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ON POSITIVE SOLUTIONS OF NONLINEAR ELLIPTIC EIGENVALUE
PROBLEMS

Peter Hess

The purpose of this lecture is to give a summary of
recent results on the existence of positive solutions of
nonlinear elliptic eigenvalue problems. Let & be a
bounded domain in RN (N 2z 1} having smooth boundary 39,
and let L:

3 u 3u
23k 3% 2% *

N
lu = =L
jek= k j=

Jek=1
be a strongly uniformly elliptic differential expression
of second order having real-valued coefficient functions

ajk = akj' aj, ag 2 0 belonging to Ce(ﬁ) (0 <0 < 1).
Let further g 9 xR +R be a sufficiently smooth func-
tion with g{.,0) = 0. Our results concern the bifurca-

tion of positive solutions (A,u) of the nonlinear eigen-—

value problem
(NEVE) tu = Ag{.,u} in 8, uw =0 on 3

from the line R x {0} of trivial solutions, and the sta-
bility of u considered as steady-state solution of the
associated autonomous diffusion equation.

Basic for our investigations are the results on the

linear eigenvalue problem
{LEVP) lu = Aamu in Q, u =0 on 37

obtained to a large extent by T. Kato and the author in
(5] and stated in Section I. Here m € C({i) is a real-

valued weight function which may change sign in Q.

A

Section II contains results on the ronlinear problem. In
Section IIT we mention related research as well as some

open problems.

I. The linear eigenvalue problem.

In the real Banach space Y := Ci{RQ), let
L : ¥2 D(L) » ¥ denote the realizaticn of L, subject
to zero Dirichlet boundary conditions. It is a conse-
gquence of the Lp—theory for linear eltiptic boundary
value problems that X := D(L) € CJ(@) := {v € '@ :v=o0
on 30}, and that L is an isomorphism of X onto Y.

Let X and Y be provided with the natural ordering
given by the positive cones P, and PY 0of pointwise non-—

X
negative functions. Note that P, has nonempty interior

Int(Px) in X, and that by the sirong maximum principle
L_1(Py\{0}) < Int{P,). The standard notations of ordered
Banach spaces are employed in the sequel.

Let M : Y + Y be the maultiplication operator by the
continuous function m. We say that A is eigenvalue of
the {LEVP) and u associated eigenfunction, if u € X,

u # 06, and

{(1.1) Lu = AMu.
{1.1) is of course equivalent to asking that
(1.1 u = AL 'mu.

By the maximum principle, m # 0 is necessary for
the (LEVP) to have a positive eigenvalue with a positive
eigenfunction. It turns out that this condition is also

sufficient.

Theorem 1.2 [5]1. The (LEVP} admits a posifdive

eigenvalue with a positive eigenfunction £if and only 4§
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m{x} > 0 4on some x € Q. 1§ m {s positive somewhere Ln
2, thene exists a undique posditive edlgenvalue Ay (m)
EInt(Px),

having a posditive edigenfunction u,. Moreoven u

1° 1
and

(1) i X € € is eigenvalue {of the probLem obtained
by complexification] with Re % > 0, then Re Aoz A1(m):

(i) wy(m) 2= 1/, (m) L4 edigenvalue of the compact
operaion 1M Y+ Y with algebraic multiplicity 1.

Remarh 1.3 There is no eigenvalue % € ¢ with
Re & = 0 (cf. [51).

For m > 0 on ﬁ, Tineorem 1.2 is a well-known con-
sequence of the Krein-Rutman theorem [12] and a result
of Protter-Weinberger [15]. Three steps, which we want
to single out now, are crucial for the proof of our
extension. First we note that we may assume |m] < 1 on
Q, if necéssary by rescaling. For % 2 0, we then have

the following equivalence
Lo = AMu <—> u = A{L+A) | (Ms1)u.

Here M+1 : Y + Y is the multiplication operator by the
{positive) function m+l. Set

K, 1= (LeA) 7 (MeT).

Then KA : ¥ + ¥ is compact and positive, and A > 0 is
eigenvalue of the (LEVP) with eigenfunction u iff

u s AKAu.

Lemma 1.4 Suppose we know a number a > 0 and a
function w € ¥, w > 0, such that

w £ aK w.
a

Then there exist A : 0 < X § o, and u € Y, u > 0, with

=)

w = XKAu.

