby the solid part of the steel. A general scheme of 2 such

installation is given Figure [.l. We distinguish two parts :

=~ the mold {approximately 70 em long), in which the liquid steel is intro-
duced by a nozzle. In general the mold is in cupper and the steel is
cooled by a system of flowing water . At the end of the mold, the thickness

of the solid shell of steel must be sufficient to avoid break-out ;

- the second cooling part, in which the ingot is supported by rolls.

The steel is cooled by a water-spray system constitued by spray-nozzles
distribued on 6 (or 7)zones . Each zone canm be regulated independently.

This part is approximatily 20 m long.

At the end, when the steel is completely solid, the ingot is

cutted by a cutting torch.

The principal products are slabs , blooms and billets.

I-2) The_regulation problem.

The physical problem, we consider, is to find the best regulaticn of the
water—spray system to maximize the speed of extraction of the steel,

such that the following constraints are verified

- Metallurgical contraints

- to assure a complete solidification at a given point of the installatien,
= to avoid break-out at the end of the mold,

~ to obtain an admissible temperature at the unbending poiut,
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Figure 1.{. Continuous casting

- to avoid the formation of cracks,

- to limit the screep.
- Structural cootraints

~ limits of working of each spray neozzle,

~ usable guantity of water bounded.

I-3) The mathematical modelization.

We consider the system only from a thermal point of view (for
example ,we don't take into account mechanical problems as elasto-
plasticity,...} and all metallurgical contraints are exprimed in tern

of thermal constraints.

We present the problem in the stationary case {(i.e. when the

speed of extraction V is constant).

- The state equation

We have a elassical solidification problem which is modelized

by the following two phase Stefan problem (8 is the temperature of the steel)
in the dowain £ (see figure 1.2.).

Figure 1.2.

(1.n pv%’l - div (M(®) grad 8) = 0 in @ x 10,2[

with p the density the steel
A the conductivity
H the enthalpy of the system (see figure 13).
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H(B)T the . traimts

1k slope C2

The contraints,described in I-2,can be exprimed in term of

— thermal constraints as follows :

”’f,,—””” (1.5) H{B(x,2)) < H(Bs) = L ¥z ¢ [z‘,z]
slopeC

(L is the latent heat;zl the point of complete solidification).

Figure 1.3. : Enthalpy graph

1.6) 8(.,2,) ¢1e .6,
20 ur 1”72

1772

(Z2 is the unbending point. In fact, we consider successively
We have the boundary conditions :

8(.,Z2,} > 8 and 8(.,z,) <8, )

2 2 2 1
ir, vr, Ir, vr,
- £ th 1d :
or the mo a.m 8¢.,2z) - 8(.,z + Az)
' CM < < CC
.
{1.2) A gradé. n=g Az |rlur2
(g given along I;UFZ » 8 = 0 along FBU]—Q) (whered z is given).

(1.8) a(.,z) lrlUrz < BH (z) ¥z = Z,
For th wits 1 spray system :
(ZL is the length of the mold)
A0y gradd . w4 b (8-8) = 0 on r uT,
(1.3)
>
n

A(8) Bfadé . =0 on [']UT'L.' - Structural contraints :

- - . The water—spray system is divided in N_zones (in general 6 or 7).
(h, the exhange coefficient betweren wiater and steel, is the conteol pray systed s z ( g )

variable ).
For each zone, the exhange coefficient is independant of z and

we denote by hieLz(I'tUTZ) the coefficient for the zone i.

Finally we have the initial conditina :
We have the following constraints :

(1.4 80,0 = 8,00 (1.9 b <h sh L= 1,000, N
i i
Nz
(1.1 Zuihi SDM
i=1

D,, is the global quantity of water}.
{ M ¥y
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I-4) The optimal problem.

We transform the initial problem, to find the maximal speed V
such that there exists an admissible h (i.e. h, such that the contraints
{1.5)-(1.10) are verified),in the following cne :

- the state equation is given by (1.1)-(1.4)

— the admissible set of control is :
#§d={hi, i=1,... Nz ]{hi]vérify (1.9)=(1.10)}

- the fonctional J is

T(h)=y, 3, (h) + v, Jz(h)+y3J3(h) + 74J4(h)
vith v, « 8" and 3, (h) defined by :

Z 2
.y I3 =1 [(H(B(x,2))-L)7] ax dz
A}
I

.

