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-0 ntneduction
Iﬁ'ﬁhiS'pépe:fﬁe-stud?}thejunique'solvability of
semi-linear operator equations of the form
{1 Au = F(u}

in & real #ilbert space ¥, where we suppose that

A 3 dom(A)CH +~ H is a self-adjoint linear operator

with spectrum o(A} and resolvent set p{A) and F : H + H is

Aa Gateaux differentiable gradient operator. (For slightly

more general hypotheses we refer to Section 2.)

Equations of this form ceccur in a variety of situations,

in particular in the theory of differential equations.
For example, they‘can describe nonlinear elliptic
boundary value problems, or problems concerning periodic
solutions of semi-linear wave equations or Hamiltonian

systems of ordinary differential equations, to name a

few.

Recently much progress has been made towards a better
understanding of the solvability properties of equations
of this type. In particular it is known that equation (1)
possesses multiple solutions if the nonlinearity F inter-
acts suitably with the spectrum of A {cf. [3] and the

bibliography given therein].

In this paper we are concerned with the complementary

case, where F does not interact with the spectrum of

A at.all. In this case, one expéctS'uniquéféolvabirity;
and, in fact, precisely this will be shown in this paper

under rather general hypotheses.

First we recall that in a recent paber the author
obtained, as a simple corollary to some general con-
siderations on saddle points, the following existence
and uniqueness theorem (cf£. [2j, Theorem {(3.4)]), which
contains and generalizes most previously known results

of this type.

Theorem: Suppose that there exist neal numbexs

v < p osuch tha; [v,ul < p (A} and

<F{u)-F(v) ,u-v>

fu=vit 2

(2) ¥Yyuv e H, u#v.

Then the equation Au = F(u) possesses exactly one

solution.

It should be observed that there is no conditicn
whatscever concerning the nature of the spectrum of A
outside the interval [v,u]. Recently J. Mawhin[10] has

given a different proof for the above theorem.

Inspite of its generality, the above Theorem is
too restrictive for applications to problems, which
describe systems of equations. To be more precise,
suppose that H=L2{Q,IRM)f0rsome g-finite measure space
{t, and F is the Nemytskii operator of some function

M M
f:0x®R -+ IR
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(satisfying the so-called Carathéodory conditions,
cf. Section 3 below). Then, if we suppose that the
partial derivative sz with respect to £ ¢ DIM exists,

condition {(2) amounts to

(3) v < Dyffw,f) < u v (w,8)e axmM.

bbégrve that sz{u,g) is a symmetric Mx M~matrix, since
¥ is a gradient operator. Hence {3) requires ali the
eigenvalues of Dyf{w,£} toliein [u,ul. However, a
much more general and more satisfactofy "nonresonance"
cogdition would require the eigenvalues of sz(m.E) to

lie in possibly distinct gaps of the spectrum of A.

There are already some results in this direction. The
first one concerns the existence of 2r-periodic so-—

lutions for the system of ordinary differential equations

(4) -u" = gradG{u) + p(t),

where cec® (IR™, ), and peC{IR,m) is 2n-periodic. It
guarantees the existence of exactly one 2m-periodic

solution of (4) if

.

there are two constant symmetric } x p-matrices

B~ and B® such that

(1) 8" < graac(f) < p* VEeR;
(5) ¢ (ii) there exist integers N, k=1,...,M, such
that

+ + +
where A; ++.%hy, are the eigenvalues of B~

(and the inejualities in (i) are to be understood in

- + - -
the sense that BY > B means that B - B 1is positive

semi-~definit).

It should be observed that {k2| k€éIN} is precisely the
set of eigenvalues of -u", subject to 2n-periodic boundary

conditions {(i.e. "the spectrum of A").

Under hypothesis (5} the uniqueness assertion has
first been proven by Lazer [8], amd Ahmad [1] established
afterwards the existence of a solution. Very recently
Brown and Lin [6] have given a new proof for this
existence and ﬁniqueness theorem, based on a global in-
verse function theorem.

Latly Mawhin [11] has established the unique solva-
bility (in a class of weak solutions) of the system of

semilinear wave equations

(6} u,-u = gradG(u) + hit,x) 0 < X < mteR,

under Dirichlet conditions for the x-variable, that is,
ufo,t) = u(n,tf =0 ¥ teM

and a 2n-pericdic condition for the t-variable, that

is,

ulx,t) = ulx,t+2n) ¥ telR , xclo,n].

1
Here h is supposed to be 2m-pericdic in t and Gecz(nﬁ)

satisfies condition (5.1i). Condition (5.1i} is replaced

3

Y b

e

Tk

"

i

- -
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by the nonresonance condition

M
U

n
h =

Bt A (42K K e mr x z)

3
Observe that in each case (that is, for problems (4) and

(6)) the nonresonance cenditions are of the form

M _ .
u [l-rA-]CO(A)r
j=1 1 3

which apparently generalizes conditions (2) and (3).

