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WEAK AND STRONG DERIVATIVES IN ORLICZ SPACES

Jean-Pierre GOSSEZ

1. INTRODUCTION.

One classical result in partisl differential equations is the equality
of weak derivatives (i.e.derivatives in the distribution sense) and strong
derivatives (i.e. derivetives obtained from smooth functions by & limiting
process), Such an equality holds in the setting of LF spaces, as was proved
locally by Friedrichs [9] in 1944 and later globally by Meyers—Serrin | 18]
in 196k,

Orlicz spaces are generalizations of P spaces where, roughly speaking,
the defining function t + |t!P is replaced by a function of the same shape
but whose growth is not necessarily of polynomial type. These spaces have
been successfully used in recent years in the study of several guestions
from partial differential equations, as the limiting case of the Sobolev
imbedding theorem {ef.[21]) or the existence theory for strongly nonlinear
boundary value problems (cf.lh, 10,11, 5, #1)., In the latter theory,
problems related to the equality of weak and strong derivatives in the
setting of Orlicz spaces play an important role. Such an equality however
does not hold for general Orlicz spaces, In 1131 a substitute toc this equali-
'y was introduced by slightly modifying the limiting process involved in
the definition of strong derivatives.

Tt is our purposé here to describe some of our results of [13] and to
show how questicns of this sort enter the theory of strongly nonlinear

elliptic boundary value problems.

2, WEAK AND STRONG DERIVATIVES.

et WePR), 1 €<p <=, 0 open in BN , be the (Sobolev) space of func-
tions u such that u and its distributional derivatives up to order m belong
to LP1u). Denote by HU'P(Q) the cilosure in WPy (with respect to the usual
woem) of C (@) MW P(R). Derivatives of a function in WPy (resp. 70}

have: sometimes been called weak (resp.strong) derivatives. Friedrichs [9],

introducing on this occasion his mollifiers, showed that if u € wm‘p(ﬂ),
then u € HOP(QY) ror any open set 7' with 2 a i, Meyers-Serrin | 18]
proved later that actually wm’p(ﬂ)=Hm’p(Q); the decisive point here is
that no smocthness condition is imposed on the boundary of fl.

Let us now briefly recall some definitions and basic facts about
Orlicz spaces {ef.e.g.l15,16,11). Let M be & N-function, i.e. & continuous
convex even function from R ta R with M(t)=0 iff t=0 and M{t)/t + O
(resp.+=) as t + 0 (resp.+»), The Orlicz space LM(Q) is defined as the

set of all (measurable) functions u:  + B such that
iu|M= inf {A > 0; f Mlu/A} <1 } < + o,
Q

Let EM(Q) be the closure in LM(Q) of the Lw(ﬂ) functions with compact
suppert in §}; in general EM(Q} g:LM(ﬂ). If M denotes the conjugate convex
fonction of M, i.e. M({t)=sup{ts-M{s);s € R}, then M is a N-function,

¥ = ¥y [ ouv is a well defined pairing on LM(ﬂ) x Lﬁ(ﬁ), and the dual of
E,(Q) (resp. Eﬁ(ﬂ)) is Lg(6) (resp.LM(Q)).

We first consider the analogue of the Meyers-Serrin theorem in the
setting of Orlicz spaces, i.e. the gquestion whether Cm(ﬂ} n WmLM(Q) is
norm dense in meM(Q), where WmLM(Q) is the (Scobolev) space of functions
u such that u and its distributional derivatives up to order m belong to

LM(Q), with the norm § ﬂDau“M. In general the answer is negative,
jaj<m
even when m=0, i.e. c(n LM(Q) may not be dense in LM(Q).
Indeed this would imply that each u € LM(Q} belongs to EM(Q') for any
open set 1Y with Q' O 9, which is not true as isqseen for instance by
considering @ =]-1,+1] , Q'=1-1/2,+1/2 , M(t.)=etL—1 and u(x)=(lop;|x!_])]/2.
Starting from this observation, we can first ask whether
Ty Ny EM(Q) is norm dense in meM(Q); this is true, as was proved by
Doraldson-Trudinger [ 6 . We can also ask whether C (f} N meM(Q) is
dense in meM(ﬂ) with respect to a weaker topolegy. Two such topologies
arise in a natural way : c(nLM,ﬂLﬁ) and U(ﬂLM,ﬂEﬁ); here u; + u for
U(nLM,nLﬁ) (resp.U(HLM,WEE)) if for each |a|< m and each v € Lﬁ(ﬂ)
(resp.Eﬁ(ﬂ)), fn(Dauk—Dau} v + 0. We will see in theorem 1 below that the
Meyers=Serrin property holds with respect to any of these two topologies,
Thus, playing upon words, we could say that in a general Orlicz space,
weak derivatives are not necessarily strong derivatives, but they are

weakly strong 1



3. STRONGLY NONLINEAR ELLYPTIC PROBLEMS,

Related density questions invoiving the two weak topologies above enter

the study of the so-called strongly nonlinear elliptic boundary value problems.

Consider the problem of finding u(x), x € @, suech

N
- I a lw( )] +o@lu) = in 0,
(0 i=1 4
u=20 on 33,

where ¢: R + R is continucus, odd and strictly increasing from -= to +o 3
note that no condition is imposed on the nature of the growth of .

