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Path integrala and gassociated variaticns

Jan Tarski

Abatracts Several procedures associated with the variation of the action

in Feynman path integrals are described, as follows: construction of the semi-
claasioal approximation, integration by parta, and differentiation witl res-
pect to & parameter, Morecver, integrands containing Gaussian factors are
diacussed, and the ocourrence of the Morse index is noted. Some (rigorou-)

results are extended to the case where Qaussian factors are present.

1. Intreduction.

Path integrals were sugge sted by Feynman as a way of representing solu-
tions to the Schrddinger equation [i][?]. In particular, we consider the
sreen's funotion for a quantum particle on K" under the influence of a PO~
tential V,

~URAE () - [K T Gl ,0) 20 Gec E0, (1.1a)
Liv, Lo Glt; g0} = 8(y - ), (1.1b)

and Feynman's ansatz is: .
G, 4.4) ® Nf‘;t-{” ‘9(7)9”’? it gt"'f[%”f:‘[%)z‘v(?(t))]}' (1.2a)
O ’

We integrate hers (in a way which will be made precise) over paths
1:[0,t]‘*ﬂn, subject to the twe endpeint conditions as indicated. The sym
bol ﬂ(ﬂ) is a kind of generalized measure, and N, a normalizing conetant,
which depends ¢n the definition of the integral that is adopted. Note that
Sdt... is the classical acticn 5(1) along the pata +. We will often take
4=1 (for Planck's constant divided by 2r), and the above integral can then

be written as

'S
Git"3’KB:N§7zou==,~1tﬂ=39(‘()e‘ @, (1.2v)

The path integral suggests a way of quantizing a given classical system.
One can say that it constitutea an alternative to the quantization methods
based on the 3chrddinger equation or on the Heisenberg quantization rules.
The path integral, however, differs from these two other methods in several
respecta. In particular, it is based on the Lagrangian, and on the action,
rather than on the Hamiltonian. The acticn in turn leads %o a number of varia-
tional relations in the glassical domain, and these should find their quantum
analogues in the path integral formalism [3] [4].

In the present article we discuss three variaticnal proceédures which are

associated with integrals such as in {1.2), The first applies to the semiclas-

gical limit of quantum mechanics (H+0). In this case the quantum particle

i~

should move (nearly) aleng iho;dltiiiéil path ... We then make a {funotional)
power series sxpansion of S(V{') around 3(70). The quadratic term is of par-

ticular interest here.

The second procedure dcpandl'onaintogrltion by parta. It yields a form
of quantum-mechanical equations of motion, and also functional differential

equations for generating functionals. The rule [pj,qk]- i'lék can slso be

ipvestigited in this way. The third procedure depends on diffirontinting path
integrals with respest to parameters, and illustrates in particular a connec~
tiom betwesn the classical equation p. taS/qu and the quantum rule p. = i_l

xa/aqi. Moreover, the difftr-ntinbiliiy properties of path integrals iaJA sub-

joct of independent interest.

Wa should alsoc comment about mathematical riger in this article. Many
discussions of the path integral are at the level of heuristic manipulations,
and im fact, the mathematical theory is still in iis beginnings. We should
therefore like to point out, that the material which we present does have a
mathematical basis. In particular, we state in varicus places some sufficient
comditiona on the potential for the validity of a given relation, sven though
we do not give proofs {(except im the appendix). Most likely, a relation in

question would remain valid also for scme other potentials.

The article is organized ams follows. In sec. 2 we review cne definition
of the path integral. In sec. 3} we dismcuss some integrability propsrties and
evaluations, and iz particular, we discuss Gaussian functions. The three var-
iational procedurss are them discusgeed im turm in secs. 4-6. Finally, in the
appendix we take up again integrals invelving Caussian factors, and we present

some extensioas of results proved previoualy,

We may note that some of the above topics wers much discusssd om sarlier
ocoamions, and could be oconsidered as folklore. We make no attempt here to

provide axtensive references.

2, A defipition of Feynman-tyve integrals.

A pumber of definitions of path integrals have besn propcsed, The more
recert ones sxploit the Hilbert space struoturs of the integral, as suggested
by the kinetio part of the actiom im (1.2}, Explicitly, we may write

S(y) = Sel) = Suly) (2.1)
Srlg) = §mrar 21, (d ey’ = §om (g 49) - (2.28)

Mcreover, by redefiping V(y) if necessary, we may suppose that x= {0)=0.
Then the conditions

(“’{1‘1) <w, w{0) =0 (2.2b)
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defime a resl Hilbert space '1(.-, of paths.