It is purpose cf this paper to prove a much more
general result, which contains all the above theorems
as special cases and which is also applicable to cases
in which the above methods break down (cf. in particular
the remarks in Section 4.C). ©Our main result 1is Theorem
(2.6}, although we prove a somewhat more general {and more
technical) theorem, namely Theorem (2.10}. A direct
application of Theorem (2.6} is given in Theorem ({(4.5),
where we prove a vaste generalization of the above mentioned
results of Ahmad, Lazer, ans Brown-Lin.

In Section 3 we study particular situations in which the
hypotheses of fheorem {2.6) and (2.10) can be verified.
These "semi-abstract” results can be applied to systens
of partial differential equations, where the differential
operator is a diagonal cperator with identical entries.
Concrete applications of these results are presented in
Sections 4A to 4C.

Our proofs are completely different from the proofs

given by the above mentioned authors. In particular, our

&

main result, Theorem {(2.6) rests heavily upon an existence
theorem for a class of monotone operators, due to F.E.
Browder [5]. Although we use in Theorem {2.10) a Galerkin
arqument, our approach is different from Mawhin's apprecach

in [11]. In particular we do not impose any compactness

hypothesis.
Finally, we like tc mention that the author reported
on a preliminary version of this paper at a meeting on

"Nonlinear Boundary Value Problems" in Trieste, Italy,

in June 1980.
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2. The Abstract Resulls

Throughout this section we denote by H a real Hilbert

space with inner product <.,.>, and we suppose that

+ -
X' and X ane closed vector subspaces

0f H such that x'nx~ = {o}.

. + - +

Then we denote by 0~ : xtex” - X~ the projection parallel
¥

to X . (0Of course, here and in the following, in a given

context either the lower or the upper index has to be

used throughout.) Finally, we let
- + -
R:=Q -0 = X +X - H.
and prove the following

(2.1) Lemma: (a) Q% and Q" are closed,
(b) R 48 a closed bijection onto X'+X~, and

R2=Q++Q-=id+ _ .

X +X

Pnoaﬁ:.(a) Let (xj) be a sequence in X'+X~ such that
xj + x and Q+xj + ¥. Then yex+ since x* is closed, and
Q-xj = xj-Q+xj + X-y, where x-yex“ by the closedness
of X . Hence x = y;{x—y)ex++x— and Q'x = y, which. proves
the closedness of Q+. Similarly one obtains the closed-
ness of Q.

(b) Let (xj] be a sequence in x++xh such that

xj + X and ij + Y. Then, since Qixj = 2P1{xjinj), it

)

- + -
follows that thj + 2 1(xty). Thus, by (a), xeX +X and

o*x = 27 '(xty), which shows that Rx = y. Hence R is

2

+ - ) .
closed. It is trivial that R® = 0 +0 , and this relation

PR
implies the bijectivity of R onto X +X . O

(2.2) Corollany: 1§ X' +X = 1, then Q°el(n) and R

is a continuows automonphism of H.

Preof: This follows from Lemma {2.1) and the

closed graph theorem. O

We impose now the additional assumption that

A : dom{A)CH + H i4 a seff-adfjoini Linean

openaton
Then we obtain the following

(2.3) Lemma: Suppose 0 (dom(A)N (X' +x”))cdom(a).
Then 7

(a) the nestriction of R ta dom(A)N(X*+X™) is a
bijection, and .

(b) if X +x~

bl

H, then L:= AR 44 cfosed with

dom(L) = dom(L*) = dom(A).

Proo4: {a) follows eésily from Lemma {(2.1.b) .
(b} Since, by Corollary (2.2), RelL(H) and A is closed,
L is closed and dom(L} = dom(A), by part {a).

Let yedom(A). Then

<Lx,y> = éx,R*Ay> v xedom(L),

L

BY ot

Y et
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that
which shows that veédom(L*). On the other hand, if
ye dom{L*}, then . <F{u}-F{v},w> = <F'{v+t{u-v}) (u-v),w>,
[<Lx,y>| = [<aRx,y>] < o |[x] < auR—1““ﬂlx” ) Consequently,
for some constant a and all xe¢dom(l,}) = dom(A). Con- HF(u)—F(v)” X sup ”F'(v+t(u-v))“ fi u=v]

o<t<]
sequently, since R{dom(A) is a bijection ontoc dom(a), .
Zmax{||B"( |87 Hlu-v||

|< Az,y>| < o R7| Iz v zedom(a),
for all u,ve€H, where the last inequality is a con-

.which shows that yedem(A) = dom{L). Thus dom(L*} = dom(L). o sequence of (1). Thus, in particular, F is bounded

r

that is, maps bounded sets intc bounded sets.
We introduce now a further hypothesis.

