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VARIATIONAT. FORMULATION

FOR EVERY NONLINEAR EQUATION

»
E. Tonti )

Abstract. Using the operatorial notation we show that
for every nonlinear problem does exist a variational
formulation and, much more, an infinity of them. The
corresponding functicnals are easily obtained. It
follows that the requirement of the existence of a va
riational formulation for a given problem as a heuri-
stic criterion to select admissible field equaticns,
egquations of motion or equaticns of interaction is to

be abandoned.

, (™ This work has been sponsored by the Italian Consi-
glio Nazionale delle Ricerche.

1 - INTRODUCTION

Roughly speaking the inverse problem of the Calculus of

variations is the problem of finding a variaticnal formula-

tion or a variatiopal principle, for a given set of equations

with associated initial or boundary conditions.
The trial and error method is still used in the search
for the variational formulation in physics and engineering.
On the contrary such a search in mathematical literature is
done using the operatorial approach that enables to solve the
problem for classes of eguations instead of single equations.
The main interest of the mathematician in the variational
formulation lies in the fact that it offers a method of prov-
ing the existence of the solution of a given problem. One

then speaks of variational methods for the existence proofs.

The main interest of the engineer in the variational for-
mulation lies in the possibility of utilizing numerical me-

thods of solution, the sco called direct methods of the Cal-

culus of Variations: his aim is the finding of the soluticn.
Furthermore he is often attracted by the synthetic statement
that a variational principle offers and by the fact that the
functional is often a physically significant quantity.

The main interest of the physicist about the variatio-
nal formulation is even more different. He is rarely interest-
ed in the existence proof, and little interest in direct me-
theds. He is often fascinated by the synthetic statement
and by the physical meaning of the functional (it may be

a time, an energy, an action, a transition probability, a



phase, an entropy production rate, ete.). But what seems to
us the main interest of the physicist, is that he believes

that equations cbtained from a variatijional principle consti-

tute a priviledged class among all conceivable equations.

This belief is perhaps due to the fact that most of the
field equations come from a variational principle. This, at
least, is the éase of fields in which reversible phenomena
take place, like statics and d_.amics of elastic solids,
dynamics of perfect fluids, electramagnetic field without
conduction currents, gravitational field either classical or
relativistic, guantum mechanics, like Schradinéer field,
Klein-Gordon field, Dirac field, etc.

Helmholtz, in its classical paper on the principle of mi-

nimal action [38], wrote: "Already now one can consider highly

probable that such a principle of minimal action represents
the general law of all reversible processes in Nature ..."
And he continued: "Anyhow the general validity of the prin-
ciple of minimal action appears to me as a well established
one, so that it can assume a high value either as a heuristic
principle or as a criterion in the trial on formulating the
laws of new classes of phencmena” [38,p.142]. .

The fact that variational prineciples are frequently en-
countered in physics has brought to the construction of a ma-
thematical field theory in which general rules are given to
obtain informations about the solutions of an equation start-
ing from a lagrangian. This 1is the case of Noether theorems,

of the automatic relativistic invariance of field eguations,

of the automatic construction of the stress-energy-momentum

tensor of the field, etc. How can one be not convinced of the

priviledge cof the equations coming from a variational principle?

Nevertheless there are equations that resist for long
time to a variational formulation. This is the case of the
Navier-Stokes equations of fluid dynamics that have not yet
a variational formulation (see [36]); of Fourier equation
of heat conduction and of its companion Fick equation that
received a variational formulation twenty years ago, of the
equations of irreversible thermodynamics, with the exception
of those describing stationary flows for which the pPrinciple
of minimun entropy production rate has been established by
Prigogine.

The existence of equations which will describe physical
phenamena, although they are not deducible from a variatio-
nal principle, have stimulated physicists and engineers to
extend the classical Calculus of Variations to give varia-
ticnal formulation to such eguations.

After many trials that produced "quasi" variational for-
mulations and "restricted” variational formulations (see
[27] for a critical review}, some of them quite out of the

limits of mathematical correctness, the first rigorous re-

- Sult was obtained by Gurtin [28],[44] who showed how to give

variational formulation to linear initial value problems.
Gurtin's idea was essentlally the introduction of the convo-
lution product of two functicons to construct the bilinear

form which is necessary for a variational formulation. This



method opened the way to the variational formulation to all
linear initial value problems and a large number of papers
mainly appeared in the engineering reviews.

The method of Gurtin was later simplified by the present
author [26] . The idea of adapting the bilinear form to the
glven cperator was brought to its apex by Magri (6] who

showed that evefy linear equation admits a variational for-

mulation {and really an infinity of them) giving the expli-
cit way to obtain the functional. This result contradicts
the common believe that equations admitting a wvariational
formulation form a priviledged class.

Equations of physics are usually of differential kind: in-
tegrodifferential equations are rare. The absence of integral
or integrodifferential equations has led to overemphasize
the role of the lagrangian as a function of the field va-
riables and of its derivatives.

But the use of integrodifferential equations is increas-
ing both in engineering and physics. If a constitutive law
is history~dependent the present value of a physical varia-
ble depends on the values assumed by anocther physical varia-
ble in all past instants: this leads to an integral consti-
tutive relation. It is the case of the ferromagnetism, of
the dispersion of light, of the radiation reaction of fastly
accelerate electrons. In engineering of materials we have
visco-elastic materials [37,p.20]. In general this is the
case of nonlocal or not instantaneous actions. When a varia-

tional formulation is given to such physical law the functio-

nal does not contain a lagrangian function but an integro-
differential expression. One may speak of lagrangian ope-
rator.