We think therefore of oisT(‘f) a8 characterizing the iategrsl, whose
integrands will be some functions f("z). Such an imtegrand may contain the
fastor .13\,(7)' the facter S(q(t)-y) for the second endpoint conditionm,
nnd/or other contributions. It becomes then natural to consider an oscilla-
tory Gaussiam integral over an {abatract) real Hilbert space J{, and path in-
tegrals would them be obtaiped by specializatiomn. Since we do not regard
a8 a apace of paths, we refer to such am integral as a Feynman-type integral
rather than am a path integral. ‘

We now follew [5], and tura teo comstructimg a definitien for an imtegral

of the gemeral forl‘
[, (5) e e sy, (2.

Hers /. is a mass parametsr, which is restrioted by: Im x20, ~ $0.
We coasider first the case dim H=k<w., We set
I‘f:“cc) - [UT";'L)/ZH]%'* g‘alkue_'ilr@--'i, u“")e‘iirc(u.u>¢(u) , (2.4a)
whers me"K, and where

.Re bk>p and i< arg(&-in)“‘c%w. | (2.4p)

Nete that the fastor [(b...]i]‘ in adjusted so that Ih’°(1) =1, Next, we
are imterssted im the limit as b0, (For defimitemsas, we specify a umique
nontdmltial limit.) If this limit exists and is imdependent of , we call
this limit the Feymmam integral of £, amd we demote it by I(f}, or as inm
{2.3}).

The arbitrary veeter & has been inocluded im order te guarantes transla-
tienal imvariamce ef the integral, or of the generalized measure 3(§)-

In the fimite-dimensional case we will sometimes write this integral using

dkn, as follews:

x PP .
(-M./Zﬁ')i fdtu &2 )ECW) . . (2.5a)
If #>0, it may be coavenient te write the nermalizing faotor as
. Lk th .
(-in/2e) = (xjam) enp (-fivk). (2.5)

If dim=w, tken we start by imtreducing the set ¥ of fimite-dimension-
al, orthogonal prejections, and 'ﬂ\, the family of imcreasing sequences of such

prejestisnn, defimed explicitly by:
-3
az{{pjz:aec)) pku;Pk ‘C“”' Vk) Li“ﬁs_,”i)i=12. (2.5)

Choese TT = {Pjge&\, and let
I:}HLF) - ij_,mrb, p‘."(r_.(pj.)) . (2.7)
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If the (memiangential) limit I}_:r’d(l?) as b-C existe and ig independent of
%, we denote it by I“(F). However, we should have indepemdesnce of TI. It is
mot always convenient to require that the Iy(F)'s should be sgual for VT 3,

80 we introduce some smaller familiss of projections. Let P¢®, and let
. Al
QP =((PYe&: P 2P Qo VK], | (2.8)
We now specify that the I {F)'s should be equal whemsver ¢ &(P), for soms
P& B, {(More general families of seqguences of projections were envisaged in

[5].) Under thia conditiom, I“-(F) is the Feyaman integral of F, and (as
befers) is demoted by I(F), or as im (2.3).

In dealing with path integrals as in (1.2), we set x=0 and imclude
the factor 8(1“)—:) in the integrand, as was suggested above. We observe
that

T S
1?(1') = S‘o A.T'nf{'t') 9.'_. C’l‘.‘) = <"1|9'c> vhere gt,(t")zw\iv\ ('l‘,‘t"] 3 {2.9)
and ia partieular, ~(t) -<ni,ét}. It is therefore conveniemt to uase the fami-

ly &{P) where P projeets cuto the subspace {Vﬂtlvé R‘}. The &-functiom
can them be slimimated direetly in each approximating integral.

We remark that if we write G as & path integral with a S—fuution,
then me additiomal mermalising factors are needed. However, slimimating the
§-fumetion them leaves & faotor, which cam be idemtified with ¥ of (1.2).
Then

N = (—im/Ztrt')%'" . . (2.10)

When we speak of integrability of F in the text, we refer to the Feynman
integral I(F). The reference fawily of sequences will be & in case of an
integral over an abstiract space, and will be a(?) in case of a path integral
fer a BSehrédimger particle.

An alt.rnativ*ﬂofinitio: of Feynman—type integrals, depending on infi-
rite-dimensional Geussian measures and em analytic continuztiom, is given in
the appendix. Per the examples im the text, the two definitions are equiva-
lent.