Typical examples are @(t}=t (linear case, Laplacian operator), (P(t)'|t|p—2t
with 1 < p < » {polynomial growth), lp(t)=t|e|t (repid growth), w(t)=sgnt
log (1+4]|t]) (slow growth). Existence and unicity results for (1) (and for
much more general equations and boundary conditions) have been obtained
since 1971 by developping a theory of mappings of monotone type in nonrefle-
xive Banach spaces, along the lines of the work of Browder [3], Leray- Liona

(171, Brégis [21,... (cf.04,10,11,12 |). Mory neead

‘lel"wt‘l,.n*x‘.n- H...n.--u& bowe ‘t.-;§~ elflied e (1) t-e [l]),a,_.e( h.l..&uiwl"

hana :ubw‘ b2t Coual Slenad ( {La1).
tet W, L'M(m be the closure of P (f) in W' LM(Q) with respect to

U’HLM,WEM) When 3 1is sufficiently smooth, one can show that the func-
tions in H1 LM(Q) are precisely those in w L (1) which vanlsh on 13 in
some suitable generalized sense {cf.[7,121). The fact that WO LM(Q) is
defined here by means of the o nLM,ﬂEM) topology (for which bounded sets
are relatively compact) is important in the existence part of the following

proposition.

PROPOSITION (ef.[10]). Assume that § has the segment property (i.e.

that there exista an open coverlqg {U 1 of @ end corresgondlng vectors

{y € R } such that for x €4 N U, =nd O < t < 1, x# ty € ﬂ) Let

f E EM(Q) Then there exigts an unlgue u € HO LM Q), wlth m(———) € LM(Q),
.,N, and w(u) € LM(Q)' satifying the equation in (1) in %he dig-

tribution sense in .

Let us consider the unicity statement. Let w and v be two solutions.

Then

N
(2) Lz P0G oF01 S ¢ Lot)on)Tweo
i=1

for all w € D(Q), and 8o, for all w in the G(‘!TLM Wlﬁ) alosure of @R} in
w LM(ﬂ) This however doea not allow us to put weu=v in (2), unless the
closures of D(Q) in W LM(ﬂ) with respect to G(HI,M,'NIﬁ) and cJ'('JIL},l WEM)
coineide. This equality, which enters also the existence part of the above

proposition in a crucial way, will follow from theorem 2 below.

L, RESULTS,

A sequence u € LM(Q) is said to be moduler convergent (c¢f.f19}) to
u € LM(Q) if for some A > O, Q M((uk—u)/k) + 0, This convergence is (in
general strictly) intermediate between the norm convergence and the
U(NLM,ﬂLﬁ) convergence, A corresponding convergence can be defined on
HmLM(Q) in an obvious way, by requiring the above for the function and each
of its derivatives up to order m.

THEOREM 1 (cf.[ 13] ). Emch function in meM(Q) can be approximated
with respect to the modular convergence by a sequence in CQ(Q) 8l WmLM(ﬂ).

THEOREM 2 (cf,113]). Assume that Q has the segment property. Then each
function in wg LM(Q) , the o(nLM,nEﬁ) closure of B(Q} in meM(Q)' can be

approximated with respect to the modular convergence by a sequence in D).

We suspect that the smoothness assumption on 3! in theorem 2 can be
removed. If M(t)=[t|p, then theorem 1 reduces to the original Meyers-Serrin
result, while theorem 2 has no counterpart; indeed Hg’P(Q) is the closure
of D (Q) in WP{R) with respect to the norm topology as well as the
U(NLP,NLP,) topology since these two topologies on W' 'P()) lead to the
dame dual space.

The general idea for constructing the approximate functions in the
proofg ¢f theorems 1 and 2 is inspired from standard F techniques of appro-
ximation. The main difficulties arise in the estimates when the modular
functional u + Q M(u} is involved. We will briefly illustrate this point by
two examples, one relative to the regularization procedure, the ather rela-~

tive to the use of partitions of unity.
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‘Let u € L“(HN) and let u = g * P be its regularization, with p, an

approximate ideﬁtity. In contrast with the LP sTtuation, it is not generally

M(2u/X) < =, then M({u —u)/x) + O. Thus
N N €
R : R

uE eonverges to u with respect to the modular convergence.

true here that ur aonverTes in norm to u as & > O. However one can show

that if A > 0 verifies

Let us consider now a covering {Ui} of @, {¢i} an associated partition
of unity, and supposé that one wishes to approximate & function u by a
" function v of the form v= wi v, If the sppreximation is intended with

| B i
respect to a norm, then

Ju-vl= bz wi(u—vi)l <zl wi(u-vi)l
[ i i

.and we are reduced to construct the vi's by working inside each piece of
the covering at & time, If on the other hand we deal with the modular | M{u),

: 2
we only get

, J M{u-v)= f MOE g (uv, ),
£ 0 i

where the right hand side cannot be estimated by § LIM(wi(u—vi)) {actually
M(t+s) 37M(t)+M(s) for t,s € R*-). However if the covering haes a finite number

'E of pieces,-ﬁhen from the convexity of M tollows that
‘ . . 1 g
fM(u*v) “"ﬁ 1) J M(Rl])_i(u—vi)),
Q i=1 /9

and we are again reduced to working inside each U'i at a time, This argument
ﬁan be adapted to the case of an arbitrary covering by using the theory of

thé_Lebesgue dimension (ef. e.g. [ 14]).
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