On the other side the non conventional variational for-
mulations of Gurtin and Magri give rise to integrodifferen-
tial lagrangians. Then the possibility of starting a physi-
cal theory saying: "given the lagrangian L{x;¢(x),¢p{x))..."
is restricted to differential equations that admit a classi-
cal variational formulation.

One may then think that a priviledged class of equations
is the one that admits a variational formulation using the
standard bilinear forms, regarding other bilinear forms as
"artificial".

But an example taken fram physics may be enough to aban-
don this thought. When Dirac equation system has come out
it was written with the matrices o), and 8. De Broglie was
troubled with the fact that there was not a variational
principle for such equations. Happily the equation was not
refused for this lack! Later he discovered that using the
matrices v¥ (introduced by von Neumann) and writing Dirac
system in the form iﬁTu%;*_m°C¢=0 one obtains a variational
formulation. This form of the system may be cbtained from
the previous one through amultiplication by the matrix B.0f
course the premultiplication by an invertible matrix chang-
es the form, not the content, of the equation, as the change
of representation dees. Since the premultiplication by an

invertible integrating factor is equivalent tc a change of



bilinear form, we see that Dirac equation system admits a
variational formulation to the price of abandoning the stand-
ard bilinear form.

The historical example tells us that one must discard
a field equation if it is not directly derivable from a

variaticnal formulation: an integrating factor or the change

of bilinear form must be admitted.

For "integrating factor" one usually means a function or
a matrix whose elements are functions. In all cases an es-
sential requirement is that the factor is invertible (see
section 4).

For example a variational formulation of the problem

mg+hq+kg=0 0KtST

2 {1.1)
g(0)=a g{0)=b q(t)ec”[o,T]

is obtained if we multiply the equation for the invertible

factor

¢(t)=exp(§ t) (1.2)
because the equation assumes the selfadjoint form
d h a h
HIEE[EXP(E t}) 3%]+k exp(ﬁ t)g=0 (1.3}

that 1s necessary for a variational formulation.

In general the inverse problem for newtonian equations of

motion

CE(tiq,q,g)=0 (1.4)

is put in the following texrms: does it exist an invertible

function @{t;q, ) so that the eguation
pltig,4)f{t;q,4,§)=0 {1.5)

is the Euler-lagrange equation of a functional?

There is no reason to restrict the search for an integrat-
ing factor to a function: one may search for an integrat-
ing operator like

T
._jg(t,r)qn(t:q(t),c'{(‘r)) £(1;a(r),§ (), d(x)) dr=0,  (1.6)
0

We must require, of course, that the kernel ¢ of this inte-
gral transform is such that Eq.(1;6) has the same solutions
as (1.4). This integrating operator reduces to the usual in-
tegrating factor when g(t,r} reduces to the Dirac distribu-
tion s(t,1).

Even if we are open to such an extension (and we cannot
find reasons to refuse it) we would be probably. -disturbed

if we were. told that every equation of the kind (1.4)

admits an integrating operator and then a variational for-

mulation.

This is just a particular case of what we show in the
present paper.

The consequence of this is that we have nc longer reason

to believe that equations coming from a variational princi-

ple form a priviledged class.
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This statement sounds unpleasant: it seems that we have
lost a heuristic principle (compare with Helmholtz gquota-
tion) to investigate the admissibility of new equations
of physics or to predict possible interactions.

But if instead of insisting on the wvariational formula-
tion we went deeper to performan anatomy of the field equations
dividing them in their constituents we would realize that

there is a simple operatorial structure that lies behind

every physical theory (see [29] (33]}.

In author's opinion it is just the mathematical structure
on which the variational formulation is based, that enables
us to find again an heuristic principle that can substi-
tute the previous one.

Stated in other words: the variational formulation is
only the emerging part of an iceberg. The deep reason for
the "spontaneous" existence of classical variational princi-
ples lies in the submerged part of this iceberg and it is
there that we can find the heuristic principle to investi-

gate new laws of physics.

2 - VARIATIONAL FORMULATION

The search for a variational formulation of a given pro-
blem is the "Inverse Problem" of the Calculus of Variations.
We dre going to give a precise definition of what the Inverse

Problem 1is,

First of all one must distinguish between Calculus of va-
riations in the small and in the large. There are correspond-

ingly two forms of the inverse problem: the inverse problem

in the small or local inverse problem and the inverse pro-

blem in the large or the global inverse problem.

We shall deal here only with local inverse problem (*).
Even in this context one can find in the literature at least
two different statements. To formalize then we need scme
background and terminology.

First of all we shall use an operatorial approach: it is
both synthetic and conceptually simple. To make it technically
simple we shall take an inductive approach.

Talking about equations we mean whatever kind of equa-
tion: of differential, integral, or integrodifferential kind:
hoth a single egquation and a system of eguations; linear
or not linear. This paper deals essentialy with nonlinear
operators: when the coperator is linear it will be expressely
said. An equation is usually associated with additional con-
ditions that specify initial, boundary, regularity conditions
and the functional class. The functions considered may be real
or complex valued, scalar, vector, tensor or spinor-valued.
The set formed by an eguation and all additional conditions
constitutes a problem. Every problem may be written in the

general form

{#) Those who are interested in the inverse problem in the large
may consult [41], [42], {40l , {43], (9], [12], [46] , [#7].



