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On bifurcation and stability of positive solutions of nonlinear

elliptic eigenvalue problems.

Peter Hess

on the bounded domain Q < mﬁ(nz1) having smooth boundary
3, let L:
329
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be a strongly uniformly elliptic differential expression of second

., a,, a,z 0

order having real-valued coefficlent functions a., = &
jk ki 3 0

e _—
belonging to C (Q) (0<8<1). Let further g ;: QxR+R be a sufficiently
smooth function with g{.,0) = 0. We investigate the bifurcation of

positive solutions (i,u) of the nonlinear elliptic eigenvalue problem
{NEVP) {fu = Ag(.,u) in @, w=0 on 3R

from the line R x {G} of trivial solutions, and the stability of u as
steady-state solution of the autonomous diffusion equation

{u = uft,x))

%% + lu - rgf.,u) = 0 in R' Q,
{0.1) ult,.) = 0 on R x 3gm,

ul(f,.}) = Uy given.

The paper is organized as follows. In Section I we consider

the linear elliptic eigenvalue problem
[LEVP) Lu = Amu in @, wu=0 on 3R,

where m € C(7) is a given weight function which may change sign in .

We recall the main results of [5} and prove scme supplementary facts
which are needed in Sections II and III1. While a necessary and
sufficient condition for bifurcation of positive solutions from the
line of trivial solutions is proved in {5], we give a detailed study
of the set of f{positive) solutions in the neighbourhood of the bifur-
cation peint, as well as a discussion of their stability, in Section
II. In Section III a globhal discussion follows in the special cases
where g{x,s) is either convex or concave in s20. We generalize results
which are known for positive solutions g f(e.g. [1, Sections 25 and 26]).
I wish to thank my collegue H. amann for coastructive
discussions which led to the remarkably short and simple proofs in

Section TIIX.

T. The linear eigenvalue problem.

we look at the linear eigenvalue problem
(LEVP) lu = Amu in @, wu=0 on 3,

where m € c{?) is a gilven real-valued function.

Let Lo denote the differentlal operator induced by L and

the Dirichlet boundary conditions, with domain DiLg)=({v € c?*® @) sv=0 on a0},
Then L0 is closable in the {real) Banach space ¥ : = C(ﬁ) (L0 admits a
closed extension in Lp(ﬂ), 1<p<=, having domain w;'Pm) n Wz'p(m ).

%et L : = closure of LD in Y. Denoting by X the lreal) vector space

B{L), equipped with the graph norm vl == “Lvﬂy + |,]v|[Y , it is a
consequence of the tP- theory for linear elliptic boundary value
problems that X < C;tﬁ):= {v € C‘(ﬁ) : v=0 on 30}, and that L 138 an
isomorphism of X onto Y.

Let the spaces X,Y be provided with the natural ordering



given by the positive cones Px, PY of pointwise nonnegative functions.

The standard notations of ordered Banach spaces are employed: vz0 if

v €P, vwo if v € Px{0} (P=Px or PY). Note that Px has nonempty

intericrllnt(Px), and that (by the strong maximum principle) l'..m1 is

strongly positive : L_Ttpy\[o}) < Int(Px). We write v >> 0 if v € Int(Px).

Let M : X + Y be the (compact)multiplication operator by
the function m. We say that ) is eigenvalue of the (LEVP) and u

associated eigenfunction if u € X, u# 0, and

(1.1} La = AMu.
Note that (1.1) is eguivalent -to the equation

(1.1} u = AL 'Mu

in X.

Theorem 1.2 ([5]) The (LEVP) admits a positive eigenvalue with a

positive eigenfunction if and only if m(x)>0 for some x € 0. If m is
positive somewhere in 2, there exists a unique positive eigenvalue
Allm) having a positive eigenfunction u,- Moreover u, € Int(Px), and

{i) 1f X € € is eigenvalue (of the problem obtained by

complexification} with Re A>0, then Re i 2 Ay tm);

(ii) u;(m) 2= 1/A1(ml is eigenvalue of the compact operator

L™ M : X + X with algebraic multiplicity 1.