; (2.5) Lemma: Suppose that X +X” = H and that

- e H +
F : H~ H has a symmetade weak Gateaux 0 (dom(A) )cdom () . Let

dendivative 7',

There exist symmetric openatons B ¢l (H) M := (A-F}°R = L-FeR : dom(L) ~ H.
such that Then
{ B” <F'(u) <B -V ugH,
- - ‘ 2
and thene is a constant v.> o such that MU -MV) u=v> > (g7 2) max(||u-v]| %, || R (u=v)|[[|u-v]} }
<(A=B Ju,u> < -yﬁu”z ¥ ugX Nidom(A)

for afl u,vedom(L).
and ot

< (a-B*)u,u> Y”u”2 v uex+ﬂdom(A}. Prood: Let u,vedom(L) be fixed. Then, by the mean

| v

value theorem, there exists a number te (0,1} such that
Clearly, F' is the weak Gateaux derivative of F iff

F'(ulel (H) and <F(Ru}-F (Rv) ;,u-v> = <BR{u-v) ,u-v>,

lim t_1<F(u+th)-F(u).v> = <F"'(u)h,v> where B := F'(Rv+tR{u-v))€L(H).

t+o Consequently,since A-B is seif-adjoint, the above

for all u,v,hgH. Thus for every u,v,wtl, the mean value assumption implies

thecrem implies the existence of a numker tef{oc,1) such
M) -M(v) ,u-v> = <AR{u-v},u-v> - <F({Ru)-F(Bv},u-v>
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=<(a-B}{Q" tu-v)-0" (u-v) 1, 0 (u-v)+0” (u-v)>
=<(A-B)Q" (u-v}), 0" (u-v)> - <(A-B)Q (u-v}),0 (u-v}>
2<(a-8M0" tu-v), % (u-v)> - <(A-B7)0” (u-v),0  (u-vi>

>vq w=vfi? + " w-v))?).

Now, since

e*wll 22 2¢0 v, 07w 07w 2
+ 2 - -
o™il 2+ 20w o 7wl +]l07w) 2
+ .2 -
2)Q ) 2+)07wi? )

qjo"wsa w2

| A

1A

for every wegH, the assertion follows. o

After these preparations we can now prove the following

existence and uniquenesd result,

{2.6) Theorem: Let A : dom(A)cH ~ H be 3elf-adjoint
and suppose that ¥ : H + H has a symmetric weak Gateaux
denivative F' . Moneover, suppose that

(1) there exist symmetric operators B el (H) such
that

B <F'(w < B V ue H;
(11} there exdist closed vector subspaces xi 0§ H
such that X" nx" = {0} and § = x"+x”, and
duch that

{a) there is a constant v > o such that

<{a-B )u,u> <~ y[luj? v uedom(A) N X~

and }

<(-8")u,u> > - yluj? *
u,u> > oyl ¥ ugdom{a) NX,

42

(b} dom(A) {3 invariant under the projections
Qt : H +~ i* paraffel to x¥.
Then the equation Au = F{u) possesses exactly one sofution

u* and max{[u*[|,[Ru*||} < (2/¥)]F(o}].

Proof: By Lemma (2.3.a), the eguation Au = F{ul is
equivalent to the equation M{u) = o, where M = L-FeoR.
By Lemma (2.5), the map M is strongly monotone, hence

coercive, namely,
<M{u),u> > [{v/2)[ul|-{Mia)fi||ulf ¥ uedom(L)..

Since L is closed and dom(L) = dom (L*), by Lemma (2.3),
and FeR is continuous and bounded, we can apply a result
of F.Bro;dér (5, Théordme 161, which guarantees the
existence of v*edom(L) such that Mi(v*) = o. The unique-
ness follows from the strong monctonicity. Finally, by

Lemma (2.5),
(v/2ymax{||Rv*]| .[|v*[|1 < ||M(o}]| = [[Fto)|,

and the stated estimate follows from the fact that

by Lemma (2.7.b) u* = Rv* and v*¥ = Ru*. o

.For practicai purposes the assumption that xt+x” = H is
sometimes too restrictive. For this reason we prove now
a more complicated generalization of Theorer (2.6).