N(u)=0_ (2.1)

where N denotes an operator { N for "nonlinear"), u is an
element of the domain D (N) that is considered embedded in

a vector space U. For generality, the range R(N) is supposed,

to be embedded in another vector space V. e, denotes the null

element of the V~space. The two spaces U and V, that may pos-

sibly ccincide, are not suppwsed to be Banach or Hilbert
spaces.

After a bilinear form has been introduced one may define
a topology that makes continuous the bilinear form both in u
and’'v. Such topology is said consistent with the duality
[13,p.130] .

A linear problem is suitably written in the form
Lu=f (2.2}

where L 'D(L)CM ~+ V denotes a linear operator.The from (2.1}
includes this form: we must put N=Lu-f. This operator is
nonlinear but ofa mild kind: it is an affine operator. It may

be characterized as follows: if we denote by

Ng=N' 0,9y =120 Un(ureq) -Nu) (2.3)

the Gateaux differential of the operator N, we may easily
see that an affine operator has a Gateaux differential that

is independent on u. If we denote by A our affine cperator

it is

¥ _1in 1 _ - - = .
At =0 ﬁL(u+E¢) £]-[Lu fi] L. (2.4)

The notations N(u)=ev or Lu=f do not exclude that there

are functions, different fromu and f,that form the operator.

So the problem

._(f_x[p(x) ddx;,(:X)] +q{x)y (x)=£ (x)
¥ (0)=0 y(1)=0 0sx<1 (2.5)
-y (x) € c2[0.1}

may be written as follows

: L(p(x) g (x) :y(x)) =f (x} (2.6}
or simply

L y(x)=£f(x} (2.7
Even a linear equation with constant coefficients like

2
a ay b3Y + cy = £

2 dx
ax (2.8)
vec?[0,1]  osx<t y(0)=0  y(1)=0
may be written
L{a,b,c;y)=f or Ly=f. i (2.9)

Then an equation that links a "source" function f with a

"configuration" function u may be written

T
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N(f;u)=ev or N(u)=av. {2.10)

We remark that the Gateaux differential does not regquire
a norm on the U-space while the Frechet differential requires
it: this is a stronger requirement. f*)

We remark that in the case cf differential operators the
linearity of the operator implies the linearity of the for-
mal differential operator {+) and the linearity of its domain.
This in turn requires homogenecus boundary or initial condi-
tions. Nonhomogenecus linear boundary conditions make the
domain a convex set and the operator affine.

Now to put the question of the variational formulation of

problem (2.1) we need a bilinear form or bilinear functional,

we shall denote (v,u), i.e. a mapping B:UxV-~ R such that it

satisfies these reguirements

1} it must be real-valued (even if U and V are vector
spaces over the complex number field) ;

2} it must be bilinear over the real number field (even
if U and V are linear over the complex number field;

3) it must be ncondegenerate, i.e.
if <v,u0>=0 for every vel then u =o

if (vo,u)=0 for every uell then vo=ev.

The real number t={(v,u) is then called the scalar product

of the two elements vell and uell, the V-space is called dual

(*) In the author's paper [18] the Cateaux derivative was erroneously
called "Frechet" derivative.
(t) A "formal" differential operator is any expression that contains
P ¥ e

symbols of total or partial derivatives,

- 14 -

of the l-space and one writes V=U®*. One says alsc that U
and V are put in duality by the canonical bilinear form
<v,u> (to distinguish this from other possible bilinear

forms). One also says that U and V form a dual pair, or a

dual system [24,p.123] .

The bilinear forms used in practice are of the following
xinds. Let us denote vsu the local scalar product of two
vector or two tensor or two spinor-valued functions of op-

posite variance, like

K hk AB 2.19
A% Yhi" VapY ' ( )

In £he case of tensor or spinors of second rank the two ten-

sors must have the same symmetry: both antisymmetric, as it

is the case of electromagnetic tensors %FGBGGB

tric, as it 1s the case of the relativistic gravitational

., both symme-

v
theory, guUTLl .
If we denote with Q a subset of R™ and with x a
point of @, i.e. x=(xl, x2, ...xn)Eﬂ we shall consider ca-

nonical bilinear form the form

<vyu = jv(x)-u(x) a0 . (2.12)
0

This is the form usually employed in physical theories. It
is not the most general bilinear form. If A:U—U and B:V—V
are two linear invertible operators whose demain is the whole
U and V-space respectively, a more general non degenerate bi-

linear form is of the kind



.-15..
<V, u>= SBv(x)-Au(x)dQ. (2.13)
]

The requirement of nondegeneracy constitutes a restric-
tion on possible pairs of spaces U and V and also on the
mappings N candidates for a variational formulation. For
example a problem like

div B(F)=e (F) . s
- . with Tefl, Sc&f (2.14)
,n-ﬁ(s)=0
canncot be a candidate for a variational formulation as it
is because on the spaces of scalar-valued functicns
o (T} and of vector-valued functions D(T) one cannot
define a nondegenerate bilinear form.
Oof course one may add to problem (2.14) the corresponding

adjoint problem
B(F)= -egrad v@D {2.15)

The whole problem formed by (2.14) and (2.15) ‘bécomes a
possible candidate for a variational formulation.