3. Integrability, Gaussian functions, and the Morse index.

Faynman-type integrals, such as defined im sec. 2, imvolve comditiomal
comvergenos or amalyticity, amd are therefore more difficult te imvestigate
tham pesitive-definite integrals. Imtegrable functiems cam be described at
preseat by listing special cases, rather tham by jiving general griteria.

In a finite number of dimemaions, various sufficiemt conditioma for

LS o
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Feynman-igtegrability of a fumotiom can be gives. Typically, these genditiens
restriet the growth at imfimity amd smoethness im such a way, that if a mere
rapid grewth is desired, them a greater smosthness must be imposed. R.g.,
fumetions in L, are (Feyaman-) integrable, amd entire funotiems of order
less tham two are integrable.

Por infinitely many dimensicns, we first mote the following imtegrands
whick can be integrated in closed form (provided certain réstrictioms are met)s
linear exponeatials, Gausasians, amd polymomials. This rather speoial olass

can be greatly enlarged by taking suitable superpcsitions. Im particular, let

us imtegrate ll{p's> with respect te a bounded measurse ps

Folf) = §dpfale’ PP shere  (dlul(p) <. (3.1a)
Such PP are imtegrable, and

TR = (dp(p) exp[4(n)(pB>] . (3.10)

{ct. Lj]. A number of other authors also imvestigated such P .) Morsover,
if Sl,...,stéw and

fA el () (118, 1) - (1e1<5,p00) <o, (3.28)

F(9) =<8y o5 §Apu(p)e (3.20)

is Feynmam-integrable [5]. This funotiom cam De described as the Fourier

then

transform of a distribution, F%‘ being the Fourier transform of the measure
[

It ean be shown [6] that if the potential ¥V is the Pourier tramsform

of & measure om R with finite momente,
V(g) = Condufu) e with fd o] (A1 +1t) < o0 (3.3)

for scme imteger Ly 0, then the path imntegral {1.2) cam be put into the form
jB({)-ﬁh(f Dr(¢) wita r luch that

FIEY = fau(s) e’ and  (afpl(@)(t+upy)'e (3.4)

Tae latter comditiom implies (3.2a), Morecver, the resulting path imtegral
indeed satiafises the equatioms (1.1) for the Green's fumotiom. (We emphasize
that a cemditiom as im (3.3) is suffioient but not necessary for the wvalidity
of (1.1) or eof sther relations that will follew.)

Let us turm to Gaussian fumetions. We start withk the fimite-dimemsiomal
cane, and eommider a function g which is the restrietiom te E* of an en—

tirs fumctiom of order less tham twe, and alsse
Lig du, Lu>
C(u\ - et g(u\, (3.5a)

I'/{l\ - e : :‘,brrkcﬂ'/zfr)gk Ed’ tmeifx(h,u>eé(x(u.,Lu)g(u) , (3.5\))

where K> 0 amd L is & real (liwear) operater. The twe expemsnts in the

integrand of {3.5b) combime inte #indu,(l +L)ud, and if we procesd heuristioce
sily and make the ehnngo of variable v=(1+L}%u, thes we obtain

-4 yeedory L4
[JJ’(HL)] 5 Sk (n/z«)‘ fdtrer JW@CUH—) Ps) (3.6)
Let us sxamime the various possibilities. First we note that L aan
be assumed symmetrio, and se it cam be diagemalized by an orthogonal transform

atien. Next, if 1+L>0, then there is ne ambiguity, arnd I(f) is clearly
equal te ths sxpressiom im (3.6).

The caae where 1 +L has zero as am eigemvalue ham to be sxcluded. The
transfermatien thea Decemes singular, amd moreover, the imtegral im (3.5) will

net in gemeral scaverge.

The oane of partioular imterest to us is whem 1+L has negative sigen—
values. Inm this case g((l-&L)-iv) and [iot(l«rLl]'%
mere precisely. Since g is analytic, it is determined once the square reet

bave to be specified

is ohesen, but the choise is of wo comsequencs, asimce am odd pewsr in an; Yar-
iable will make the term imtegrate to zero. With regard te [dlt(lo-Lﬂ

it ocan be shewm that this factor acquireas the phase faoter c‘élﬁ--—i for
each megative sigemvalus, The mumber of these sigenvalues ia by defimnitioa

the Morss index, demeted by ind(1+L) (cf. [7][8]}. Tmerefore
T(®Y = |det (t+L )i ‘@;p[(- m)..,ml(m,ﬂr(g((um 2. (3.7)

Further details regarding the proef of this equation as well as references
¢an bs feumd in the appendix.