Lemma 1.5 T4 m 48 posditive somewhene in @, we can
construct a numben o and. a function w satisfying the

hypotheses of Lemma 1.4.

TLemmata 1.4 and 1.5 guarantee the existence of a
desired eigenvalue. Set A1(m) := inf{x > 0 : A is eigen-
value having a positive eigenfunction}. Assertion (i) of

Theorem 1.2 is now a consequence of Lemma 1.4 and

Lemma 1.6 Let A € € be eigenvafue of the (LEVP)
with Re & 2 0, and u associated ¢igenfunction. Then

slul.

(1.7 lul s (re X) Koo 3

{1.7}) is an extension of what is sometimes called
the "Kato inequality", introduced in [11] for the study
of the essential selfadjointness of Schrddinger oper-—
ators.

The proofs of uniqueness of a positive eigenvalue
having a positive eigenfunction, and of the assertion
about the algebraic mulitplicity, are more subtle and
use analytic perturbation theory.

Theorem 1.2{(i} c¢an be sharpened.
Proposdtion 1.8 A, (m) is the only eigenvalue Aec

of the (LEVP) with Re X = X (m).
This result has been obtained by Gossez-Lami Dozo

(4] under additional regularity assumptions on L and m.
The proof of the Proposition in the present generality
is given in (9], and is based on the f llowing observa-

tion regarding inequality (1.7}. l

Lemma 1.9 Suppose u L4 edgenfunction of the (LEVP)
to the eigenvalue % €C with Re % > 0, and suppose

4
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lu] = ®eNIK,, glul-

Then 3 = A1(m) and u € Span[u1].

We now turn to the inhomogenecus problem
(1.10) (L-AM)u = h,

h € ¥ given. (1.10} is of course equivalent. to the

equation
' -1 -1
{1.10") (I~AL M}u =1L h

{in either the space Y or X). By the Riesz-Schauder
theory for compact linear operators, {1.10'} is uniquely
solvable for arbitrary h € Y iff A is not a character-

istic value of (1.1').

Proposition 1.11 [5]. Suppose mix) > O for some
x € Q.
(i) Ltez 0 s & < A, (m, h 2 0, and Let u be the Ack-
ution of (1.10). Then wu 2 0.
(ii) Let X = A1(m), h > 0, and Let u be solution of
{1.10). Then u ¥ 0.

The last statement can be sharpened.

Proposition 1.72 (Anti-maximum principle, {611.
Let h >0 be given. Then thene exists a numbex
5 = 6{h} > 0 such that Aif A1(m) < A< A1(m) + & and u
is the sofution of (1.10)}, then u < 0.

If m admits both positive and negative values in @,

wa can apply all the above results also to the problem

[u = {-x){-mju in &, ua =0 on 3&,

and obtain in addition an eigenvalue A_1(m] < 0 having

5

a positive eigenfunction.

IT. The nonlinear eigenvalue problem.

For technical reasons it is advantageous to work
now in the space X := D(L). Let g : (x,s} € ? xR+
glx,s) € R be a continuous function with g{.,0) = 0,
having continuous partial derivatives 94 and 9gs° and
let G denote the Nemytskil operator associated with g.
The pair {(A,u) € R x X is called a positive solution of
the (NEVP) if A > 0, u > 0, and

(2.1) Lu = AG(u).

Of course (2.1) is equivalent to the egquation

(2.1") u = AL o)

in the space X. Note that if {A,u) is a positive sol-
ution, then u € Int(Px).
Let the function ™, € Y be cdefined by

molx) 1= gs(x,O),

and let MO be the multiplication operator by Mg~ Then
t™, = (£7'6) 1 (0), the Fréchet derivative (in X) of

the mapping L_1G : X+ X at u = 0. It is well-known

that if (»,0) is bifurcation peint for positive solutions,
then A\ is characteristic value of the linear operator

L-IMG having a positive eigenfunction.

Let I denote the closure {in R x X) of the set of
positive solutions of (2.1). The following result is an
immediate consequence of Theorem 1.2 and ERabinowitz'

global bifurcation theorem [16].