Let us denote with F : P(F) CU—+R a functional. If we
consider a variation ©&u we can write the corresponding

variation of F as

§F = {E(u}, éu?

a5 'ds usual in the " &~ process" of the Caleulus of Vari-

ations.

- 16, = -

We shall call E the Euler operator of the functional F. The

relation between E and F can be expressed sayng that E is the
gradient of F and F is the potential of E. An element u such
that 4F = 0 for whatever Ju is called a critical point of

the functional; the functional is said staticnary at u, -

Notations. Let us denote T a nonlinear operator: if the fol-

lowing decomposition holds
T(utsy) — T{u} = Ltv + Nu {ey) (2.147)

where ¢ is such that utey belongs to the domain of T for every

F3 ,Lu and Nu are linear and nonlinear operators on sy respec-

tively and
lim Ny (5w -0 for every ue D(T) {2.18)
E~0 E

then Luew is called the Gateaux differential of T at u and Lu

the Gateaux derivative. One write Lu = T& . It is

n _ 1im T(u+ey ) - T{(u)
T&w = Luw = ihe A (2.19)
If one puts
du = sy 4T (u) = T& du (2.20)
then one can write
T(u+ du) = T{u}) = 4T (u) + Nu( du) {2.21)

Then the symbol "& " of the classical Calculus of Variations,
that is -—msually applied to functlonals, coincides with the
Gateaux differential [4,p.114].
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Of the functicnal F or also its functional derivative. [19].

When E is a differential operator, if we dencte by % the

corresponding formal differentiali operator, the equation

Euy=0 (2.22)

is the usual Euler equation while

E (u}=0 (2.23)

v

is the Euler problem. We remark that a variational formula-
tion has sense for a problem not for an equation: boundary
or initial cenditions play a fundamental role.

-Nov we one able to state the kinds of wvariational for-

mulations mentioned at the beginning of this section.

a) Variational formulation in the strict sense:

given a problem N(u)=6 with ue@(N)CH and y=L* find

a functional F[u], if any, such that the operator N is the

gradient of ¥, i.e. such that

F'lu;jgl=<N(),¢>. (2.24)

This implies that the solutions of problem N(u)ﬁe; are the
critical points of the functional F[u] and viceversa.
This form of the inverse problem is the one given by Hirsch

in 1897 [15,p.52)}: Atherton and Homsy in 1975 [11,p.35].

“I18 -

In the context of the global inverse problem the "strict"
form seems to be the only form considered yet: see Dedec—

ker [40], Anderson and Duchamp [12,p.781]; Olver [13,p.75].

b) Variational formulation in the extended sense:

glven a problem N{(u)=0 with uel(N)cl and v=u* find

a functional F[ul, if any, whose critical points are solu-

tions of the problem and viceversa.

This statement is more general of the former
because it requires only the coincidence of the critical
poiﬁts with the solutions without the supplementary requi-
rement that N be the gradient of the functional. The gra=-
dient of the functional F will be another operator, say N,
that will be linked in some way tc the operator N.

This form of the inverse problem is the one given by
Davis in 1928 [17] and used by Douglas in 1941 [16,p.71]:

Santilli in 1978 [10,p.10].

3 - INVERSE PROBLEM IN THE STRICT SENSE: ITS SOLUTION

Let us consider a very simple example to show the sim-
plicity of the operatorial approach to the inverse prcoblem.

Let us consider a system of two equations in two variables

{g(x:.Y) =0 (3.1)
hix,y) 0



_Iq_
To this system one may associate a vector field and ask

v, =g (x,y)

.2
vy=h(x,y) (3.2)

ourseives if the vector field is conservative. Let us denote

by A a real parameter that ranges from 0 to 1. A line start-

ing at the point P_{(x_,y ) and ending at P(x,y) may be de-

scribed by two functions E(X',1 !A) with the condition £{0)=

=x ;n(0)=y and E(1)})=x, n{t)=y. The circulation of v along
o] <

this line from P, to P is given by

1
| b2 (1) an ()
ey p)= | [a oo+ nem o ]a. (.
' 0

If the circulation of the vector v along every closed line
contained in the region Q vanishes, one may associate a

real number to every point with the formula

= . .4
£(PY=£(P ) +C(P_,P)} (3.4)
The function £(P) is the potential of the vector field. The
condition df=0 implies
=3 f= =3 f=0. (3.5)
gix,y)=a £=0 hx,y) y

If the field is differentiable the condition of path-inde-

pendence becomes

BV =3 V.. (3.6)

This condition may be restated as follows: if we denote by

J the jacobian of the mapping u=(x,y)—4v=(vx,vy) this matrix
u -

_20 -

cf functions is symmetric for every u. The symmetry may be

written as follows

TFV=3 0P . (3.7

The condition is only local and then it is only necessary
for the existence of the potential. To make it sufficient
one must require that the region Q be simply connected. In
particular if § is a convex set this requirement is satis-

fied and then condition (3.7) becomes sufficient.