Remark 1.3. There is no eigenvalue % € € with Re A=0 fcf. [51).

Remark 1.4. Gossez-Lami Dozo [4] proved that A1(m) is the
only eigenvalue X € C with Re R =A1(m].

By rescaling, if necessary, we may assume |m} <1 on Q.

Introducling
J := imbedding mapping X <, Y,

for 220 we have the following equivalence
Lu = AMu = u = A(L+AT) "' (M) u.

Note that M + J : X + ¥ is the multiplication operator by the positive

function (m+1). Set
K, := (Lead” Vimed) .

Then Kx : X + X is compact and strongly positive, and A20 is elgenvalue
of the (LEVP) with eigenfunction u iff u = AKAu.

Let m* denote the positive part of the function m.

Lemma 1.5. Let T € R, 7<T := Hm+“Y

Then Th»k1[m—1) is a

strictly lncreasing, analytic function of T, and

11m1,? A1(m~1) = 4= 11m1\_m A1(m—1) = 0.

The assertions of Lemma 1.5 have been proved In [5] in the course of the
proof of Theorem 1.2, except for the last {easy) limlt relation and tha

analyticity of A‘(m-r). In order to prove the analyticity, let us recall

the following

Definition 1.6 ([3]). Let T,K € 8(X,¥). Then v €ER 1is a
K-simple eigenvalue of T if dim N(T-vK) = codim R{T-vK) = 1 and, if

N(T-vK) = span {x}, Kx £ R{T-vK).

o €ER be a

K-simple eigenvalue of TD' Then there exists ¢»0 such that if Tée B(X,Y)

Lemma 1.7 {[3)). Let TD.K € B(X,Y), and let v

with HT—TOH < §, there is a unique v(T) € R with Iv(T}—vol < § for which

T-v{T)K is singular. The map Tr»v{T) is analytic, and v(T) is K-simple

eigenvalue of T. If N(TO-VOK) = span {xo} and Z is a complement of

£
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span {xo}in X, there is a unique null vector x(T) of T-v(TiK satisfying

x(T)-x0 € Z. The map Tr#x(T) is also analytic.

penoting by I the identity mapping in X, Theorem 1.2{(11)
implies that for T < 1, y,(m=-1) := 1/)1‘m_1) is an I-~simple elgenvalue
of L-1(M—TJ] X + X. The analyticity of u1(m~1) in 1 is thus an
immediate consequence of Lemma 1.7.

We turn to the inhomogeneous problem
(1.8) (L - AM}u = h,
h € ¥ given. (1.8} 1is of course eguivalent to the equation
(1.8') (1 - 21 = 17 'n
in X. By the Riesz-Schauder theory, (1.8'") is solvable for arbitrary

h € ¥ iff » is not an eigenvalue of (1.1).

proposition 1.9 ([5]}. Suppose m{x)>0 for some X € 0.
(i) Let 05X<l1(m), hz0, and let u be the solution of {1.8).
Then uz0.
(i1) Let A2A1(m), h>0, and let u be the solution of (1.8).
Then u ¥ 0.
Proposition 1,9(1i) can be sharpened as follows.

Propositicn 1.10 [Anti—maximum—principle, {6}). Let h>0 be

given. Then there exists a number &=96{h}>0 such that if A1{m)<xcl1(m)+6
and u is solution of (1.8), then u<0.

Set 11 1= A1(m), and let u, € Int(Px) be associated eigen—
function. As a consegquence of Theorem 1.2(ii), the space X admits the
direct topological decomposition
{1.11) X = span {u1} @® Z,

Z = R(I—A1L_1M), which plays an important réle e.g. in the proof of
Proposition 1.10.
Let h € ¥, and decompose ™ 'h as
1

L h=ou +b

-6 -

s € R, b € 2) according to (1.17). Then b = [I—A1L_1M)w for some w € X,

and we have

h = uLu1 + Lw - 11Mw

= uLu1 + IL+113)W - X1(H+J)w.