Recall that a closed vector subspace X of H 1s said
to reduce A iff A commutes with the orthogonal projection

Ponto X, that is, iff APOPA,

EY

-

Lk

Y

% o all
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In the following we denote b& P* the enthogonatf pro-

+
jection of H onto X . Then we consider the following

assumption.
There exists a family of cfosed vector sub--
spaces H , acA, 04 H such that:
{i} {H_|oe A} L& directed by inclusiorn {that
is,for each pair «.B €A there exists a YE A
(A} ¢ such that H UH CR };
a~ By
(ii) each H reduces A and UH, {4 dense in Hp

T
tiii) the oathegonat projection P : H ~ H

. +
commuties with P~ ;

+ - * *
{iv) X +X_ = H ,where X :=X"NH_;
[ [+ ] o o o

(v) 0 (dom(A)iH_)cdom(A) for each o€A .
L

We derive first some consequences of the above

assumptions.

(2.7) Lemma: Llet D := dom(A}NUH_. Then D is dense 4n H
o

and a cone for A, that is, A is the closune of <ts

restrletion Lo D.

Proof: Since dom(A} and Uk, are dense in H and each
o
H reduces A, it is easy to see that D is dense in H.

Let uedom(A) be arbitrary. Then, by the density of

UH, and the directedness of {Ha|meA}, there exists a

c
sequence (aj) in A such that P, u » u and P, (Au)
j B|
= AP_u -~ Au as j - «. This proves the assertion. O

3

(2.8) Lemma: P, commutes with Qi and R.

+ -

Proof: Let ugX +X be arbitrary. Then u=Q+u+Q u
+ -
=P y+P z for some y,zeH. Consequently, Pau =P 0+u+P Q u
o’ a

- + - ot - + -

PGP y+PaP z=P Pay+P Pazex +X , by (A .iii). Thus, by

the uniqueness of the decomposition,

+ + + "

Q Pau = P Pay =P Py =P 0u

and

QPGU=PPQZ=PQPZ=PdQu'

+ +
£+ PO
which shows that PaQ [=te] Pa' Since R = Q -0 , the

second part of the assertion is now obvious. [m|

{2.9) Lemma: For each ofd, there exists exactly one
u €H fidom(A) such th = -
AL at AuOl PGF(uG). and

max{jju [l frRu [} < (2/m)]|F(0)].

Proof: Let ja : HOl + H be the natural injection and

observe that j; pa; Moreover, let F“ := P_eFoj and
a o

observe that F
o

HA * H,  is weakly Gateaux differentiable
with derivative F ! = ]
o {u} P, F'(u)jOl for ueH . Thus Fa'[u)
- ; . +
is symmetric and Bq < Fa'tu) =< Ea for each ueHu, where
+,
Ba = PaB JaGL(Ha) is symmetric. Finally, letting

A := AIHGH dom(A) = PaAja' it follows that

-8 2 -
<[Au Ba)u,u> 2 =Yl v ugX Ndom(A)

and

2
Y[| ulf v uex;ndom(A).

[v

.
< -
(Aa Ba)u'U>
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+ -
Now, let Qa be the projection of Ha = x X onto
- o [+

* + + -
xa ; parallel to XQ , and let Ru =0 —Qa. Then Lemma (2.7}

implies easily that Q

+ *
L0 |Haand, hence, R = RIHa.

*
Thus, Qa(dom(Aa))Cdom(Aa) by (A .v). Finally, since
Aalu)-Fu(u) = Au-P F(u) for all u€H_, the assertion

follows by applying Theorenm (2.6) to the eguation

Aau=Fu{u) in Ha' a

After these preparations we can now prove the following more

general exd{stence and undqueness theonrem.

(2.10) Theoxem:let A : dom{A)<H + H be self-adjoint
and suppose that F : H + H has a symmetric Gateaux deni-
vative F'. Moneoven, suppose that

{1) thene exdst symmetadic operatons B e L (H)
such that
B” < F'(u) <B ¥ ucH;
(i1) zZhene exisit closed vecton subspaces x* af
H such that x'nx~ = {oj and such that
{a) there i& a condtant Y > o such that
<(A-B)u,u> < -YUuﬂ2 ¥ ué dom{a) NX ,
and
<(a-B")u,u> > Yﬂuﬂz vV ue dom(a) nx',

{b) assumption (A) L& satisfied.

Then the equation Au = F{u) possesses exactly one

solution.

6

Proof: By Lemma (2.9), thaere exists, for each wed,

a unique uueﬂa such that

Au_ = P F{u )
o a a

and uuqu,ﬂnua“ <eg {(2/¥)|Flo). For each ag A, let

U, == w—cl{{uB,RuB)eH=<H|HB SH, }

where w-cl {...} denotes the weak closure, and observe,
that the family {U |e€A} has the finite intersection
property, since the fahily (HalaGA} is directed by in-
clusion. Since Uaciﬁlo,co) XTﬁ(o,co), where ig(o,co) is
the closed ball in H about zero with radius co, it follows

from the weak compactness of closed bounded convex sub-

sets of HxH, that there exists an element (u,d) in N Um . Since
a

by Lemma {2.1.a),R is closed, hence weakly closed, we de-
duce that uex++x' and i = Ru.