These notions may be easily extended to function spaces.
Let us consider a generally nonlinear mapping N from a sub-

set of U to Vay With domain dense in (.To the problem

N (u)=¢ (3.8)
v

we can . assoclate the "vector field"

v=N{u) . (3.9}

Now we if consider in the U—spaée an one-parameter family
of elements n{A) with the condition n(U)=uo,n(1)=u {Fig.1a)

we can  gefine the "circulation" of the element v by the

formula

1
: C[uo,u]=I'<N(n_(-n),h:%)—>_cn. “{3.10)
0 k
If this functional is independent on the line in U-space

connecting u to u for whatever choice of u and u in D(N),

one may associate a real number r to every ued (N) by the

S
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formula

Flul=Flu ] + Clu_,u] {3.11)

where rO=F[u°] is arbitrary. If the circulation between two
points u, and u, chosen arbiltrarily, does not depend on
the line connecting them, it follows that the circulation
along any closed path vanishes. In particular this happens
for an infinitesimal lcoop. Let us take the infinitesimal

parallelogram indicated in Fig. 1b. It must ke

<'N{u} ,s_(p>—< N{uteg) ,v¥> =< N{u) ,uy>+<N{utvy} ,ep>(3.12)

from which one cbtains
< N (-u+-gEZ~N {u) " >=<N-(u+u!i‘}“—N (u) o>, (3.13)

This relation must be valid for every € and every v. If the
operator N admits a Gateaux derivative N'u the condition of

path-independence reduces to the local condition

1 = 1
<N @y >=<Nib, §>. (3.14)

This means that the Gateaux derivative of the operator must

be symmetric; this is an extension to function spaces of

Eq. (3.7).

The symmetry condition (3.14) being a local condition is not
sufficient for the existence of the potential F[u]. To make

it sufficient it is enocugh to reguire that the domain P (N)

-9 - u

F— u (x)=n(x31)  u=n 81)
i ni(x
;
— n{x3) /
’
a) - u,, (x)=n {x;0) ./’
u=n{0)
a b u
utuy
() e x) ute@
¢ b u{x)
b) L 4 () oy (x) g
i i A
— ¥ (x)

Fig. 1 - a) & line in funtion space; b) an infinitesimal pa-
rallelogram in function space.

be éimply connected. Since in many cases of practicai inte-
rest P(N)} is convex, we may conclude that under the hypo-
thesis of convexity of the domain the condition becomes
sufficient.

The relation between the functional and the operator is

easily obtained from (3.11}) and (3.10)

F'lurg]l=<BR{u), ¥ > (3.15)

so that N is the gradient of F.

We may now solve the inverse problem in its strict form

with the

THEOREM I (Volterra, 1913): the necessary and sufficient condition go
that an cperator wN:;D (N)Cl- U with domain T (N)dense tn lii8 the gra -

drent. of a fhnctfoﬁdl 18 that the circulation of the element v=N(u)
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along every closed line contained in D(N) vanishea.
If N admits a Gateaur derivative N' | the necessary condition ig that

N'u be symmetrie, i.e.

<Ni@ > = <N! 4,9 >, 3.16)

If the domain P{N) s convex the condition (3.18) becomes suff%aiént.

The functional is given by

T
Flu]= I<N(n(k)),d"(” >an. (3.17)
: L]

Historical remark: 1 - While the symmetry condition (3.16)

was established by Volterra in 1887 [19,p.109], the pre-
ceeding theorem was established for the first time by Vol-

terra in 1913 [1,p.47]. He wrote: "On peut tirer de méme

de la formule (12} la condition pour que

I
I Jrxlty, n)fex(n)an
0 a

soit la differentiale totale exacte d'une fonction de li-

gne gue nous saurons alors calculer., I1 faut que

b b
X' [x(e),n,e] =X | [x(t},T,n]l
) a a
le second param@tre indiguant toujours dans les expres-

sions précédentes, le point ot 1'on effectue la dérivation.

C'est la condition de symmétrie de la dérivée seconde

gue nous avons déja indiquée.

On peut &noncexr le résultat précis suivant: la condition

- Zq,_

necessajire et suffisante pour que xl[x(t);nﬂsoit la derivée

d'une fonction de ligne PI[x(t)H est gue

.

x'l[x(t).n-c] I‘-‘x' |[X(t) I;ln] |
a a

On saura calculer cette fonction de ligne.

On aura
T b x(n|s)
Flx(£)] |-F| {x ()] |= dsI xl[x(t)s,n]ldﬁj— dn
o ‘o 2

As further proof we remark that in 1918 Evans [21] pu-

blished a bock in which at page 23 he wrote: "The conditicn

erfcimm,]= ¢ [c|MM]

... was originally stated by Volterra®.

In 1933 Kerner [5,p.550] reported these results and
quoted Volterra (its reference 4). In 1964 Vainberg [3,p.56]
gives the same results quoting Kerner (lts reference 42b).
Iin 1969 Tonti [18] divulgated these results quoting Vain-
berg (its reference 1). The result of all this is that some
authors attribute this theorem to Kerner (see [4], [20,p.
421, |23,p.1761; others to Vainberg (see [11,p.33], [13,p.
757, [22,p.1179], and some others tothe present author

(see {9]).