To appreciate the role of ths phase factor, consider the case of one di-

mepsion, g=1l, and 1+L=-1. We cbeerve that

i ] Lima?
I(1) = € (kfam) (duer ™" <o | (3.88)

apd im an analogous way it follows Eﬁatz
T ()= 4 (wfan ) (due™ 2 1, (3-80)

We now ses that

TO)= ¥ fe/empt (due™ = T_()(€ T VeH™) - exp(-Li).

(3.8e)

In other words, .-irw is just the quotient of two nermalizing phase factors,
i.e. for the integrals I{1) amd I (1}.

A formula analogous to {3.7), but for functions as is (3.2b), defined on
W of arbitrary dimension, is givem in the appendix.

The Morse index was discussed in oonjunetion with {rigorous) path inte-
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grals in [B] - ]:10]. It cceurs in the formulas of the semiclaseical appro-
tiwation (ef. the nexi section), and in thias context it is alsc known as the
Maslov index.

We oconclude thils section with the ezample of the barmenic oscillator inm
one dimension. In this case the potential purt of the action, ima)zfdt -12(':),
yielde & Ceussian integrand. However, the variable c:f integratiom ia 1
rather than *, and 1(’&) is a scalar preoduct, ("'f’o'b’ ef. (2.9). We cbmerve
that

440, (x*) 0, (r") = win (T, 7", (3.9}
from which follows
S:J.rq’(;r) = S:&r’«}[fr') S:d:r"»:l(rg') min ('r’,t") . {3.96)

i
We ses that min{z',t") is the kernal of an integral oparator M. The cor—
responding Morse index can be easily computed, since the operazter im questicm
is the inveras te —12/d62. A caleulatien for a mixed momentum—coordinate

repreasntation yields [10]
fed (retM) 2 [(wt/m)r 4],

where [..] demetes the entire part.

(3.10)

4., The semislassjcal approximation.

From the poimt of view of path integrals, the semioclassical approxims—
tiom i® an example of the stationary phase approximatiom. We racall that
this approximt}on haa the following form {for a ona-dimensional integral}:

o0 i u‘ -
(7, 48000 =57 A enpfin () » 4la-saVq ()] d #u) =
=F("\°)¢"a@'\l%"(Uo)l-ie,’%“'(zﬂ/x)i as ¥ . {4.1)
Hare we ISIUJ tha-t u, is the enly critical point of gz on the support of

£ and that ;:ilo is mondegenerate. We take +pim if g"(un)z 0. {Additional
smootbhness l.gd integrability conditions are needed as well.)

The lijntion with path imtegrals is analogous, evem though these inte—
grals are i"ﬁ.nitl—dinensioml. We have hers the oscillatory faotor o(ih 8’
and we ar.{.intcrutcd in the behavior as ¥-»C, i.e. as 'h-l—»oo. A oritical
path defined by 38/fy=0 is just a classical path. Let us assume for sim-
plieity tpt there ia & unique such path for the conditions assumed in the
rata into:‘rsl, and that we have & particle om Rl. We then make a functiomal

powtr—nrici expansiom for Si

S{o) = S(s) *+ 4555 dedw 'l ) (-4 XS S/eq(x}8q ('r')].,‘,.,. )
+ .0 4.2

We peglect higher-order terms.

The sscomd-order term for the pstemtial part of S can be evaluated

as follows:
- €
[87/59(yom(r)) SV byt w1355 o] S gV @) S9be) /oy /r('J4 L,;,,).
But fm (T )fi(r') = 8(z' -2"), w0
[S/é‘n{('rﬂ\f'(-][fr'))lqﬂ{_ = v”(‘f" [T‘))S(fr—'c‘), (4.3v)
and, with the acotatiom 1 -oro-fh , Wo obtain the term Sd't' V‘"‘!z. One sees
in the sams way as im egs. (3.9)that this term has the form

& 2 “ . .
-'i{go d..“t"X(’t)v {‘h(’r)) = "i wf\(’f, L'X) 3 (4.5a)
wherse L is the integral operator with the kernel
w! S':ol'r v [7,(;:)) G,U[ft')é,r [fc) . (4.50)

Let ua return to the {approximated)} action S(T). For the kipetic part
ST, the expansiom through the second order will just reproduce the original
fusction. Therefore

‘h“S[-I‘) = t\"S(-ZD) - -ém("]',’i) + iw\(??, LW) y (4.86)

and the path integral for the Greem's fumoticn, with 3 approximated as
above, becomes

e’oms(.,,) X S.'mha'm 3 8(n) e’;‘cu(i, x)esz L (A LTD .
= QUMY py et (¢ LI 2 app [f bir)iwd (141Y]. (4.7)
Let us supposs that T* is bounded, |[V*| $B. Since |G <1 and alse
Saciki<ugn-ail - adn et (4.8)

we sanily cobtaim
\(A, LAY € (B/DEIAN*, L € (BADEY (4.9)
Therefore for + . sufficiently small, 1+L>0, and ind(1+L})=0. However,

as t increases, 1+L may acquire the eigenvalue zero, and negative eigen~

values.