Hence
(1.12) (Lor, )" Th = alLer N Ve, ¢ (T-A K .
1 1 1 1 A1
Since “A is a strongly positive, compact operator in X and

1
TR (“1'1/k1>0)' the Kreln-Rutman theorem implies that u, is
1
also elgenvalue of the {Banach space) adjoint operator K:
- 1

with positive eigenfunction u;. Let {.,.) denote the duality pairing

1 X* o X*

petween X* and X. From {1.12),

(u;,(Ln1J)“h> - a(u;;(I.+A1J)"1

Lu‘)
follows.
Lemma 1.13. x 1= <u;,(L+A1J)'1Lu1) > 0.
we conclude that
a = x-1(uq,(L+l1J)_1h>.

In particular, a>0 if h>0, since then (L+A1J)-1h € Int (P ).

X
we remark that Lemma 1.13 is not immediate, since

X =A1(u?,(L+A1J)—1Mu1), and Mu, may change sign in 4. An indirect proof

of Lemma 1.13 is given in [6], a direct one in [7]1. We include a new

proof here, based on Lemma 1.7.

Proof of Lemma 1.13. First we note that for i20 there exlsts

a unique elgenvalue Y =y(x) € R of the praoblem
(1.14) (L-AM)v = yJVv
having a positlve eigenfunction v=vi(}} € X {(1.14) is equivalent to the

nstandard” eigenvalue problem

v := (L+d{T-M))}v = {y+r)JIv =3 §Jv,

where the Oth—order term of L has a nonnegative coefficlient function}.



Since we may write {1.14) in the form

i) = ame YA 500,

A
with v(X)>0, we conclude that the function m + Y;A) is positive
somewhere in $i, and that
= y(x)
A A1tm + 3 )

Hence by Lemma 1.5,

(1.15) Y(A1)=0, ¥Y{x)>0 for A<A1, Y(A)<0 for A>A1.

For a finer study of the function ¥ in a neighbourhood of
A=A1, observe that

(1.16) 0 is J-simple eigenvalue of L—A1M P X > ¥,

In fact, dim N(L-A1M) = codim R(L—kiM) = 1 and N(L—A1M) = span{u1}
Suppose Ju1 = (L—A1M)w = ((L+A1J) - A1(M+J))w for some w € X. Then
-1
_ _ -1
(L+k1J) Ju1 = (I A1KA])W and hence (u*,(L+A1J) Ju1) = 0, which is

impossible since (L+A1J)-1Ju € Int(p,).

]

By Lemma 1.7, v{A)is thus an analytic function of A (in a

neighbourhocod of 11), and we can choose v(.) with v(Ai) = u, to depend

analytically on A. (1.15) implies that Y'(A1)50. Differentiating (1.14)

with respect to %, at A=A, we obtain

1

{(1.17) —Mu1 + (L-A1M)v'(}1) = Y'(AT)JuT.

Since MuT ¢ R(L—A1M) by Theorem 1.2(ii), it follows that y'(h1) # 0 and

hence

{1.18) Y'(A1) < 0.

From (1.17) we infer that

_‘l -
—(L+R1J) Mu1 + (I_AIKK )V'(A1) = Y'(A1)(L+A1J) 1Ju1

1
and consequently

_‘[ -
—(u’.?,(L+A1J) Mu,d = Y'(?\.I)(u:.(L+A1J} !

Ju1).

. -1
Since Y'(A1)<0 and (uT,(L+A1J) Ju1) >0, the assertion of Lemma 1.13 follows.

a

II. The nonlinear eigenvalue problem.

Let g : (x,s) € S-?'IIRMg(x.S) € R be a continuous function

with g{.,0) = 0, having continuous partial derivatives d9g and - J and

let G denote the MNemytskii operator asscciated with ¢. Since the imbedding

X<+ Y is compact, G 1+ X+ Y 1s a compact mapping. The pair (iA,u) € RxX

is a positive solution of

(NEVP) lu = agf.,u) in @, u=0 on 2%,

if A»0, u>»0, and

{2.1) Lu = AG{u}.

