INTERPATION A AT ALC ENERGY AGENCY

UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION

NTERNATIONAL CENTRE FOR THEORETICAL PHYSICS #100 TRIESTE (ITALY) - P.O. B. 688 - MIRAMARE - STRADA COSTIERA 11 - TELEPHONES: 224281/23/9/5/9 CABLE: CENTRATON - TELEX 450392-1

smR/92 - 19

AUTUMN COURSE

ON

VARIATIONAL METHODS IN ANALYSIS AND MATHEMATICAL PHYSICS

20 October - 11 December 1981

OPTIMAL CONTROL OF WATER SOLIDIFICATION OBSERVATION OF THE FREE-BOUNDARY

C. SAGUEZ

Institut National de Recherche en Informatique et en Automatique Domaine de Voluceau-Rocquencourt B.P. 105 78150 Le Chesnay France

These are preliminary lecture notes, intended only for distribution to participants. Missing or extra copies are available from Room 230.

	3
	÷ .
	; ÷

OPTIMAL CONTROL OF WATER SOLIDIFICATION

OBSERVATION OF THE FREE-BOUNDARY

The solidification of water is one of the simplest free-boundary problem, the state (the temperature) of which can be modelized with a one phase Stefan problem. Here the optimal control of a such system is studied when:

- the state system is given by the variational inequality (V.I) associated with the one phase Stefan problem;
- the observation is the free-boundary (interface between water and ice), more precisely the domain of ice.

The main difficulties of this problem are :

- ~ the differentiability of the solution of a variational inequality;
- the dependance of the domain of ice, with respect to the control.

The lecture is divided in three parts :

- 1./ Mathematical formulation of the problem.
- 2./ Theoritical results.
- 3./ Numerical results.

For details we refer to C. SAGUEZ [5].

,

I - MATHEMATICAL FORMULATION.

We consider the two dimensional case. Let Ω be a bounded open set of \mathbb{R}^2 , with $\Gamma = \Gamma_1 U \Gamma_2$ the boundary (see figure 1.1).

Figure 1.1.

. $\Omega_1(t)$ (resp. $\Omega_2(t)$) denotes the liquid domain (resp. the solid domain) and S(t) the free-boundary. We suppose that $\Omega_1(t)\subset\Omega$ $\forall t\in I_0,T$

I-1) State system.

 $\theta_1(x,t)$ the temperature of water and θ_2 the temperature of ice, verify the equations :

In the liquid

(4-1)
$$\begin{cases} \frac{\partial Q_1}{\partial t} - \Delta P_1 = 0 & \text{on } Q_1 = \bigcup_{\lambda \in [0, T]} J_{\lambda}(\lambda) \times J_{0, T} \end{bmatrix} \\ (4-2) & \Theta_{1|\Sigma_{1}} = W_{0}(\omega, t) & \left(\sum_{i=1}^{n} \chi_{i} J_{0, T} \zeta_{i} \right) \\ (4-3) & \Theta_{1|\zeta(t)} = 0 \\ (4-4) & \Theta_{1}(\chi, 0) = \Theta_{0}(\omega) & \left(\text{we suppose } Q_{0}(\omega) \geq 0 \right) \end{cases}$$

$$(1.5) \quad \Theta_{2}(p, t) = 0$$

Along the free-boundary S(t)

(1.6)
$$\frac{\partial \Theta_{i}}{\partial \vec{n}} |_{S(E)} = -L \cdot \vec{b} \cdot \vec{n}$$

(where L is the latent heat, and $\overset{\Rightarrow}{\vec{V},\vec{n}}$ the normal speed of the free-boundary).