In one dimension, an eigenvalue zero cam be interpreted as the ocourrencs
of & turnieg poist im the corresponding classical system. Indﬁod, let us loek
again at the case of the harmonic oscillator, where the semiclasmiscal apprexl-
mation is sxach. The first two zeros of ~02Il {cf. aq. (3.'10)] occur fer

wtfr +1-14,2, % that

reapectively, i.e., are ome swing apart.

wt=fw, iw, {4.10)

Tk

T a -’
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An extemsive analysis of such turning points ‘and of the accompanying
changea of phuse can be found in the treatise sf Laslev Dl] « A detailed
mathematioal investigation of the semiclassicul limi% is described im [9],
where the following hypothesis is made on the potentials

Vi) = Jdu(r)e™ Wi (dlofe) e < w

for some £ >0,

b} (4.11)

5. Integratioa by parts,

The defipition of Feynmar—type integrala as given im sec. 2 ensursd
translational invariance of the gemerwlized measurs 8(5). In & one-dimen-
siomal set—uP  this imvariamce and « neuristic interchange of operationms

lead to the following squations: 2
O = (ab), , (~in/2m)*§ A 3" *:') Elust)
B L Linfue &)
= /et fdu (2d) 0T g (L8],

= (ir/2myt Sdu A" L) « BT (5.1)
Thess equatisas could be called inmtegration-by-parts formulae.

Let us put these equations into a mere gensral metting. Let Sed,
and let F be such that DSF(gj and (5,§>F(§) are integravle. Them

JB(5) ¥ OB acts g5 £ p5) « D FEY = 0. (5.2)

As u spscial case, we obiain the following quantum~meokanical equation of mo-

tiom:

Soreo Bly)e! ™ Venpl-i8 v (e 3y 00-4)
X §Ede 8(o) Loils) + (VY (3] = 0. (5.3)

Te derive (5,3), one can uae the following relation, which is easily verifiable
for pelymomiale in ]

) By 854 = 5/5915) (5.0

The scalar product (0"',3/5«’1) is jumt the Citesux derivative g -
by

Bquation (5.3) is valid for petemtials V such that ([6]; cf. alse [12])

vm-. fdv(ye™s Wl Sdlol(s) 1+ 16)) < oo, (5.5)

The quantity "? in (5.3) should be interpreted as a distributien: (r,'«l'-’) -
-{f',ﬁ']), and f should vanish im neighbeorhoods of O and t, and have a cem—
tinueus derivative,

The fersgeing ideas ssuld also be sxpressed as follews. We intreduse the
netation

@ - v

Sfw)
1[0)‘—#,7[4_),3 3(7) et -('-[7) 3 (5.68)
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and apply a Jiteaur derivative imside the integral, aw befors. Then {heuris-
tisally),

L(DS5)6Y - (D8) = 0. (5.68)

This la & form of the Sehwinger aotiom priaeiple.

4
J

We remark alse that the ruls [pj,qk]- 1—15 can be derived {meuristio-

ally) trem (5.60) ia ths form "
(il A o) = AN i (e) =118 > 0 (5.1
s £30 [11{2). A weaker relatiow ef this kind is preved im [6]. (We might

aete here, that im path integrals, quantities sam be ordersd cmly acgording te
time. This is the reasom for the particular form of {5.7).)