Of course (2.1} is equivalent to the equatlbn

(2.1 u = AL Gt

in the gpace X. Note that 1f (A,u) is positive solution, then u € nmtpg.
Let the function m € Y be defined by

(2.2) m(x) := gs(x,O).

and let M : X ~ Y denote the multiplication cperator by m. Then M = G*'(0),

the Fréchet derivative of G at u=0. It is well-known that if (A,0) is

bifurcation point for positive solutions, then X\ 1is characteristic value

1

of the linear operator L 'M = (LGTG}’(U) X + X having a positive eigen-

function.

Let I denote the closure (in R x X) of the set of positive
solutions of (2.1). The following result is an easy conseguence of

Theorem 1.2 and Rabinowitz' global bifurcation theorem.

Theorem 2.3 ([5]). There is bifurcation for positive solutions
of the (NEVP) from the line of trivial solutions if and oply 1f mi{x)»0
for some x € Q. If m is positive somewhere in 2, I contains an unbounded
connected component ZO in Rx X with (A1(m),0) € Eo. Moreover (li(m).O)
is the only bifurcation point for positive solutions from the line of

trivial solutions.

For the rest of the paper we assume that m{x)>0 at some

o s
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_9..
point x € , and write Ai e = A1(m). A mere detailed description of XD
in the neighhourhcod of (A1,0) can be given. Consider the Cz—mapping

F : Ax¥X - Y defined by

F(x,u}) := Lu - AG{u).

Thecrem 1.2(ii) implies (with the partial derivatives ﬂ”A,OPﬂrkM,

FA,U‘A'O): -M} that 0 is F

3 u(l1.0) - simple eigenvalue of the cperator

Fu(A1,0). The following result is a consequence of [2, Thecrem 1.7].

Proposition 2.4. In a neighbourhood U of (A1,0) in Rx X,

the set of solutions of (2.1) consists precisely of the line (Rx{Q}INU

and a C1-curve {{x(s),u(s)), s €(-a,a}l, where A{0) = X_,. With respect

t
to the decompesition (1.11), u(s) admits the representation u(5)=s(u1+¢(sl),
where the map sray(s) € Z is continuocusly differentiable and y (0)=0.

Hence zor1u = {{i(s),u(s)), Oss<al}.

It is weil-known that the principle of linearized stabiligy

holds for the steady-state sclutions of problem (0,1): if u

is a steady-state solution and u € R denotes the smallest eigenvalue

of the linearized (elliptic) problem

(2.53) (L -~ XG' (u})v = pdv,

then u is (Lyapunow) asymptotically stable if u>0, and unstable if u<0.

{In fact, if p>0, let v, € Int{Px) be eigenfunction (L-—AG'(u))v1=qu1,

1

and observe that for fixed € €(0,u) and 0<% sufficiently small,

et

ult,x) := ulx) + se v1(x)
is supersolution of problem {0.1), while
ult,x} = u(x) - 6e_€tv1(x}

is subsolution. Hence, if 1l is a solution of {0.1) with ul0,.}<G(0,.)s
u(0,.), it follows that for tz0, E(t,.)ﬁﬁ(t,.)sa(t,.). Since both u and

U tend to u (exponentially) as t = +~ , the Lyapunow asymptotic stability

of u follows).

Thus the sign of the smallest eigenvalue of (2.5} is crucial.
For the stability of the trivial solution {X,0) we have

Proposition 2.6. Let (X,0) be a trivial solution. Then O is

stable for 0 35 % < )y and unstable for i > A1.

{(1.15).

