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1 - PHYSICAL PROBLEM and MATHEMATICAL FORMULATION.

'OPffMAL;COﬁTROL'O? GAéithNSPORTAfION NETWORK A gas transportation network is constitued of pipes connecting
' by nedes (See figure 1.1). We have thre Cypes of uodes :

-~ the feeding nodes
- the comsumption nodes

. - the pumping stations.
The problem of optimal comtrol of transportation network 1s

very important from an industrial point of view. Here we consider the . .
As example, we consider for the numerical experiences, we present

case of a gas transportation network. Mathematically, we have an . . . . . -
figure I.1. an important. part of the Fremch network, feeding the

optimal control problem of a systenm of non linear transport equaticns, i .
. Paris area. It is about 192 km long.

The lecture is divided in thres parts :
Northern

Taisnieres Gournay
sea gas
~ Physical problem and mathematical formulation, '.:E ——0 O— + Villiers le Bel
Crapeaumesnil

- Theoritical results Groningen gas

. State equations Figure 1.1.

. Optimal control problem
- Algorithm and numerical results. The problem is to determine the optimal power , function of

time, of the pumping statiom, such that the Flow entering the feeding

This work has been dome at INRTA by A. SORINE — A. BAMBERCER - nodes remains as elosed as possible to given functions.

I.P. YVON in collaboration with G.D.F. (Gaz de France).
To present the mathematical formulation, in a simple way, we

For details we refer to M, SORINE - M. SOULAS (31. coasider the following network with a pumping station
A Section ] § Section 2 B
O > o — » ¥
_ g (r1,QD) o (PZ’QZ) 2
| 2
Figure 1.2.

S is a pumping station, A a feeding node and B a consumption node.



For each pipe, the state of the gas is characterized by the

pressure F and the gas velocity Q,

L )
'-D_E- + C 3. =0

a-n i< ‘);

VP 1,
1.2 sii + cli GL;:QL =0 Axd, 2

The boundary conditions are :

@B = @)

= for the pumping statiom § :

= for feeding node A :

o | 2008 = D) exp (1wt /qm)

& (o) = & (o) = q (k)

= for the consumption node B :
@Ry (h,E) = gy

where PA(t) the pressure at point A and QB(t) the consumption

at point B are given,

and we have the initial condition :

(1.6) % (2 0)= T (&) 4=d,2

which verify the following equations.

L

1-2) Optimal control problem.

The contrel variable is u(t), the power of the pumping stationm.
The objective is to remain the flow entering the feeding node A as

closed as possible to a given function Qd(t). So we introduce the cost
function :

T 2
an Iwy= [ a8 k) - aubyita

We have the following constraints on the control and on the

state (to respect the security norms) :

= at the consumption node B :

(1.8) ‘P,_ (Pg} k) >/ ?"Gn

- at the pumping station

(1.9) T, (ot) € ?ﬂ“

(1.10) Q'm;“ é 1(&) < Qﬂcx\g

(1.11) ?2(0":)

-
(o, 1) s

(.12 M € 4l € Uy,

Then, if we denote by uad the admissible set of control

Uy = {»u(E) € }_,2(0,1) ] A (¥ A, @)= G-12)ane uwg’m\f

. .
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We have the results (A. BAMBERGER [1]) : (we suppose N=lo,1D)

we have the optimal control problem.

- Neumann boundary conditions,i.e.

To find u ¢ Yad §.t

(1.13) " y . 5 ) "
Ty € T Yoely, R &) ; B (F)D =4O

under the assumptions
Yo € L'

there exists an unique solution

do(4) and A, (4 combimuieun on 38,70
I1 - THEORICAL RESULTS.

In this chapter, we present some theoritical results for the % € Lgls CQ,T . H'i(-h]) n LQ(JE ;.Sﬂ;Tf-)
problem (1.13). g

4 Rey)e Lo, wie)

- Dirichlet boundary conditions, i.e.

11-1) The state equation.

To study the state equation for a pipe, an efficient method '*[0, I:) - ?.' u,‘ ; l&[:{,l_-)= P‘i (E)

is to eliminate the variable Q. Then, if we denote bgt y(x,t), the undec the assumptions .‘o ¢ ci@'t)- ‘,D ECﬁfa,T) ; ?’ c Ci(t','r)

variable?