Remark 2 - It is often stated that the necessary condition

for a variational formulation (in the "strict" sense) is

R Nt

Taaew”

. -
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selfadjointness. This is correct when referred tc the equa-

ticn, (the equation must be selfadjeint) but it is not cor-
rect when referred to the operator: the operator must be
symmetric. A linear operator S is selfadjoint if $*=5 and
ic symmetric when S*>5. This means that the adjoint opera-
tor has a domain D (5%) that is larger than that of S and
moreover when applied to the elements ue?l(S) gives the same
transform of §. Conditics (3.16) means that N' is symmetric,

not necessarily selfadjoint.

Remark 3 - The two spaces U and V are requested to be li-
near over the real or complex number fieid. In the second
case, typical of quantum theory, one may first introduce a
sesquilinear form <v[u:>, i.e. a nondegenerate complex-va-
lued form that satisfies the requirements

<Av|u>= A<v|u>
(A = camplex) (3.18)

<‘vllu>= l<v1u> .
After, to deal with wvariational formulation, one must con-

struct the form

<u,u>=% <viu>+<<v|u> (3.19)

that is bilinear on the real number field. An operator
that is hermitean with respect to the sesquilinear form
(3.18) is automatically symmetric with respect to the bi-

linear form (3.19).
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4 - INVERSE PROBLEM IN THE EXTENDED SENSE: ITS SOLUTION

In matrix theory a system Au=b may always be transformed
in another system by premultiplication by another matrix C.
If ¢ is invertible the new system CAu=Cb has the same s¢lu-
tions of the old one. In particular if A%* is invertible the
system A®*Au=A*b has the same soluticons. In the latter case the

vector u that solves the system makes stationary the funetioen
flu,,u u )=!{Au—b|‘2 (4.1}
frizer Yy ! :
and this gives rise to the method of least sguares.
The same preocedure cannot be performed, in general, on

differential cperators. To show this reason let us consider

the linear differential operator

D=§%,ogtﬂ,u(o}=o,u(t)ec1[O.T]i (4.2)

and the problem

. pu=f with fecfo,T]. (4.3)
The adjoint operator is

 p*= f-& ,vimi=0, v(t)eac[o, T} (4.4)

where AC[{O,T] denotes the class of absolutely continucus
functions. It is true that D*D is a symmetric operator but
D* cannot be applied to both members of the problem (4.3)

because f does not satisfy thefinal condition £(T)=0 and

then does not belong the field of definition of D®™. When
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" the method is applied to differential equations it is assum-
ed that feU(A*) [d6,p.496].
Stated in equivalent terms the domain of the operator
D*D is a restriction of the domain of D. If Du=f is an equa-
tion representing a physical law all elements feR (D) describe
possible sources. Then the restriction of the domain necessary
for the application of the cperator D* would exclude ele —

ments £ and then possible scurce distributions: this cannot

be accepted.

We may think of applying to problem (4.3) an integral op-
erator, K:R(N) »U i.e. to perform an integral . transformation, so
that f be transformed in a new function f that satisfies the

final condition f}T)=0. One may choose an operator as follows
- T
f{t)= j kit,m)f(1)dr (4.5)
0

with the condition k(T,1)=0. In particular one may choose

an integral operator of the kind of Volterra

t
?(t)=j k(t,t)£(7)dr , (4.6}

o

that satisfies automatically the final condition. The pro-

blem (4.3} becomes
KDu=Kf. (4.7)

We can now apply the operator D*:

‘28 -

D*KDu = D®KE | (4.8)
The new problem (4.8) has the same solutions of the given

one if D¥ and K are invertible operators. Moreover
if the integral operator is symmetric the operator D*KD is
also symmetric and then the Volterra condition (3.15) is
satisfied. This implies that the problem (4.8) admits a
strict variational formulation and then the problem (4.2)
admits an extended variational formulation.

As we see the reole of the integral operator K is to mo-
dify the range of D making it"digestible" to the operator
D*. This problem does not arise in matrix theory because
the damain of a matrix is the whole vector space.

The procedure indicated may be extended to nonlinear o-

perators as it is shown by the following

Theorem II (1981} - Let us consider the problem

N(u) = ev (4.9)

where N 48 a generally nonlinear cperator that satisfies the following
requirements:

I)D(NY CU then R(N)CU*

2) PN} €2 comvex (linear nonhomogeneous boundary conditions)

3)0 is demse in U (i{.é. D(N) Cu)

4) R(N)3 0, (the solution exists)

5) N'u extists

§) N'¥ is imvertible for every uED(N).

S Y

-
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Then for every choice of the integral operator K that catisfies the
following conditions

7) DK) > RN)

8) R(K) CD(N™)
. 8) i3 linear

10) is imvertible

11} 18 symmetric

the operator W defined by

N(u) = N'* K N(u) (4.10)

i3 such that

al it has the domain of N

b) t.he problems ﬁ(u)=@v and I\T(u)=0‘r have the same solutions

c¢) it is a potential operator

It follows that the solutions of the problem (4.9} coincide with the
eritical points of the functional
7 1
Flu] = — <EKN(u) , N{u)> (4.11)
2

whose gradient is the operator W.

Proof. Fig 2 will help us to make the proof easier. It
is easily seen that conditions 7} and 8) assure that the ope-
rators N and N have the same domain then a) is proved. Con-
dition 6) and the linearity of NG* implicit in 5) assure
that 9, is mapped in Ov.