Recalling {1.14), this follows immediately from

We now investigate the stability of the positive solutions
(A{s),uls)) in a neighbourhood of (A1,0]. Since (by (1.16}) O i=
J-simple eigenvalue of Fu(AT,O), Lemmna 1.7 implies the existence of
{~a,n) » R and w

C1-function5 " {~a,n) - X with u{0})=0, w(0)=u1.

such that
(L - xi{s) G'{ufs))) wis}) = s} J wis)
for s € (~a,x}, a>0 sufficlently small. Morecver by [3, Theorem 1.16],
pis) and sXx'(s) have the same zeroes near s5=0, and
e ZEE00
s+0 uis) °
bis) 0

By (1.18) we thus obtain

Proposition 2.7. Let and 0<s sufficiently

(Ai{s) ,uis)) € LO

small. Then u(s) is stable if A'{s) >0 and unstable if A' (s} < 0.

We have the following picture of "exchange of stabiliey”
for the nonnegative solut ions of the {(NEVP) in a neighborhood of (11,0)

in R> X i P, | unstable

x uy stable

(A s} ,u{s)}

(A1,0) unstable

stable
If m>0 on {I, Propositions 2.6 and 2.7 are well-known, e.g.

{3, Example 2.3}, [8]).



III. Convex and concave nonlinearities.

We consider now the special cases where the function glix,s)
is either convex or concave in s20.
ITI.A. Let gix,s) be convex in sz0 for all x € %, strictly

convex for at least one x € Q.

Proposition 3.1. Let (A,u} € Rx X be a positive solution of

the (NEVP). Then A<A1, and u is unstable steady-state solution of (0.1).

Progf. Let (3,u) be positive solution: Lu=AG{u). We know
that u € Int(Px).

(1} By convexity of g, G(u)>Mu. Thus Lu = AMu + h with h>0,
and Proposition 1.9{ii) implies A<A1.

(ii} By rescaling, we may assume that the function s++g{X,s5)+s
has positive partial derivative with respect to s, for all x € @,
OSssﬂuﬂyﬁ 1. Consider the mapping H : R x X - X given by
{3.2) HOL V) 1= & (LaAJ) T (G iv) +Iv) .

Then u = H(A,u), and the partial derivative
H (A,u) = ALAT) TG (w) +3)

at (r,u) is a strongly positive, compact linear oPeratof in X. We show
that r* := spr(Hv(k,u)) > 1.

Suppose 0<r*£1 (r*=0 is impossible since HV(A,u) is strongly
positive). By the Krein - Rutman theorem there exists w € Int(Px) such that
(3.3) Hv(},u)w = r*w.

Let ﬁw"x be so small that u-w, and hence u-r*w, is contained in Int(P,}.
By order convexity

H(l,u-w)>>H(A,u)—Hv(l,u)w = u-r*w.
There exists .t : 0<7<1, such that tu-{u- r*w)€ BPX. Since H(A,.) is
increasing and convex in the order interval [0,u)] of X and O<u-wsu-r*ws

Tu<u, We obtain

u-r*w<<H{i,u-w) € H(x,tu) ¢ THO,u) = tu.

Thus Tu-(u-r*w) € Int(Px], a contradiction.
{3.3) implies that

(LeXT)w = g& (G' {u)+J)w, w>0.

We conclude that Mer s i1lqs(.,u)+11, the principal eigenvalue of the
operator I := L+\J with respect to the weight function @ := gs(..u)+1.
Since A>{*/r*), by Lemma 1.5 there exists £>0 such that A=i1{ﬁ-s). Hence
for some function v>0,

{(L+AT)v = A(G (u)+({1-€)J)V,

[L=AG* (u)}v = (~ke)Jv.

Since u := -Ae < 0, the instability follows.
a

IrI.B. Let glix,s) be congave in 520 for all x € ﬁ, strictly
concave for at least one x € Q.