If $\theta_1(x,t)$ is the extension of θ_1 by zero in Ω , we define the new variable y(x,t):

(1.7)
$$\begin{cases} (\mathbf{r},t) = \int_0^t \mathbf{e}_{\mathbf{r}}(\mathbf{r},\tau) d\tau$$

Then y(x,t) is solution of the following variational inequality (G. DUVAUT [2], J.L. LIONS [3]):

To find
$$y \in L^2(0,T,V)$$
, $\frac{\partial y}{\partial t} \in L^2(0,T,L^2(\Omega))$ 1.1:

(4.8)
$$|(\frac{\partial q}{\partial t}, \xi - q)| + \alpha(\gamma, \xi - \gamma) \ge (\xi, \xi - \eta) \quad \forall \xi \in K_{2}(t)$$

(4.8) $|(\gamma, \xi)| \in K_{3}(t)$
(4.10) $|(\gamma, \xi)| \in K_{3}(t)$

with
$$V = \{\xi \mid \xi \in H^{2}(\Omega) ; \xi \mid \Gamma_{2} = 0\}$$
 $K_{1}(t) = \{\xi \mid \xi \in V , \xi \mid \Gamma_{1} = \sigma , \xi \geq 0 \text{ a.e.}\}$
 $a(\Psi, \Psi) = \int_{\Omega} q_{1}ad\Psi q_{1}ad\Psi d\Omega$
 $\sigma(\Psi, t) = \int_{0}^{t} W_{0}(\Psi, \sigma) dX$
 $f(\Psi, t) = \widetilde{\Theta}_{0}(\Psi) - L(I - \chi_{\Omega_{1}}(\sigma))$
 $g(\Psi, t) = \widetilde{\Theta}_{0}(\Psi) - L(I - \chi_{\Omega_{1}}(\sigma))$

Remark 1.1. To study the V.I (1.8)-(1.10), it is classical to introduce the penalized problem:

0

I-2) Optimal control problem

We define the domain F (domain of ice) by :

(1.15)
$$F = \{(x,t) \mid y(x,t) = 0\}$$

Then the following optimal control problem is considered:

- the state y is solution of the V.I (1.8) (1.10),
- the control variable is σ , boundary value along Γ_1 ,
- the set of admissible control U and is a convex, bounded closed subset of $U = H^{M_1,3/4}(Z_1)$, such that $U(N_1,0) = 0$, $U(N_1,1) > 0$ a.e.
- the functional is defined by

 $(x_F \text{ characteristic function of F, } x_d \text{ characteristic function of F, } x_d \subset Q$).

The optimal control problem is:

(1.17)
$$\begin{cases} T_0 & \text{ford } \vec{v} \in \text{Upd s.t.} \\ T(\vec{v}) & \text{fore Upd.} \end{cases}$$

Remark 1.2. We define the penalized optimal control problem :

- the state $\mathbf{y}_{\mathbf{g}}$ is solution of (1.11)-(1.14);
- the functional

II - THEORITICAL RESULTS.

New we assume that !

(2.1)
$$\int e^{2}(\alpha)$$
; $\int (a,t) \int (a,t) = 0$

In this chapter, we present some theoritical results. For the details of the demonstration we refer to C. SAGUEZ [5].

II-1) Variational inequality.

Proposition 2.1.: The variational inequality (1.8)-(1.10) has an unique solution 46 H^{2,1} (6), with

Proposition 2.2.: The penalized problem (1.11)-(1.14) has an unique

solution

and

ye = H²(a)

with

ye = y a.e.

Proposition 2.3.: The application $v \rightarrow v(v)$, solution of the V.I is continuous from $U_0 = H^{3/4}(z_1) \times L^2(x_1)$ weak into $H^{4/4}(x_1) \times L^2(x_1) \times L^2(x_2)$ weak into $H^{4/4}(x_1) \times L^2(x_2) \times L^2(x_2)$ solution of the penalized problem.

II-2) Optimal control problem.