Conditions.9)and 10} assure that e, is mapped back in

0, by K. Then if

R (M)

R, (linear) (nonlinear)

Fig. 2 - Relation between the operators N,K,N'#.
u

14 =
N“o K‘N(ub) E)V {4.12)
it follows that

=K Mg =gk =
B (u,)=K (N"Jo) 8,=K 8 =6 _ (4.13)

then u, is solution of problem (4.9). Viceversa if u, is
solution of (4.9) from (4.10) one sees that u, ig alsg so-
lution of ﬁ(u)=ev. This means that a sequence like that~
represented by a dotted line in Fig. 2 cannot arise. Then

b} is proved. Moreover on account of condition 11) we have

<'au,N1:1*KN(u)> = <§N (u) ,KN(u)> =

o= 6%<N(u),KN{u)>=6f[u]. (4.14)

Condition (4.14) assures only the existence of a local po-
tential F(u]: condition 2) assures that D(N)=D(F) is simply

connected and then that F[u] is a global potential.

D(N)
ACH
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If we put
= * .
R, N& K {4.15)

we see that the domain of N(u) ceoincides with that of N{u}.

Since the latter is dense in U, as condition 3) says, the re-

lation
OF [u]=<N(u),su> {4.16)

for every &u of a dense subset of U and the nondegenerate
nature of the bilinear form implies ﬁ(u)=ev. Then ¢) is

proved: q.e.d.

The relation between the varicus operators 1s shown in

Fig. 3.

p &) —

—1 R
*0

Fig. 3 — The construction of the operator N

_a..

In conclusion we see that the operator R is an integrat-
ing operator for the problem N(u)=ev. It is a linear opera-
tor. The theorem then gives, under mild conditions on the
operator N, the conditions from 1) to 6), an infinity of
integrating operators. This theorem then provides a gene-
ral solution to the inverse problem in the extended sense.

Fig. 4 shows the rélation between the strict and extend-

ed form of the inversé problém.

sF[ul= 0 &F[u] = 0

strict extended strict

[ .

2

£
I

oD

N{u) = B

<

Fig. 4 = The relation between the strict and the extended
variational formulation.

Remark 4- To give avariational formulation to a problem
one may consider bilinéar forms different fram the canonical
one. So the operator D of Eq. (4.2) that is not symmetric

with respect to thécauxucal bilinear form
T
<V,u> =j v{t) u(t) dt (4.17)
=]

becomes symmetric with respect to the convolutive bilinear

form
T

T
<v,u?g!j v{T-tiu{t}dt = j vi{tlu(T-t)dt (4.18)
o (o]

e

e
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as it is easily shown: see [26] . If we denote by C the con-

volution operater defined by

Cvi{t)= v(T-t) (4.19)
we may write
<.-v,u>C = <Cv,u>° =<v,Cu>0 {(4.20}
because C is a symmetr ¢ uvperator.

The symmetry of D with respect to the convolutive form,

i.e.

- 4.21)
<DE > = <Dy, ¥> (

is equivalent to the statement that CD is symmetric:

LCDP W= <Dy > =<Dy, P> =<CDy, ¥ >_. (4.22)

This shows that the change of bilinear form is equiva-

lent to the premultiplication by an integrating operator.

The statement that the symmetry of an operator is relative
to a bilinear form is equivalent to the statement that an
operator may be made symmetric by the application (on the
left) of an integrating operator. The choice of one or

other point of view is a matter of convenience.

Remark 5 - In 1963 silowv [34] suggested for the linear Pro-
blem Lu=f the integrating cperator st™! where s is a sym=

metric, positive definite operator. The problem is then re-

_.5(*_

duced to the equivalent one Su=SL lf. The method can be
applied only when -t is known. This makes the method
unpractical because it requires the solution of the pro-
blem.

In 1974 Magri [6] obtained the general form of the in-
tegrating operator for the problem Lu=f. Tts result may
be restated aé follows: we choose an integral operator K
that is symmetric and invertible [6,p.542], Then starting

with the standard bilinear form <v,u> we may intrcduce a

new bilinear form

<v,uz = <V,KLu> =<L*Kv,u>o (4.23)

and the cperator L is symmetric with respect to the new
bilinear form. The method can be easily applied as is
shown in [6]

In 1978 Didenko [35], ignoring paper [6] , suggested
the integrating operator L*S where S is an isometric and
symmetric operator. Both $3lov and Didenko worked in Hil-
bert spaces while in [g] the method is given for two spaces
in duality.

In 1979 Telega [23] generalized Magri's result to some

nonlinear operators .



- 38‘-

4.1 - How to choose the operator K

According to theorem II the integral operator K must be
invertible, symmetric, with range contained in D(N'*). A good
source of such operators is formed by the inverses of sym-
metric differential operators: the kernel is then the Green
function of the differential operator. So if one considers
the operator

2
L= 3-15 , 0St<T,u(0)=0,u(T)=0,u(t)ec?[0,T] ! (4.24)
dt

that is symmetric and invertible, its inverse is

T
Kv= I['(t-T)H(t-T))(T-T)]V(T)dT {4.25)
0

where H(z) is the unit-step Heaviside function.
In principle every Sturm-Liouvillé formal differential

operator

I=-& e L]racen (4.26)

with p(t)>0 and g{t}> 0 in [0,T] , associated with bounda-
ry conditions that make the operator S5 symmetric and inver-

tible gives rise to an operator K=s -

that may be utilized
to give a normal variational formulation. Table I gives

some of these operators.