Proposition 3.4. Let (A,u} € RxX be positive solution of

the (NEVP). Then A>A1. For each A>A1, there is at most one positive
sclution {i,u), and u is stable. There exists a number T e (A1,+m] and
a continucus map ai{.) = [k1,T)-+Px with E(A1) = 0, such that

£y = (QL,B)) = A;$2<X}. Moreover G{.) is continuously differentiable

on (A1,T), and if A<+= , then lim, g3 HG(X)HK = 4w

Proof. (i) Let (},u) be positive solution. We may assume
again that for all x € 2, 0sssfluf,+1, the function srg(x,s)+s has
positive partial derivative with respect to s. Since u € Int(Px) and
g is concave,

(L+AT)u = A(G(u)+Ju) < X (M+J)u
and hence u<<AKxu. Now [5, Lemma 1] implies that A1<A.
{11) Next we show that if (},u} is positive solution, then

u is stable. Let H : R % X+ X be the mapping introduced in (3.2). We

L=y

-’

-
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claim that r* := Spr(HV(A,u)) < 1.
Suppose, to the contrary, that r*z1, and let w € Int(Px)
be such that (3.3) holds. Since u € Int(Px] and g is concave,
H(x,u-tw} << H{i,u) - tHv(A,u)w = u-tr*w

for t>0 such that u-tr*w € PX' There exists t0>0 such that u-t r*w € QPX.

0
Since H{},.) is increasing on [0,u] and H(},0)=0,
(3.5} H(A,thOr*w) € PX'

On the other hand,

{3.6}) H(A,u-to

* < - - *
r*w} £ H(k,u tow) << oumt rtw € BPX.

But (3.5) andéd (3.6) are incompatible. Thus 0<r*<i1.

In a similar way as in the procf of Proposition 3.1 we
obtain now £>0 and v>0 such that

(L-xG' (u))v = {re)Jv.

Here 4 := le » 0 is the smallest eigenvalue of the linearized problem,
and u is stable.

{iii) Let A>X1, and suppose (A’UI)' (A,uz) are positive
solutions with u]# u (ui,u

€ Int(Px)). We may again assume that for

2 2

all x € ¢ the function sp¥g(x,5)+s is strictly increasing in s,

0ss<s := Max {Hu1uy,Hu2”y} + 1, and that u, £ u,. There exists
1« < 1t < 1, such that u,l - Tu, € QPX. wWe conclude that
u, = H(A,u1} 2 H(A,Tuzl > TH(A,uz) = U,

contradicting the cheice of 1.

(iv) Set X := sup [} : (A,u) € I }. It is a simple conseguance

0

of the implicit function thecrem that ED\{(X1,0)} is a CT—CurVe-

parametrized by } € (A1,T). In fact, a positive solution {(A,u) of the
(NEVP) solwes u-H{*,u) = ¢, and since r* = spr(Hv{X,u)] <1, the operator

I—HV(A,u) is invertible in X.

(vl Let V-+»n , and suppose there is a sequence

_14_

{(An,un) - n € M} in Eo with kn - X, "un"X s C. By compactness we infer
that (for a subseguence} u, + u in X, where (T,E) is positive solutlon
{(A1,0) is the only bifurcation point for positive solutions from the
trivial solutions). The implicit function theorem asserts that Zo can
be continued beyond (X,u), contradicting the definition of . .

We note that the proof of stability in Proposition 3.4
is drastically simpler than that given in {1, Section 25] for a special

case. If g is not pesitive, we do not know whether the map MM#"&(R)“X

is increasing.

We conclude with two results guaranteeigq that & < +o or
% = +w , respectively l(cf. [71) -

Proposition 3.7. Suppose g is asymptotically linear, j.e.
s_1g(x,s), uniformly in x € ﬁ,

that there exists mw{x) 1= 11mS++m

and that m_ is positive somewhere in ©. Then % = lllmw).

Proposition 3.8. Suppose there exists a function

w € c;('ﬁ) n c2(a), w>0, such that Lwz0, Giw}20. Then ucw for all

{x,u) € L Hence A = +,

0"
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