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OPTIMAL CONTROL

OF AN IMMOBILIZED ENZYME SYSTEM

This lecture preseris .u application of the cptimal control
techniques for an immobilized enzyme system. This werk has been done

by J. HENRY (INRIA) and G. GELLF (University of Compi&gne).

INTRODUCTION.

Enzymes are proteins which are a catalytic activity for many
biochemical reactions. A continuous use of this catalytic activity
is of a great interest in numercus industrial applications. Here
the medelization and the contrel of a packed bed enzyme reactor are

considered. We present successively the following points :
-~ Physical problem and its mathematical formulatiom,

~ Theorical results for the state equation and the optimal contrel

problem,

- Discretization and numerical results.

For details, we refer to G. GELLF - J, HENRY [I], J. HENRY [2].

I - PHYSICAL PROBLEM and MATHEMATICAL FORMULATION.

In a packed bed enzyme reactor, the enzymes are immobilized by
a cocrossliking procedure into purely proteic particles. The

particles are packed into a thermostated columm which is continuocusly

2

" flowed through by the. subdtrate. The outlet. product concemteation’

is  mesured as a funcetiom of : flow Tate, inlet substrate coacentra-

tion, enzyme activity and kinetics.

The optimal control problem is to determine the flow rate to

obtain a given output substrate concentration.

We consider the two-dimensional case. We dencte by S (x,t) the
substrate concentration. We have two phases : the bulk solution and
the enzyme insoluble phase (membranecus phase). In this modelization,

the membraneous phase is assumed to be plane.

Membran | Liquid

wlm

Figure 1.1.

Leet e be the thickness of the membran. The thickness the bulk

solution is equal to Be ,5 = y (¥ voidagé coefficient of the column).
? 1-y

So the domain {}, where we coasider,the phenomena is given figure 1.1,

We consider the case without diffusion in the direction of the

'
flow (oxz). So we have for S(x', x’, t) the following equations :
1

in the liquid phase :
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10 the membranecus phase :

s s )
(1.2 — - D, 2 Ly =
[} 1} 2 =0
ot ¢ s
with  the boundary conditions :
(1.3 S(,0,t) = S (t)
% 3
(1.4) — 2 ! Lty o
BrYy (T)*,t) =0
the transmission conditions :
| (1.5) S (., oefy E) = u(o,, 9:5_}!:')
tbs F] Il 'as I
(1.6 Dﬂ -5—{;1 (o-: tﬂ-;b ) = .DL -{;,ﬂ (Di‘)uza tD

and the initial condition }

I. ! ')
(.7 b(t,‘,&ho)g S, (fei_l'z'z)

By using the following dimensionless parameters :

4= S R
Ky # e ’ P - [
, !,
T:v"—_? ) rﬁ .lf-l'-'b—ﬂ.-E ,r=‘4.blﬁ.. CC&)" _{?_:[_)
Wit Cm ezch o €*Coq Com .
with
, S
Se 2
= o= i) dy
we obtain for the state equation ¢
% ¥ Lx
(1.8) — &+ C(xy = . —, = 4 ¢
ok Doy, " R vt~ ° SIS
1
(1.9) % _ X 4
at ha aat T —— =o ~-1{® 0 . 0(% ¢!

1+ B3

with the corresponding boundary conditions? ~ lﬂ" ol
(1. 10) (% ,0,E) = (&)
1)
(. — (&, Y= o
B (5,
and the initial cendition
.12 (=, oY= A, (1, %xq)

We obtain the following variational equation (we suppose c (x,t) =

d (t) c (xl)).

Gt O dr (CeTy @) abO(00), =

(1.13) V?eUZ—H?-LS)
A (X, 0 b= AW el’(o) ; Am, ™, V=20

with

31-.1 B *y
1

A4
a( “,'{') = Py L L ?;f ax d¥, ...,Jb ‘L:géz S A'!.dxz

!;(i) = (T'._j{______

4+ [4)
(04), =y, P¥ds ; (%9, - f;, tde
Gl. = ]O,S-L_ 3 (9"_‘:]—;)0['. &__ I"', 50

&L = @l. xxoi'[.- ) &H=Gﬂx1°1‘f j' R = a4 ljo,][

~ The control variable is d(t).

- The admissible space of control 1Lnd

(1.20) Wpad = { c\GLw(o,T) ‘ o <d, gdgd, &

"
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- The observation The solution is obtain as the limit of the problem with

g A diffusion on the direction 0X,, by using, in particular, techniques
.21 é(t) = R - (?-;L) A (w,_,:t,i-) L] of singular perturbation.
- The functional 3

1I-2) Optimal control problem.

T
2
(1.22) J(d) = % J‘ ‘%[k)-&(l‘)\ ak (uhere z, is a given
[
function) Proposition 2.2: The optimal control problem (1.23) has a solution

*
d e ad.