Now, for each VEH and each B¢ Awith HB SH,.

{2) <Au,v> = <F(u8),v> .

E,
Consequently, by the boundedness of F and of the set

(uf.l 1 acp} ’
| <ug Av> | < IE vl < e,livl v veH_Ndom(R)

where <, is an appropriate constant. Hence, by passing

to the limit, it follows that

[<u,av>| < c,livi v veD,

>

Cawe

e

"y

Jp——"
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This shows that uedom((AD)*), where AD denctes the

‘restriction of A to D. But, by Lemma {2.7),A equal

the closure of AD' that is, A = KE , and, consequently

since {A)* = (A )*, dom((A)*) = dom(A), that is,
uedom(Aa).

Now 1t follows from (2) and the fact that sz = v
for all veD, that

Q= <AuB - F(uB),v> = <M(RuB),v>

for all thBHdom(A). Thus, in particular,

a = <M(RuB),RuB> ¥ B 4,

since R(HBndém(A))CH Ndom(A), by Lemmas (2.3.a} and

B
(2.8). Consequently, by the monotonicity of .M,

<M(Rv),Rv-RuB> = <M(Rv)—M(RuB),Rv—Ru >> 0

B

for all veHandom(A), all geA with H, o Hu’ and all

B
a€ A. Hence, by passing to the limit, we find that

<Av-F(v),R{v-u)l> = <M(Rv),Riv-u)> 3“0

for all veD.
As in the proof of Lemma (Z.7) we can find a sequence

(uj) in A such that

u., := P u->1u, Ru, = P Ru -+ Ru, and
uj 3j uj

Au. = P Au + Au as j + =
i @5

(cf. Lemma (2.8)}).

1%

Hence, letting v := uj+tRh in the above inequality,
where t > ¢ and hegD, and observing that R2h = h by

Lemma (2.1},
<Au.-F{u, +th)Ru_ -Ru+th>+t< ARh,Ru.-Ru+th> > o
] 3 3 J -
for all jeN . Consequently, letting j +» =,

t<Au-F (usth) ,h>+t %EERh> > o.

Finally, by multiplying this inequality by t_1 and

letting then t + o, we find that
<hu - Fluj,h> > o ¥ heD.
Thus, since D is dense in H, Au = F{u).

As for the uniqueness, suppose that there is some
vedom (A} with Av = F({v). Then there exists a sequence
{uj) inA such that uj r= Pu}1+ u and Vj 1= Pajv + v
as j + o. Then, by the mean-value theorem, and Lemma

(2.8),
o = <Au—F{u)-[Av—F(v)],R(uj-vj3>
= <A[uj—vj),R(uj-vj)> - <F'(v+tj(u-vl)(u—vLR(uj-vj)>
= <{A-Bj)(uj—vj),R(uj—vj)>+<Bj[(uj-vj)-(u-v)},R(uj-vj)>,
where tjE(o,1) and Bj := F'(vj+tj(u-v)). Since

<(A—Bj)(uj-vj),R(uj—vj)>=<(Aij}R[uj—vj),uj—vj>

" the proof of Lemma (2.5) shows that
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Y -B ~v.}, TV, 3 VL v .
<(A-By) (uy-v.} Riuy \a':|)>_>_(f/2]lll.1J vJ[IHR(u:I v3)||

Since, moreover, ||Bj|| < max{|B*[{,|B7]|} =: ¢, we de-

duce from the above identity the inequality

-V /2 vl - =y )= {u-
0> [|R{u v )ILe/2)|uy vJH cfl tuy vyl -tu vi||1

for all jeIN. Hence, either R(uj-vj) = o or
lug-vyl < (2e/v) tllu -l hvg-vil1,
which shows that uj-vj + o as j + o. Thus
u=-v = lim u. - lim v. = 1lim (u.~-v.) = o, and the
J J 1 )

theorem is completely proven. o

It should be remarked that the above uniqueness

proof has been motivated by an analogous arcument

of Mawhin [11].

3. Semi-Abstnacit Resulits

Throughout this section we let R be a o-finite
measure space, and H := LZ(Q.IRH) for some M > 1.

Recall that a map £ : Q x IRK
a Canathéodeny function if E(w,.) : R + mY is
continuous for a.a. wée€l and £(.,£) : O + rY is
measurable for all Eem".