Am alternative way of exploiting integration by parts depends cm imtredua-
ing sxternal sources awd generating funotions. Let Je}{., and set

T(3) = Sy D) & T O Penp vy (0] OV 5y 10)- ),
(5.8)
Then, im place of (5.3), we obiain
oo qu)eiivu('iﬂb‘*@”,[.e g:.yrv[.{(r))] e‘h‘J)S[«,(e‘; -J)
¥ g:JwC(GB[:Mﬁ"(«) + (d"U)(nt‘[ﬂ)_,.,n?“(o')) -J ‘(o’)] =0, (5.98)

We mow ebserve that applying i-lg/a’.lt(o) te TM™J) results in a fastor
12!(1') in the imtegrami. Therefors (5.9a) ean be transformed teo

m S EGITOY » BN &7 L) T = 04T ).
(5.90)

The last equatiom is meaningful & priori enly fer a polynomial petemtial 7,
This equatiom can be verifisd explicitly fer the harmonic oscillator. (Ses
the appendix.}

Equations suoh as (5.7b) are semetimes called Schwinger's equations.
They were suggested primarily fer quaptum field theory, whers typigally ene
ssnsiders pelynomial imterastiomsa. BSuch equations previde a way of desoribing
guantum systema without nemecmmuting opsrators {except far anticommuting ob-

jests in ease of fermienie fields).

6., Differentiation with respsct te parameters.

This wection im devoted te two kinda of questions. One of these comple~
menis the preceding deiscussion in the followimg way. In sees. 4 and 5 we con-
sidered variatieas of “ for whioch the endpeimts were held fixed. In the pre~

sont sestion we vary just the endpeints of nf[, im particular y.



The seecnd kind ¢f questions comcerns differentiability or analytieity
in 4« (or =), im %, and in other parameters.

We make a digression, and introduse a rhase-space form of path integrals,
as follows (we now use q in plaoe of y):

G.(t" 1 x} : Nf!rlo]ﬂ, 7{{)::1 3/7) b[P) Q’ES(P)T) ) (6.1)

- ot . t A e
Spir) = G4 (pg-#) = e[ ZLpP-TVp-v] (6w
= (pr) - (3Y K, p> - Py, (6.2)
We thimk of (p,ﬁ)-(z-)-:l(lhﬂ as characterizing the imntegral, while S'dtv
and ths endpoint eopdition at t could eontribute to the integrand, aa before.
Thon the integzrand dees net depend ea 3, then the p~integration can be dems

explieitly (at least at the heuristis level), ané ene is led back te the rath
integral ever 7, am e.g. in (1.2).

Mathematioal defimitions of the imtegral over phase space cam be construct-
od by adapting that ef sec. 2 and that sf the appendix,{af. [13]), or otherwise,

We now aasume & partisle om 21, and we recall the familiar relaticms of
elassical mechanios,

p=25/2q ,
whieh imply

H=-35/3t , (6.3a)

+

. &S ; 4y S e$
Lfaq& = pe” —L‘Jte. sHe ™. (6.3)

We apply these derivatives to (6.1), and (heuristically) interchange differen-
tiation amd integration (the same endpeint oonditions are %o be understocd):

U9 6 (Ha,%) = NG B(p) pl) S (6.40)
U1 G (4 9,6) = N [ Bl Blp) H (L) &5 (6.40)
We sbaerve that eq. (6.4a) would have to be modified in the Hilbert space
approach, sines thers q-'-l(t) and p(t) are vbjeets of different kimds: q
is a sealar produst, gq= <‘i’éf>’ while p{t) oan enly bave a distribution~
-theeretie meaning. This tjuf:'.oruco is of courss implied by the form ef thae
scalar predusts, (p,ﬁ}, ("?,"]}, and (p,p). In [13] the follewing variamt
ot {(6.4a) ‘il preved, 3 .
U6 (690 NIB)BY e iarpl) + ofe?), (6.5)
where V isx assumed to be such as im (5.5).

The factor t"l_{d't'p comes from one term when (p,/‘-?} is developed
with the help of a suitable orthonermal basis:

<Pf"i> = <P>éé><éu';z>/<ég,9le> e ® qt-'s::&rf’@") o (6.6)
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On the other hand, eq. (6.4b) cannot be valid in the given form, since

pz(t) is net an integrable factor, and neither is jdr pz(t).

We turm to derivatives with respect to other paramsters. First of all,
let us ocbserve that a heuristic interchange of operations can be very mis-
leading here. Indeed, if we wers to calculate a&[I(K')(F)] by such an inter-
shange, we would get i(f,k’) in the integrand, which is a nonintegrable fact-
eor. However, in all known examples I{F} is analytic im s« for Im ~>0.
Hewsver, imfermation om differentiability and analyticity has been obtained
By other metheds, and we list two in particular.

(1) Assume that V is contimucus exoept om a set of capaeity zero. Then
an snalysis besed en holomerphio semigroups yields analyticity in A fer
Is x>0 [24].