Theonem 2.2 [5]. Thene i3 bifuncation for ﬁoaitiue
solutions of the {(NEVP) from the Line of tadlvial sol-
utions 4if and only 4§ mgylx) > 0 4ox seme x € Q. If m,



48 posdiive somewhene in Q, I contains an unbounded con-
nected component Zq in R x X with (A1(m0),0) € I,. Menre-
ovex (A1(m0),0) 44 the only bifurcation point for posi-
tive sofutions gnom the Line 04 Lrivial solutions.

In the following we assume that motx) > 0 at some
point x € 0 and set A1 = A1(m0). Employing results of
[3], a more detailed description of ZO in the neighbor-
hood of (A1,0) can be given.

Proposdition 2.3 [8]. In a sufficiently small nedigh-
borhood U of (A,:0) in R x X, the sei of solutions of
(2.1) consdsits precisely of the £ine (R x {0}) N U and a
c'-cunve ((A(s),uls)) : s € (-a,a)}, where A(0) = A
Hence Iop MU= {(xis),uls)) : 0ss<ul.

1"

We now turn to the question of stability of posi-
tive solutions of the (NEVP), considered as steady-state

solutions of the associated autonomous diffusion egua-
tion (v = v(t,x)}

n

[ %% + v - Agl.,v) 0, (t,x) € B x 9]

(2.4) vit,x) = 0, (t,x) € R" x 3

I. v({0,x) = vo(x} given (x € Q).
According to the pidinciple of Linecarnized stability (e.g.
{17}), 1if u is a steady-state solution of (2.4) and

v € R denotes the smallest eigenvalue of the linearized
(elliptic) problem

{L = AG'(u))w = uw,

then u is Lyapunow asymptotically stable provided u > @,
and unstable provided u < 0. In this context, stability

of u means that if Vo is sufficiently near to u (in ¥),

7

then for the solution v of (2.4} we have Hv(t,.)-uﬂr-ro
exponentially as t + +=»,
A first stability result is

Proposition 2.5 [8]. (i) Let (x,0) be a taivial
sofution of the (NEVP). Then 0 ia stable for 0 5 A <X
and unstable for A > A

1
1

{ii} Let (A(s),u(s}) € LN and s > 0 sufficiently
small. Then uis) is stabe if A'(s) > 0, and unstable if
A'(s) < 0. - .

We thus have the following picture of "exchange of
4fability” for the nonnegative solutions of the ({KEVFP)
in a neighborhood of (11,0) IinR = X:

P unstable stable

(A(s),u(s))

stable 0,0} unstable

We add two global stability results for positive

solutions, for special classes of nonlinearities g.

Paopo&ition 2.6 [8}. Let g(x,s} be convex in s 2 0
don all x € Q, atrictly convex fon at Least one x € @,
and Lei (h,u) € R x X be a positive sclution of the
(NEVP). Then X < 11, and u 44 unatable.

Propositiogn 2.7 [B]. Let gix,s) be concave in s 2 0‘

fon all x € G, stnictly concave for at Least one x € R,
and et (h,u) € R x X be a positive solution of the
(NEVP). Then X > Ay- Fon each A > Ay there £ at most

g
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one posditive sofution {A,u), and u {s atable. There ex-
iAts a numben A € {k1, + =] and a econtinuous map

d(.) = [A1,Al - PX with G(AI! = 0, such that

Iy = {(A1,G(A)) T A, 8 A< Y. [This means that Ly can
be parametrdl:zod by A.) Moreoven u{.) 45 continuously
diffenenticble on (11,T), and {f A < +w=, then

Limg ,r GO0y = +=.

We note that these results are well-known for posi-
tive functions g {[1, Chapter V]).

We conclude this Section with some results on bi-
funcation from infinity for positive solutions of the
(NEVP). Suppose g is asymptotically linear for s =+ +w,
i.e. that there exists

m {x) := 1lim s_lg(x.sl,

uniformly in x € . Note that m_ € Y.

Theonem 2.8 [7]). Thene 48 bifuncaidion frem infinity
fon pesditive solutlons of the (NEVP} Lif and caly if
m_(x} > 0 for some x € 2. If m 4Ls positive somewhene
in &, I contains a connecled componeni I 4{n R x X that
meets (A, (m ), =). Monegver (A (m },=) 44 the only b.i-

gjuncation point from Anfindly for posditive solutions.