In the following we denote by LS(IRM) the set of

all symmetric linear endomorphisms of IRM, which we

- :[RM is said to be

20

Then we impose the following hypotheses:

such that £(w,.)ec (R, "), with a

(H1) ) a.a. well and all E;e]:RM.

(ii) Thene exist two matrices b*,b‘equm")

Auch that

b < Dyflw,E) < b’

for a.a. weR and all gem™.

identify canonically with the symmetrie ¥ x M-mattices.

symmetnic denivative sz(m.E)ELs(IRNl fon

(i) £ : QxR +» R is a Carathiodory function

It should be observed that (H1.i) implies that £(w,.)

\
is the gradient of some function gluw,.) : r¥+ m
for a.a. well .

For every beL{IRM) ., we define B¢l (H) by
(Bu} {w} = bu{w)

for all u¢H and a.a. wef! . Then B 1s said to be the

constant multiplication operateor induced by b. It is

clear, and that o(B) = cp(B} = g(b), where ocf.) de-

notes the spectrum and cp{.) the point spectrum.

Finally we denote by Bt the constant multiplication

* t

< ..<h
T = -}

+
values of b~ , where each eigenvalue is repeated

+
cperators induced by b~ , and by A

according to its multiplicity.Moreover, we let v :1=i

Then we consider the following hypothesis:

. the eigen-

"

+
and u: -AM.

Ik,

e

.

o -

BY ot



2.

(1) A : domi{A)oH » H is a self-adjoint
Linean gperator.
{H2} - .
{(ii) gt and B commute with A.

Mo -
(i11) U WA T1codn) .
5=1 1 3

We are interested in the solvability of the semi-

linear equation

Aa = flw,u) in 9,

that is, we are looking for functions uedom{a) such that
Au = Flu), where F denotes the Nemytskii operator of £,

that is,
Flu) {w) := flu,ulw})

for all ueH and a.a. wER.
It is well known that (41) implies that T maps
all of H into H, and that F has everywhere a Cateaux

derivative F', which satisfies

B~ < F'{u < B" ¥ ueH.

' M
Let {e§1j=1,...,M]»be orthonormal bases of IR such

+ +
that e% is an eigenvector to the eigenvalue Aj of b
]

Then bi has the spectral resclution

e
=4

i+

o
n
(]

v tel, et
. L r e )E
joq €515y

and, consequently,

22

£ .2 H
(ej,s) ¥ EER

ra
[

(b'E,6) = I A

1

n o
[ P bl

]

where (.,.) is the Euclidean inner product. Hence, by

replacing bt by

e
e

M

Bt .= Wi * +
e i< { jﬁej)(ej..)ej eL_(R}

n -

=1

where Ej > 0 is sufficiently small, we can assume
+ +
that the eigenvalues K; of b~ are pairwise distinct.

+
Then B~ has the spectral resolution

+
where P; is the orthogonal projection onto the eigen-
+ .

space ker (B —Aj) of Bt. 0f course, Pj is the constant
multiplication operater induced by the projection

+ + + T -

o= (eL,.)el ® o+ mel .
Py 3975 3

Since A is self-adjeint, it possesses a spectral

resolution

o0
A= [ XdEA

with a right continuous spectral family {EA[ AR},

and we let

E(a,8) := [PaE
[s ]

for all a,Rep{A)U {t«} with a < B.
Since Bi commute with A, it is well known that the
. .
projections P; commute with the resclution of the identity

EA' AeTR. Consequently, the self-adjoint operators A—Bt
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have the spectral resclution

M
(1 A-8t = I f”(x—x?)agkp? )
oy e j

+
We define now two orthogonal projections P by

M
pt := T ERY,e) BL
5213 3
and
- M — -
P := L E{-=,).fP. .
5ot '3

and we let
+
X~ := P (H).

Observe that, by (H2.iii),

+ M -
(2} P = L E{A.,°}P. ,
j=t 3
and that
M -+
v := dist (U [A.,A.]1 , ol(A)) > o.
gap 3773

Moreover, it follows from (1) that

(3) <{A-B Ju,u> < -vuuﬂz ¥ ueX Ndom (A)
and

+ 2 + !
{4) <(A-B Yu,u> > vlluff ¥ ueX NdomiA}.

We can now easily prove the following existence and

uniqueness theorem, without any further restriction upon

v

4

the linear operator A.