(i1) If the integramd P ia the Fourier transform of a measure of
wounded variatiom, then I(F) can be reduced to a measure-theoretic integral,
whose differentiability cap perhaps be reduced from the properties of the

HOARUTS.

The latter method was used extensively in [9] , and eur appendix alse
ineludes & result whiokh 1llustrates this peint.

Appendix. Gaussiam fastors and the mathematical thesery.

We first suzmarize anether definition of Feynman-type integrals. Thia
defimition depends onm analytic continuation in the varianos (here, iK.-l)
from the real positive values. Hewaver, in order to easure translational

imvarianes, we have to employ a more somplicated procedurs. We consider
U (b, by FYe=§ B(5) e HE F i 600 ey (1.1)

The integral kers is the Gaussian measure-thecretie integral with variance
(o +hl)-1. We suppese that J as a functiom of h,bl is analytic im a Te-
gien wiieh includes the set {Rc b>0, Re by o}. Ir 1ilb_’o.-'J(b,0'-,—1K;i‘)
oxints as & nentangential limit and is indepandent of X, we call thim the
Peynman-typs integral of P ipn the sense of amalytie continuation (m.z.s.)
and denete it by J(F).

Ia this appendix our assartions about integrability will refar te both
integrals I and J, amd we will indicate this in the propesitiems that
follew.

Prepesitien l.-—-(l) Take %-Rk and 4 real. Let g be the restrie-
tiem te lk of an entire funetion of order less tham twe, and let lek-blk
be symmeiric apd such that 1+L is ronsingular. Then the following fumetica

is imtegrable,

T

i

e = .

=

. -

. -

—

IS aatl
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-Q(UA“' %PC (ndw, Luu>) g[u.) ; (A.2a)
T = MOE tdef (1)) 1241)[(—-”1») ..,.al[rﬂ_]'_f(ca((lﬂ_\ 3 B (h.20)

(b} Let x e real, as before. Let S ,...,53‘67{ (of arbitrary dimensien),

and

and let (¢ be & measure om U satisfying

ALl (1+ 1Sl o (138 1) < o (1.3)

Let L be symmetrie, of trace class, and such that 1+L is nonsingular.
Thom the follewing funotiom is integrable,

Fle):= e S ks, 8y (S’L,§'>fzfy.[g)e‘<@'f> , (aeda)

I[FB J[F) Ide(:(“.j_)] ZWPU lm.) d(tvl,)] ( §d:"-(f5) (4.4)
% Dy, . Vspenpl 4L p, (oYY .
Preef: (#): We sxpleit the fact that integrability was preved im [15] by

-4 (ayBup

A linear change of vaTiables like wa(l+ !Ll)'%u

and

taking the senvergenee fastor e with B an opsrator {whieh - 0),
rather thanm .—ib(u,\»_
in the Peymmun imtegral is therefore admitted (et. [22]). Hera |L{ « (L )i

If L is diagenalized, then || is the result of replaeing sach eigenvalus A

sf L, necessarily real, br jal « Next, for sash negative eaigenvalue of 1+1L,

J by sontour imtsgratienm. Ioroovnr,

we san sffect the transformationm v = +iw
i
fer each such sigenvalue one obiains the faetor e_%l' , as the ar;uunt of

ses. 3 shews (eqs. (3.8)). The result is as inm {a.20).

(b}: We eonsider first the integral J(F). We cemplexify ’/l(, but we

retain & bilinear acalar product, rather than intreduce a Hcrliti:n one.
K5, LE> 140, ¥

The measure-theeretic GCaussian integral of ¥ e'(f) él L 148, 8

¢an be fastorized with respect te the eigenveoters of L, with sigenvalues

A., and this integral can be cxprelud as
3 e s Fup) = € LR ARE N AN
Kexp{at (Lol ) (Bilo, {1- CKL(.'.Hb,)_][(s-'bﬂ)ﬂ (a.52)
_:-{T\’<ara‘5(l-cx,)\a\z.<_ %Tr_ (A.50)

Sines Zf/\_,l‘w, the infinite product converges. Aa a sonvergent limit of

finite produets, whieh sonsiitute a uniformly bounded family of analytie fune—
tiews, this infinite product is analytic im b,b, when Be(b +b1)>0 {er in
& larger regiomn). The same holds for the exponential. We may therafore ocon—

timue analytisally te bl-—it(, and then to the boundary value b=0.