Combining Theorems 2.2 and 2.8, we obtain existence
and multiplicity results for positive solutions of the

{NEVP) provided g is asymptotically linear.

Proposifion 2.9 Lef g be asymplotically £inean,
and suppose there exdists m € ¥ with mix) > 0 at some
x € @, such that gix,s) 2 mix)s for all x € 2, s 2 0.

Then 0 < X £ Apt@) for all {X,u) € I. Henee Iy = I,

and forn each h between A1(h0) and A1(mm) there is at
feast one posdtive solutien (A,u) ¢f the (NEVP).

9

Proposition 2.10 let again g be asymptotically
Linear, and suppose thene i both bifurcation from the
thivial scfutions and fram Lnfindity. Suppose furthen
thet thene exists a function w € C1(5] n Cz(ﬂ}. w > 0,
such that Lw z 0 and Glw) s 0. Then u < w for atl
(A,u) € L. Hemce L, £:_, and fon each
A > Max{l1(m0),k1(mm)}. the (NEVP) admits at least fwo
positive solutions,

ITII. Additional remarks and open problems.

{1) Nothing seems to be known in general about the
existence of a principal eilgenvalue of the {LEVP)} if
only m € LO(Q), with m > 0 on a set of positive measure.
For formally selfadjoint L, this condition is sufficient
for the existence of (infinitely many) positive eigen-
values; cf. the pioneering work of Manes-Micheletti [14],
and [2]-

{ii) Senn and the author [19] investigate the inter-

esting Neuman problem

ou
{3.1) lu = Amu  in &, am 0 on 29,
where , .
N
37 u Ju
Llu = -T a. ——— + L a. Eyendi)
3,k=1 jk axjaxk -1 3 ax3

assuming that the continuous function m changes sign in
{i. Here the operator L associated with [ and the Neumann
boundary conditions is not invertible, and 0 is an
eigenvalue of {3.1) {eigenfunction = constant). Let v* ke
the {positive) eigenfunction of the adjoint operator L*
to the eigenvalue 0; one shows readily that v € tF(@).
Then there exists a positive (negative) eigenvalue

having a positive eigenfunction provided 5nw*<0(%nw*>0L

A0



The limit case §2mv* = 0 is particularly subtle. For
L = -4, problem (3.1) has been studied by variational
methods in [2]; cf. also {18].

(iii) The eigenvalue problems for the weakly coupled

linear system -

k% = 1151 mkl uy in 2
0 on aft

=
=
[

(3.2)

=]
]

and its nonlinear generalization

Lkuk = Agk(x,u1,...,ur) in &
{3.3)

u 1] on 2§

k
(k=1,...,r) are discussed in [10]. Under the assumption
that mkl 2 0 for all k,1=1,...,r, kK # 1 {such a condition
is necessary, in a certain sense), it is proved that
{3.2) admits a positive eigenvalue A1 having a positive
eigenfunction u = (u1,...,ur) provided at least one of
the functions L € Cc{fy {k=1,...,r) is positive some-
where in . Results of Turner [20] are generalized.

(iv} Lazer [13] has recently introduced the concept
of "principal eigenvalue" for the operator L obtained

from the parabolic differential expression L:

2 N
u R u
lu == - ¢ a,(t,x) 53—— + ¥ a {t,x)——+a,lt,x)u
st . k Ix ., . ' - ’ r
jok=1 7 5% g1 =y 0

subject to periodic-Dirichlet boundary conditions. Here
the coefficient functions of L are assumed to bhe peri-
odic in t, with the some pericd T as imposed on the
solutions u.

It is natural to ask whether Lazer's result can be

extended to the more general eigenvalue preblem

Al

ta = Am{t,x)u (t,x) €ER x Q,

{3.4) ult+T,x) = u(t,x)

uf{t,x} =0 (t,x} ER x 3%,

where also the continuous function m 1s T-periodic in t.
By the maximum principle for parabolic eguations, m £0

in (0,T) x & is a necessary condition for the existence

of an eigenvalue % > 0 having a positive eigenfunction.

Using similar arguments as in the proof of Theorem 1.2,

we are able to prove its existence only provided at some
x € Q, mlt,x) > 0 for afl t € R {the difficulty lying in
the construction of a number a » 0 and a T-periodic

function w > Q as in Lemma 1.5).
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