{3.1) Thecrem: let the hypotheses (H1) and (HZ) be

Do

satisfied and suppose that the matricesd bt and b~

Y

commute. Then the equation
au = f{w,u) in &

has exactly one sofution, ;

Procf: In this case it is easily seen that (after
a possible renumeration of the eigénvalues of bt) we ’
- ¥

can assume that P; =p, for j=1,...,l. Hence, by (2},

+
P

e

- - +
= idH—P , that is, xT=(x")t. Consequently Qt= P~
and the assumptions of Theorem (2.5} are satisfied,

which impliés the assértion . [u] ‘

The following existence and uniqueness theorem shows

that we can drop the commutativity requirément for
b and b~ if we impose some mild restrictions upon the

operator A. -

b,

For this purpose we recall some facts from spectral P

e

theory {e.g. [7,14]). Let

E(Q;u)(n).

[}
.-
n

so that 2 is a closed vector subspace of H, which re-

duces A,

Do

CaqmeT
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5#.

For every IR, let P(r} := Ek—ngo . Then P(X}! % o
iff hEGP(A), in which case P{}) is the orthogonal
projecticn onto the eigenspace ker (A-A) of the eigen~

value A. Then A 1is said to have a pure pecint spectrum

in (v,y) if
2 = span{P(r}Z|Arc (v, u)].

" This {8 the case Lff 2 possesses an orthonoamal basis
o4 eigenvectors c¢f A, Moreover, if A has a pure point

spedtrum._ in (v,u), then o(A) N (v,u} = cp(n)rl(v.u)u In

paaiicutan,A has a pure podnt spectaum Lr{v,p} 4§ A|Z 4is compact,

o L§ clAIN(V,.n) consists of finitely many eigenvafues.
04 arbitrany multiplicities. These specizl cases are

particulary importart for applications.

After these preparations we can now prove our main

result.

(3.2) Theorem: Let (H1) and (B2) be safisfied. Suppose
that A commutes with every constant midtiplication
operaton, and that A has a pure point spectrum 4in

(v,u). Then the equation
Au = flw,u) in Q
has exacitly cne sofution.

Proof: Let H := E(-w,v) (H) and H' := E (u,=) (H).

- +
Then H has the orthogonal decomposition H = H ®Z®H ,

.Eac; R

and it is clear that Htcxt._

By assumption, 7 possesses an orthecgonal basis B of

elgenvectors A. Let A be the set of all finite subsets
of B and for each acd, let Za':= span{a) . Hence Z_ is a
finite-dimensional subspace of Z, which reduces A.

Finally. let Ha be the orthogonal sum.

for each agA. Then, each Hu'is a closed vector sub-
space of H, which reduces A, and UH& ig dense in H.

a
Moreover, the family {HaluEA} is directed by inclusion,

and the orthogonal projection Pa onto Ha commutes with

the projections Pi defined above,

+ -
Since {ej|j=1;---;M} and {ej|3=1,...,M} are ortho-
normal bases for BJH,there exists a unitary operator

vel (o) , such that Ue; = eJs 3=1,...,M. It follows

easily that p; = ﬁb; g, y=1,...,M. Thus, denoting
by U the constant multiplication operator induced by
U, we find that Uel(H) {s unitary and that P = UP;U—1,
j=t,...,M. Since A commutes with U, by assumpticn, we
deduce that

M
P =U( z E(-=,AT1p0 T,
j=1 J J
J
or, by (2) and the fact, that E(-w,A;}=idH~E(A;,m)

for j=1,...,M, that

{5) PT = Ulid, - A0 oL
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* + b4
Let Z° := P7(Z ) and observe that 2 <Z , since 2
[+ a a o o

o +
reduces A and P commute with A. Moreover,

x' = x*nn = z'sw’
o a a
and

X = XNH = He&Z .
o Qa

Since Zthom(A), it follews from (2) and (4) that
[+ 3
+ - -
z Nz = {o}, hence x;nxa = {o]. On-the other hand, (5}
implies that Z; is isomorphic to the orthogonal com-

plement of z;‘in za. Consequently,
dim 2_ = dim 2_ - dim 2°
Qa o [x )

and thus, ZGL being finite-dimensional, Z;+Z; = 2

which implies that

-t
X *X, = H ¥V oagA.

Next we suppose that uex+nx'. Then there exists a

sequence [uj) inA such that uj 1= Pa U+t uas j+ o,

’ + -
8ince Pu commutes with P~, it follows that u.ex; nxa ={o}

j - i
for all J€IN. Hence u=o, that is, x'nx" = {o}. Thus

assumption (A1) is satisfied.

Finally it is immediate from the definition of xt

and the fact that A commutes with the constant multi-

plication operators P; : that Qt(dom(A)nHa]Cdom(A). Thus we
have verified that assumption (A} is fulfilled. Since the

other hypotheses have been established above or have been
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postulated, respectively. The assertion follows from Theorem (2.