Then, we have the optimal control problem :

To find 4 (t) cYad s.t.
(1.2%) :

J(@")y <r(d) wvd ellad

Idea of the demonstration :

1f we consider d“ a minimizing sequence of J. We obtain the

a priori estimates

s,=s(d ) is bounded in 1 &.0) &, « Jo % Yo 10 ((*,?,_))

3s s
LY
- —2 + d“ ¢ —2 is bounded in L2 (ﬂ,,v').
In this chapter, the main theoritical results are presented. axz .

II - THECRICAL RESULTS.

For details of the demonstration, we refer to J. HENRY [ 21]. ",
{Where ¢ is the extension by zero of ¢ in ﬂ)

I1I-1) State eguation. £ (s} is bounded in Lm(QM)

We suppose that : By using lemmas of compacity far Sobolev spaces and monotonicity

method, we prove that there exist a subsequence {du..su} such that

46 Usd n Ni’?o,'f) C de teT)

dﬁ — s d* in Lm(D,T) weak .star
.48" ¢ Hd(", ‘/‘ sze))n Li o’|; 3(“)) ; ;% "—“((o) s, — > in Lr((j, L0} stromgly.
APEY "oy ) 2 » 2 1
o A B v
Y *AFC%;_ 5t +d S, tn L(S’, )’éhcma“&
Then we deduce that !
T (dp) —> T(d%)

- - . *
which proves the existence of an optimal control d .U

Then we have the proposition @

. . . 2
Praposition 2.1. The problem (1.13) has a unigue solution in L7 (R ,\5)

of the form s = s +y.
- 77 We have the following necessary optimality conditions:

where s° is solution of (1.8)-(i.12) with g = o.
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Proposition 2.3. If (d*, s*) is a solution of the optimal control (1.23)

. »  k x
there exists p  such that (d ,s »p ) verifies the necessary optimality

conditions :

?é-gi “e) + a% (C(Q-_t)??&;_ J?)L*- d@?"e)*(ga‘)"e)ﬂ:o
(2.1}
A, 0,0 = V) . A¥ (o v, 0)= 4 Yeevr
\
..Esz 4, Cl*: .?2£? ¥ ACATN ql) =0
(206", 1
(2.2)
VYels

| Tt = 5 (8200 Tlwmmee

*
2.3) Im‘ (c'(‘.&) %g ,?*)L (d-d )d'ﬁldt' Lo
Vo € Uy Wt
The principal points of the demonstration are :

Point ! : We prove the existence and the uniqueness of a solution for

the adjoint system (2.2).
Point 2 : To obtain the optimality conditions, cléssicaly we definet

(2.4) . :'; (ACderw) - 3cdY)

then 72?. is solution of ;

L1
)«) V) +(ol«->,w) (C 3, ! W)L + q(r‘?« \y)

()

% (rzl’ o,k)=o

12'\ (=, 2 o=0

e(éf(-t(d) 19, })A) n,, (P)Tl - - w(?-&(el)'w)l- Ve

With a-priori estimates, by passing at the limit, we obtain that }

Ry — v b R,V weakly

solution of

(2 340, ¥) + d (c 5 ), ¥), a( % (w), ¥)

+ (§O 500, ¥) = - (5 ¥),

vWwe 1

Q@¢)

Ry W) (e, 00 =0 . Ry (%, ,0) =0

Because the application w > LA (w) is linear, continuous from

L™ (0,T) into W= {a\«&é f-(a'b') , 5— - elc 3—"" G. L CR U’)k

we deduce that 4 + s(d) is G-differentiable.

Then J is G-dlfferentlable and we have H

< T), w> = f(g,ce) 50‘(&))‘[ clr) Ay ow) (o, 4,) Ax, Ak
If we introduce the ad]omr. state ? solution of (2.2), we obtain !
< ,5 A
o <T@« [ dewm) 1) e 0t

If we take ¢ = Ed(w) in(Z.Z) and if we integrate on Lo,7] % foﬂ]

we obtain :

g —
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- Optimization.
Then with (2.6), we obtain ! .
g A conjugate gradient algorithm (Polak-Ribiére) with projection
> is used to compute an optimal control.
-
<T@, W = ~jR(c o ACD, BAY W dry 4t
2 s
~ Numerical results.
From which, we deduce (2.3). Some numerical results are given Figures 3.1 - 3.2,
t
- zd(t) is obtained as the solution of the system
for d{t) = 0,5 and a(t) = 1.
I11 - DISCRETIZATION AND NUMERICAL RESUETE. ~ The constraints for d{t)} are 0,l<dsl.
We have use the following finite-difference scheme ~ We presented the computed optimal control for perturbations
on a(t)
i) Figure 3-1 for
Step 1 : :
—_ ale) = ;HD,S sin 2mt £<0,5
\-l.‘f/a - a:\ 1 t20,5
v @ . 3
" {1,& =40 - i oy s
' ii} Figure 3-2 for
) ﬁ‘. . [+0,2 sin nt t< |
74 alt) = 4, ez 1
nly
. - 2 m
A , <; L2
Qb %,3 = 4. (i- RS V. 4. fe 8 <
lu 2 {’a'fl —_— .
{ 2R, 28t
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