-.2
e A LR

1T
(if we consider the case 8(.,Z.) 2 02)
Z-Az
2
(1.13) JS(h) = f -[,[B(x.z) - B({x,z+Az) ]}

7 - CC

L Az

FIUF2
B(x,z) - 8(x,z+ A
LI Kz 82) ') o e

(1.16) 3,0 = JE s
Z

L

(O, - § ('Y ar az

&

- The optimal control problem

To find R € %ad such that

vh ¢ %ﬂ§d4

{1.15)
J() s I

Then,if J(h)=0 , we see that h is an admissible h is the above

sense. Now we study the optimal control problem (1.15)

Remark 1.1.

In this presentation, the formulation in term of enthalpy is
considered. An other formulation, with the comcept of variational
inequality, could be used (see C. SAGUEZ [5]

|

Now to simplify the presentation for the theorical results and
the numerical methods , we shall assume that-A(8)= =1 ; p=1

and that Yo= Yy" 74=0 H y|=l.

The numerical results, we shall present, are obtained for the
general formulation. We shall indicate, the modifications, we have to

do, to take into account the general case.

We consider the temperature at the bottom of the mold as
initial data (we have mo control in the mold). So the boundary con—

ditions are (1.3).

wn,
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il ~ THEORICAL POINT OF VIEW.

The principal goal of -this chapter, is to resume some theoritiral
results (In these lectures, we insist principally on the modelizationm

problems and the numerical methods),
1I-1) The state equation.
The state equation tan be written in the abstract form :

(2.1) {-%% + AB>f p.p., u(z)e BO(z) p.p.

u(o) = u,

where = (BO) (x) = H(O(x)) and B = 803

(@B is a convex continuous function from LZ(Q) in R)

2
~a=00, 5 00 =1 / legrad.8llap ey s le| 4r
Z f 2

l"IUI'2
(QA is a convex continuous function from H](ﬂ) in R}

- (£,9) 1 v = f hg dT
B @) - °H (D rur, &

Using results of 0. GRANGE - F. MIGNOT [2], it is easy to prove,
in this case,the proposition :

I 1,1 '@

if fel o,y @)y 5 &

Proposition 1 :
!
Q$H ®) u € BGO

the problem (2.1} admits a solutiom (u,8), with

8eL™(0,T, B' (W) ; uweL™o,T; L2@) , ¥ 0,15 @ @)").
dz

A0

The demcnstration use the fallowing sewmi-Jiscretized problem :

n+l_, o+l

@2y (W™ - e+ (gras 8™, prad e n ! (6" s 7" year-o
wenl (@
(2.3) o™
(2.4) | u¥(x) = u_(x) € B(8) ; 87 (x) = 0_(x)
and results of duality to pass at the limit.
0

11-2) The optimal control problem.

Using the asme techniques than for the proposition !, we prove
the sxistence of a solution for the optimal comtrel problem (1.15).

The main problem is te obtain necessary optimaticy conditions, Such
conditions have been only demonstrated for the following regularized

semi-discritezed problem :

n+l n n+l atl 0
(2.5) (we - WE ,0 3 + (grad 98 ) +{w eg - BE’ ¢y o+
k k
o+l n+l n+l

S h - =
]‘]UI‘2 (ee BE ) $48 °

n=o, ..., NZ-1

-

slope Cl—w
{o<w< Min (Cl’ C2))
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The G-differentiability of the solutiom with respect n