2 R NOLE SO RSITOL 4 )
(2.1 ‘3,; (%,£) = T (1)

there exists an unique solution ;

yi(x,t) is solution of : "&6 Lgf?.(oi-r) H’(Jl)) n LQ(JIYSO,'TE)
4

o = Bl - 20 '%';5)\ -0 . wi gsc>.3=|xfi"'>. 2 a(pe LT, @)
T = i

with B.C. and L.C. (%* {x,0) = ‘SO(RE) 11-2) Optimal coutrol problem.

To solve the optimal comntrol problem, we introduce the penalized

This equation is equivalent to (1.1)-(1.2). .
functicanal?

- T 3
Remark : (2.2) is a non linear degenerated parabelic equation. The — - Y B
—_ Ja(.,u) - d(-u) - 2 \.fo{ L?z(f;,k)- ?'h‘:“—k 1 dk

study of such equations has been done by A. BAMBERGER[ 1 ]. For

differents boundary conditions,he proves the existence of a solution

. T 1 T . 2
and for the system associated to the network figure 1,2. (2.33 _'L i[?zca't)_ T“ax S+§ dki- J; \FQ{O;E)“-(““?:{(O;E)]*E&

. .i U‘T{[c‘m— Qmal'tzolk \ LT{[C\&)- err,,\k
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with g e R ) g e [R
S0 we have the penalized optimal control problem :
o
o find 'EE G%aol sk
~
3&(“.—_) < 3 () V-«u.é"-{qd

e {La =fueliom)] u,;, € 49 € Haay i,

Then we have when - -
s e —P

—_— 0
Euez > P

To solve the optimal control problem (2.4), we want to use

a gradient. For this, we intraduce the following adjoint state
equations,(¢i, tpi are the adjeint states on the pipe 1),

(L—S)

)

2.7)

@

9

(2—10)

-‘B‘_ﬂ: e O ‘ﬁ]%%’ =20
ot
‘i&: - 2G,; \Qi\qf.;:o A=,
-1 3
With the boundary conditions :

G, 2 (“?—4('{-1,9 - %\(l-))
W - - CED- /B

ACDILT REAEC A8 o ['?;_(qa[ﬁro,a-ik,)*

* ( 16 (et \- Ctoy, 1% (o E))) L% (at)- Ty, ?i (W&))+]

P @8 - X)) - )10 00| 288 Y o) -
q w)

2f .
\ £2 KT“) " )- (900 etar) + By 22 (!:_:;‘)’1% B(Red
. ' ﬁl

- "“‘ ?{(0105] |

&

and the final condition

2.11) f.' (‘:P,T)= o Ael2

Then the gradient of JE(u) is given by

(2.12) 5 ]?i(o,k)l % (o) (°)E)/1 (4

III - ALGORITHM AND NUMERICAL RESULTS,

In fact to solve the initial problem (1.13) we consider the
problem (2.4). We use a conjugat’% gratient algorithm with projection

on the admissible set of control Tbad.

To solve the state equations, we use amr implicit finite
difference methed. At each time step, the discretized nonlinear

system is solved by a Newton procedure.

The adjoint state equations is solved using the implicit

finite difference scheme fit to the one chosen for the state equations.

Figures 3.1 - 3.2, we present results obtained for the network

figure 1.1. The control variable is the pumping station Taisnieres.
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For Trials 1-2-3, we take Q,(t) = 487 750 m’/h. N
s . ' 1 - < g <
- for Trial I, we see that the period is too short (we -[. [ — b e O
—-— - Lo d x e
begin to central at 12 h15). It is impossible to obtain " - \‘ 2 3
(7]
the desired flow level ; _'I ] \_\ 3 L
T N s
- for Trial 2, state constraints are relaxed. In this case we o | \ K |
obtain the desired flow level, but the pressure constraiat E I "~ \\
o »,
at Taisnieres is not verified ; g - N S ™~ [}
AN ' N ~
- for Trial 3, we consider all the constraints. Then we don't by I}
z
obtain the desired flow level. . . ~ - i ’_/.-/ ©
ud = =
For Trial 4, we take Qd(t) = 425 000 m3/h. Then it is possible to :
<
obtain the desired flow Ievel, whea all constraints are taken 175}
’ ul T 1
into account. o I e
L : |
. . = _ |
Then we see that with this method, it is possible to determined W) 1o ) } l
— x
] ] ] o JS e Y SR .. 4%
a feasible flow level at the beginning of each period (on day for example). ;:1_ L / : . =
This fact is the main problem of the dispatcher. — E "_Ir/ t |
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