Often the problem may be decomposed in two pieces

-3 -

Table I - Integral operators K for functions of one variable defined in [0,T]
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N(u)=Lu+B (u) (4.27)

where L is an easily invertible operator. In this case

the problem reduces itself to

u+M(u}=0, (4.28)

with M=L 'B.

In this case the functional (4.11) reduces itself to

F[u]= %<V,K:v>+< v, KM(u)> + %<M(u),KM(u)> . (4.29)

5 - APPLICATIONS

Let us consider some examples.
Example 1: give a variational fermulation in the

extended sense to the problem

£ uwy=£(6) 0St=<T
(5.1)

u(0)=a utty e c'fo,T]

The operator is affine: the adjoint of its Gateaux deriva-
tive is

-2 G,y (TY=0,p(t) € AC[O,T] (5.2)

K 2 =
Nu v (s34

and is invertible.
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If we choose any Green function of Table I (all of them
satlsfy the final condition ¢ (T)=0} the integrating opera-

tor becomes

T

Rv= ‘EdE j g(t,r)v(r)drs j:r- M—;éll-v('c)dt (5.3)
[1] o

then in particular choosing the Green functions of the rows

2,3 and 4 of Table I we obtain the integrating operators

T

Ry = Ivtr)dr (5.4)
1]

Ry = v(T-t)=Cvit) (5.5)
T .

rGly = jv(t)dt (5.6)

1}

and the corresponding functionals become

T T T
FU [uj=%§u2(t)dt— j u(t) [ I f('r)dt-a]dt (5.7}
} o 0 [ ‘

T

F? =] %—géﬁ u(T-t}at- jf(t)u(T—t)dt (5.8)

Q (4]
=(3) (g1 T
F'oo[u]l=5 ult)u(T-t}dt- u{t} f(r)dr+aidt. (5.9)

i} 4] 0
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We have obtained three variational formulations of the ini-

tial value problem given thougt its operator is not symmetric.

Example 2 : Let us give a variational formulation to the

nonlinear initial wvalue problem

gt)-£{t3g{t))=0

{(5.10)
1.

q(0)=a gi{tye c [o,T1)

where f is an assigned function. It is
d 1

Ni{g)=33¢ q-f(t,q),q{0)=a,q({t)eC [O,T]g {(5.11)

Nigeldy _ OF = 1

N&?—’-&—tﬂ’ ag? ¢ P(O)=0, p(t)eC fo,r] (5.12)

N yp= —Jiur- 3£1b p (T)=0,¢ (t)enc{o,T] (5.13)

q dt 3g "’ f ! .
The adjoint homogeneous problem

- DR T S -

oAk -1 V] v{T)=0 (5.14)

has only the null solution. The damain of N is convex and
dense in U with all common topologies.

Any Green function of Table I satisfies the final con-
dition ¥ (T}=0. Mcoreover the operator K so obtained has a
domain that may be choosen larger than ¢ [0,T], for ex.
pK)=Cc[0,T] and a range that is contained in Ac[0,T]: all
operators K of Table I have R(K)<cC[0,T]<AC[0,T]. Then all

conditions of Theorem II are satigsfied. Cne has

_qo_

h(t) =§(t)-£(tsq(t}) (5.15)
T T

Fa]= 1 sdt h(t) jg(t,t)h(t)dr. (5.16)
o 0

We have so obtained at least five variational formu-
lations in the extended sense of the problem.

We remark that with two integrations by parts one can
transform the expréssion of F[q] eliminating the time de-

rivatives of g(t).

Example 3: Let us give a variational formulatiocn in the

extended sense to the initial value problem

FO)-£(t;qit),g(t)) =0

: (5.17)
q(0)=0 &(0)=0 ait) e c?[o,r]

where f is an assigned function. We can reduce this pro-
blem to the general form (4.28) by two integrations on t:

we obtain the nonlinear integro-differential equation
T
alt)- _“(t-r)f(nq(r),c‘;m)dw=o. {(5.18)
0

If we now use a Green function that satisfies the final
conditions ¢ (T)=0, $(T)=0, like those given in rows 4)
and 5) of Table I, we obtain the functional of the form

(4.29) with

e

T4

S
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T
M{g)=- I(t-r)f(TJQ(T).Q(rJ)dr . (5.19)

[
The two corresponding functionals give a variational for-

melation to the given not symmetric initial value pro-

blem.

Example 4. Dynamical system.
Let us consider a dynamical system

ed” (=€ (t5aT (6,5 (1), .. g (€] ) =0

{5.20)

af(0)=a® g te) e 2'0,1] (r=1,2,...n)

where % are given functions and a¥ given constants. We
may utilize the analysis done in Ex. 2: if one selects

n’ Grzen functicns qrs(t,f) that satisfy the final condi-
ticn grS(T,T)=0 one cbtains a functional. In particualar
one may choose only one Green functioen g(t,t) and using

the metrie tensor a o te put
9pg (trv)=a, glt,). ) (5.21)

Then one obtains

T
= 1
Flq] = 3 jdt[—éi—t qr(t)~fr(t:q(t3)] x
0 (5.22)
xjg(t,r)[d—i qr(r)-fr(t,q('r))] dr.
o
These functionals {with g(T,7)=0) give a variational for-

mulaticn in the extended sense to every dynamical system,

10.

11.

12.

13.

- QQ_'
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