Due to the assumption (2.1), the characteristic function of \mathbf{F} is characterized by :

$$(2.2) \qquad \begin{cases} \chi_F = \int_{-\frac{3y}{2F}} - \Delta y \end{cases}$$

From (2.2) we deduce:

Proposition 2.4. : The application $\gamma \rightarrow \chi_{\epsilon}$ is continuous from $\mu^{3k}(\chi_{\epsilon})$ weak into $L^{2}(x)$ strong :

Proof: Let $\{u_n\}$ be a sequence of elements of U such that $u_n = u_n + \frac{1}{2} \frac{3u}{2}$ weakly.

If F_n is the contact set associated with σ_n and $f_n = f(\sigma_n)$ we have

$$g_{X}E^{\mu} = g - \frac{SF}{3A^{\mu}} - \nabla A^{\mu}$$

Because $X_{\mathbf{F}_n}$ is bounded in $L^2(\mathbf{Q})$, there exists a subsequence

(still denoted X_{F_n}) and a function $\{E\}_{n}^{2}(a)$ such that: $X_{F_n} \longrightarrow P \text{ in } L^{2}(a) \text{ weakly}.$

At the limit $(n \rightarrow +\infty)$, with the property 2.3, we obtain :

then

The strong convergence is deduced because we consider characteristic functions.

0

For the penalized problem we have :

Proposition 2.5.: The application
$$\sigma \to \chi_{F_{\epsilon}}$$
 is continuous from

 $U = H^{5/2}, \frac{3/4}{2}$
 $\chi_{F_{\epsilon}} \to \chi_{F}$ in $L^{2}(Q)$ strong and

 $\chi_{F_{\epsilon}} \to \chi_{F}$ in $L^{2}(Q)$ strongly.

Remark 2.1. We don't detail here how to obtain necessary optimality conditions. This problem is very difficult and many questions are always open.

The principle is the following:

We consider the regularized penalized problem

$$\begin{cases} \frac{\partial y^{n}}{\partial e} - \Delta y^{n} + \frac{1}{E} y^{n} (y^{n}) = 0 \\ y^{n} = 0 \quad ; \quad y^{n} \mid_{Z_{E}} = 0 \\ y^{n} \mid_{Z_{E}} = 0 \quad ; \quad y^{n} \mid_{Z_{E}} = 0 \end{cases}$$

where \(\bar{\eta}_n \) is a very regular function, which regularizes -x -.

For this problem, necessary optimality conditions are defined and at the limit (), e.), with technical assumptions, we obtain necessary optimality conditions. (See V. BARBU[1], F. MIGNOT[4], C.SAGUEZ[5])

0

III - NUMERICAL RESULTS.

- Numerically, we have solve the penalized problem with a gradient method.
- The problem has been discretized by finite element method. The triangulation is given Figure 3.1.
 - Figure 3.2, we give the results for

and Figure 3.3, for

The time of computation is 2 mm 20 s in IBM 370/168, for 10 steps of time and 8 iterations of gradient.

Desired free-boundary p_d = R(+t(R2-R1)(cos8+1)/2

Obtained free-boundary

Figure 3.1.

Triangulation of the domain: 728 triangles
482 nodes

Optimal control along $\Gamma_{\hat{l}}$

Figure 3.2.

Desired free-boundary Pd - RI+E(RZ-RI)|cos8|

Computed free-boundary

Optimal control along Γ_1

Figure 3.3.

11

REFERENCES

- [1] V. BARBU. Necessary conditions for distributed control problems governed by parabolic variational inequalities.
- [2] D. DUVAUT. Résolution d'un problème de Stéfan (Fusion de la glace à zéro degré) (CRAS. t.276, 28 Mai 1973).
- [3] J.L. LIONS. Remarks on the theory of optimal control of distributed systems (Lectures at Naval Surface Weapons Center, Maryland, 1977).
- [4] F. MIGNOT. Contrôle dans les inéquations variationnelles. (Thesis, Paris VI, 1976).
- [5] C. SAGUEZ. Contrôle optimal de systèmes à frontière libre. (Thesis, University of Compiègne, 1980).

0000000000000000000