,hn) Solution of the regularized semi-discretized

) Proposition 2 : (wn 8
+1 . . ~toposition £
o (W™} is proved and if (r?, y?) denotes the G- derivative €’ &
function of (wz, G:) with respect to h' in the direction s° , optimal control problem, verify the necessary optimality conditions :
we have
State equation :
. wn+l - w“ a+l . o+l o
b1 (211 f(E=——F.9) + (grad 8_ , grad ¢) + (8, - 0,.¢)
. -r, n¥1 . k €
1 1 14 n+ It
L6 + dy, @ ot
ETam® ¢ radyy  prad 0 4 g O y]L0) o1 nlh e -al ysdreo wen' @
['IIJI‘2
i .
2.7 s 1 WMy gare S st 65! (ag"-e:‘*') odT " e o
u . = -
I'Jur, F]UP2 (2.12) ve € H, (es } n=Fo,..., NZ-I
1
¥peH (), n=o,..., NZ-1 (2.13) 8°-0 : Wouw € HE(G )
€ "o’ £ o w0
\ Adjoint state equation :
n+] £ +1 -n+1 +1
o [ @t o e -
.1
n __ntl
(@@ MO ) 0) ¢ (erad b L gradd) + § @] »p .0
2.9 2= 2 = -
@ jrgme.rte of ™R pars - ¢ t-w)7,0) wer! @
[, ur,
172
- T £,1 {2.15) n_ n+l_ "-u H,c,u(en+l+uwn+1)) ns=o0,..., NZ=1
where H is the derivativefunction of H '", Yosida approximation Pe™Pe 9 () € € reree
of H”,
[}

(2.16) {pN'=o

For the case of the functional :

Optimality conditions :

NZ n -2
2.y J(h) = I || ™7
i=1 LZ(Q) Nz n.n o=l,n.n n
anc I (©2-9%) 27! (s™n]) dalso ¥{s"} e Yaa.
(discretization of the fonctiomal J 0. n=t T,UT, a0

We obtain the necessary optimality conditions : Remark 2,1, It is possible to prove that, when € + o, the solution

(w:, 92, h:) converges to (wn, Gn, h™) solution of the

semi~discretized problem.

L



3 4

III - NUMERICAL METHODS. Now we use the following equivalence :

wel 03D w=H, (6+uw) ¥ wo.
We present succesily :
Then we deduce the algorithm :
- the algorithms to solve the state equation and to compute the optimal
control, 1) W given, &t = o
- the discretization (in x) of the problem by the finite element
2 i=1+1

methods. .
To compute 8" solution of the P.D.E. :

(grad 0%, grad ) + £ 0,9) + /_ ©'-8 )¢ar = (£ +éwi—|,¢) voert! ()

I‘lUI‘2

II1I-1) Resolution of the state equation.

We have to solve the system (2.2)-(2.4). At each step of time,

the problem is of this type : 3) wi = H: (Bi+uwi-1)
To find (u,8), such that : 4) Test of c?nvergence
if verified -+ END

4 (u,9) + (grad 0, grad ¢) + /  h(9-0)dl= (£,0) ¥ e H' (D) if not, go to 2).

FIUTZ
G.D We have the result of convergence :
u € H(O)
Proposition 3 : for pop_ = i l. ., we have
2iopositiom 2 @ ZOT o k 2Mia(l, &)’ —— "
As in the Chapter II, we introduce wsuch that o<w Min(c, ,c,) . k
. 1’72 i Y 2
W —a w in LT() weakly
and we transform (3.1) in : 6 — 8 in HI(Q) strongly.
i . SAGUE .
% tw,d) + (grad 8, grad §) +% (6.8 + f h(8-8 ) dT = (£.9) For the demonstration we refer to C Z {5]
‘ r ur e |
172
1
G-2 Foell () ITI-2) Algorithm of optimization.

. i t
U € Hm (8 = H(8)- wb. In fact,we sclve the regularized problem and to compute the
optimal conmtrol, a gradient methed with prejection is used. The algorithm

is classical, except for the projection of the control on“fad.
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Suppose that we know the control {h;}, and the gradient{ﬁi}

(i is the index of iteratiom ; k the index of zome), To compute
i+l

thy

} we do the iterations :

hi+l'j = Max (hmk, Min (th—p{ (gi‘kjak))

kj+ 1 i+l

= Min (O,AJ—pg (E o0 ’j-nM))

where p{ and p% are positive constants.

This algorithm has been introduced in J. HENRY [3 1.

ITI-3) Approximation of the problem.

=~ The state equation has been approximated by finite elements methods.

- In each case, we determine explicitly the discretized adjoint state
equation associated with the discretization of the problem. We

don't detail here this point.

We present, in one dimensional case, numerical results obtained

for the continuous casting process of USINOR-Dunkerque.