We retura to F. For b,b1> 0 one can interchangs integrations and

differentiations so as to obtain

Mo b P) = 0 () Dg, Dg I (b by F)

- 14 -

the Dg seting on (. The factor up[—é b+b } l(@ @ﬂ in (4.5a) implies
that the last expressioa is analytic im B bl wh-u Re{b + D )>0, and we
san let h =«if, The handling of the appreach te the boundary value bh=0
is llll.‘.u‘ te that im ease L =0, and is as described im [6]

LAY “4o1(5,5)

Thea the Ih’u(?(PjJ) gepatitute a ssquenes of functions analytie im %,b,

Tor I(F}, we ean argue as follews: Replace by e
when Re{b +h1)>0, the seguenee having (leeally} uniform bounds. Morsover,
Ib’“(l‘(P ))—)I (¥) fer b, b;>0 by dominated cenvorgcnoo. Thersfere
this lilit helds alae for hl -:LK. The limit 3¢ b=0Q of I ’“(P) them
gess anm befere.

Tue assertien of (b) with { =0 (but im a different framework) was
stated in [8], and a diffsrent proof was ocutlined thers.

We waTe ssncerned in this artiele with asymptotic limits, and we state
thersfors the fellowing:

Cersllary 2.—With refersnce te proposition 1,
by, T(9) = P{0) [ det (HL)J‘in[(.gm) iwd (1+8)] (£.7)

whare @ = f and the hypotheses of (a) are assumed, or elsse, (¢ = F and the
hypetheses of (b) are assumsd.

Part (a) fellews from prepositiom 7 ef [12], which applies to g. Fard
(b) follews by domimated convergence. O

We next aonsider the harmenio eseillater, with or without perturbations.

Te avoid complications with the Merse index, wa restrict tae time interval.

Propositien 3.—Let ¥ (Jr) &Ky
t<n(m/E)%, Let Va v, + ¥, where

Vy (Lﬂ = Sdu(w’)& <9, (a.8)
() I j‘dlvl(w)<w, them the path integral (1.2) converges (as I or J)
and satisfies ege. (1.1) for the Creem's function.

(v) It fd[uf(w)(l-r lw|)<w, then tha squations of motiom (5.3) are fulfilled.

(e} If V¥, =0, then the functionsl differential equations {5.9b) are fulfilled.

{for a partiele om E"}. Assume that

OQutline of proef: (a): The path integral in question is discussed in
detail in {16], but our criteria for integrability differ from thoss of log.

sit. Now, integrability as I or as J follows from propomition 1, and for
verifioation of eqa. {1.1) we refer to [16].
{b}: Bquations {5.3) follow if the path integral converges for each of the two

terms [12]. However, the convergence follows from proposition 1, in the aame
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way as for the case V =0 treated in [6].
{e): If v, =0, then all intsgrations and differentiationa reduce to algedraise
oparatiens imvelving exponentials and polynomials. In partioular, there is ne

problem with interchanges of operations. (0)

We turm to the guestions of differentiability and aaslyticity. These
questions relate e.g. to the problem of the asywptotic expansion as E-0,
and various amsertions along thess lines wers made in [9]. We state hers a
pixple "folk lemma", as an application of preposition 1 and of related tech-

niques.
We censider the following integral: W/ )
% L iy €
QD(K_'S); S‘ﬁ[g‘)e}.“"(gr)e’z 1243 Lf>e 3 F[;J (1.9)

whers L is symmeiric (and real), of trace class, and such that 1+L 1is

nensingular. Assuse that :
FL5) = Qape)e’®? i - e PP, waon
where Sdl"“\m“‘" §dl?i((ﬁ§< o0 | (1.108)

Lemma 4.—(a) If 1+L>0, then ¢ is analytic in » inm {1s n>03.
(b) If ;. and p have finite moments of orders 2n, then ¢ is of class
" in K fer x Tesl, K 40.
{#) The function ¢ is entire in g for A real.
entire in g also when Im A2 0.

If 1+4L>0, then ¢ is

Outline of proef: Pollewing [17] {(of. alse [61[16] }, o1& 15 the

Feurier transform of a bounded measure ¢, sc that we oan writs
T(F) = [deb (1)) (dv /o) orp [L ()G, (=LY 601

and {a)} follows. Morsover, as shown in [6], lexma 2, if two measures iave

{a.11)

We can thers-
fore differentiate in (4.11) with reaspect to X for A real, and (b) follews.

" Part {o) is in sffect shown in [17] for the case L~0, FPal, and £ real,
but the indicated techniques allew one sasily to relax these restristions. (CJ

finite moments of & givea order, then so does their gonvolutien.
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