16

i) Data of the problem.

The condugtivity of the steel is given by :

T{oC) A(cal/em/s/foC) T{oC) x{cal/em/s/oC)
! 091 1100 0,068
? ggg g.oas 1150 0.070
| 650 0,081 1200 0,071
700 0,076 1250 0,072
750 0,071 1300 4,073
8OO 0,068 1350 0,075
850 0,065 1400 0,076
500 0,064 1450 0,077
950 0.065 1500 0,078
1000 0,065 1550 0,079
1050 0,067 1600 0,080

Conductivity of the steel

The enthalpy is given Figure 3.1, with the data :

c, = 0,7 cal/g*c ; 2

g, = 149 ;8 = 1519
H(8)

L Lo - a o

_

Figure 3.1.
Initial temperatutre eo(x) = 1535%¢
Density of the steel p = 7g/cm3
In the mold gz = 23 calfem?/s

C. = 0,16 cal/g®S & L = 63,44 calle

S

« -~

Y o ok

Taaw-
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= 3
DM 130 m/h

Dimensions of the installation

Parameters of the functional

Lenght of the mold : 70 cm
Y= 5 v, = I 1000 Y, =1

Water-spray system : zone 1 27 cm

zone 2 32 em Parameters of discretization

zone J 187 cm

zone & 150 em Az = 10 cm H ax = 0,35 em

zone 5 347 cm

zoue 6 412 cm ii) Results.

zone 7 400 cm

We present the exhange coefficient and the boundary temperature

Lenght of the iunstallaction : 1650 cm. for the USINOR regulation (Figure 3.1) and for the computed optimal

control (Figure 3.2). The conmclusions are the following :

Thickness of a slab : 2] cm.
= With this control, we can cast with a speed ¥V = 1,075 n/mn (te compare

Metallurgical coutraints to the speed obtained at Dunkerque 0,9 m/wn), (all the metallurgical
contraints are verified). .

Complete solidification at Z] = 16 m

- We can use this method to determine an "optimal" strategy for the

At the unbending point 82

CM = ~2% /s on 60 8 ; CC = t%c/s on 60 s

= 1000°c
. automatization of the process.

GM(x) = 1100% . Actually two others software are developped

’ . ~ The stationary case in two~dimensional case (the software is now
Structural contraints

experimented at IRSID},

We have the data :
— The evolutionary case, in one~dimensional case.

Zone hi!‘l hiM u.i

1 0,0225 0,0208 21022

CONCLUSION.

2 0,0211 0,0135 2394 -

3 0,0168 0,0087 4654 .

4 06125 5. 0076 2532 — We have present an efficient method to control a free boundary system

5 .

5 0,0086 0.0052 5129 (two-phase Stefan problem), This method is applied to the control of a

6 010060 0'0064 5746 continuous casting process to developp a strategy of automatization.

7 0,0055 0,0039 6088
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- Many problems are always open

ta obtain optimality conditions for the initial continuous

problem,
. to developp real time regulationm,

. to take into-account mechanical phenomena (thermo-
elasto—plasticity,...),

. to take into -account the different components of the steel

(control of the solidification of an alloy).

USINOR - Regulation.

Figure 3,2

Speed V = 0,9 m/mn

g

Exhange coefficient{cal/cm2.3.%c)

~-20 -~

=
o b=
< o T
T ——— — o 1 Aw
T T abenyumazag
(|
L
Al
1 " T
o } -
o (i
-
I Il
3 i
[T i
b l
ab |
g !
g - 1 |
83 !
@ 1§l
i 1
o~
| —
|
L
|
|
(1
i
Hh
1]
9 t . .
1l
3!
r 1 Iq
i {
- §
[ |
I [ .
| I '
| I
— _____r__
] i
1
T T L
] i\
1
1 ]
1 i
] |
i b
i 1 e O
H 1
1
1
1 1
1 I
[ £ T 1
I'I ] —
H
——— p—
. —---‘-__-‘-—"—‘ )
——

T L | 1 -
g Q (=] =1 (=]
hr [=] =3 = f=]
— r"‘j o = -3

(0.} @ @2adieasduay



Speed v = |,075 m/mn

2' Exhange coefficient (calfem?. s.%c)
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