It should be observed that we have proven a slightly
more general result. Namely, Theorem [3.2] xemadins
valid if the condition, that A commutes with evenry
constant multiplication operaton {8 being replaced by
the foflowing condifions

Thehe exdsts a unitary cperator Ue L(H) duch that

- P ,
Py = UPLU 1 . 352, ..M,

and A commutes with U.

4. Some AppRications to Diffenential

Equations

We begin with a simple technical lemma, which can

often be used for verifying commutativity properties.

(4.1) Lemma: Let A : dom(A)CH + H be a closed
£inean openaton in some Hilbert space H, and Lei D be
a core of A. I{ A|D commutes with Bel(H), then A

commutes with B.

Proof:Let ucdom(A) be arbitrary, and choose a se-

quence (uj) in .D such that uj +- u and Auj + Au. Then

10y .

A

it

2T s

"

-,

& -
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dom (A := {uev u,-} is continucus on V
Buj + Bu and ABuj = BAuj + BAu. Thus, by the closed- ( 0) eviatu,-) 1 ontin s on

2
with r <t to the L”(R)}-topo
ness of A, Bu€dom{A) and ABu = BAu. o t espe © © () ~topology!

and
In the remainder of this section we apply now the

general results of the preceding section to situations, <A u,v> := alu,v) ¥ wveV
(] "7 4 :
where A is induced by certain differential operators.

Then it can be shown {cf.[9]) that A is self-adjeint
and {due to the compact imdedding of H1(Q) in LZ(Q))
that it has a compact resolvent.

A. Semilfinean ELLiptic Badﬁdang ¥inally we define a self-adjoint linear operator
Vafue Problems with compact resclvent!

. A : dom{a)cH 3= Li(a, B+ H
Let Q@ be a bounded domain in IR with a Lipschitz

L] : - £ > 1, b
boundary 3%, and let ao’aijEL (?) with a4 ay; for or some M > 1 Y
1¢i,3<N. Moreover, for u,veh' (@) := w(9), let u
dom{A) := {dom{A )1 and A := diag(a_,...,A ).
o o o
N
afu,v) = ? ; éaijDiuD,vdx + éaouvdX- It is obvicus that A commutes with every constant
irg= .

- 1 multiplication operator.
Then a is a continuous symmetric bilinear form on H ().

. We suppose now that the function N
Suppose now that V is a closed vector subspace of .

M M

H1(Q) cantaining the test functions, that is, Pi{ycv, £: 0% ®BY - R

such that a is semi-coercive on V, that is, there
‘ satisfies hypothesis (H1),. and we dencte by F the
exist constantsa > o and A > o such that

corresponding Nemystkii operator. Then by a weak

alv,v) - A”vui > anvnf v vev, sofution o4 the semi-Linean efliptic system

where || .|| . denotes the norm in H%(2), s=o,t. N

3 - I D,la,.{x)D.u}) +au= £fix,u} in 0
' 2 2 i,3=1 t43 J °
Wie define now a linear gperator Ao:dom(AolCL Q) » L7 (W) .
(1)
by

ueVM
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we mean a solution of the operator equaticn

Au = Flu)

or egquivalently, a function ueH1(Q,E£H such that

afu,v}) = f<fix,u{x)},vix)> de v veH1(ﬂ,H35 .
"] IR

As an immediate consequence of the above remarks

and Theorem (3.1) we obtain the following

H. -
{4.2) Theonrem: Suppose the set U'[A.,Af] does
_ . j=1
ned contain an edigenvalue 04 A Then the semi-£ineax

efliptic aystem (1) possesses exactly one weak sclution.
It follows from standard elliptiec regularity theory

that every weak solution of (1) is a classical solution

provided the data , that is, 30 , £ and the coefficients

ags aij' are sufficiently smooth. Finally we refer to

[9] for interpretationsof (1) for various choices of V.

B. Nontinean Schridinger Equations

Suppose that £ : R’ x n@' > H?I, where N,M > 1, satis-

fies hypothesis (H1) with R = IR . Then we consider

systems of semi-Linear Schaddingen equationa

YA

(2) - put Vix)u = f(x,u) in Y,

where we suppose that the measurable function V: nf‘» IR,
the "potential", has the property that A := -4+ ¥V is a
self-adjoint linear operator in Lz(nfq} with core D(ﬁﬁ”.
There are many sufficient conditions for V guaranteeing
this, and guaranteeing also that o(A) has "gaps". In
particular, if V is an approp%riate periodic potential,
then there are conditions guaranteeing gaps in the
cqnditions spectrum (e.g.[13]).

0f course, -A+V operates in (2) as a diagonal
operator. It is then clear that A]D(Dtn)ﬁ commutes
with every conﬁtant multiplication operator. Hence,
by Lemma {4.1), A commutes with every constant multi-
plication ;perator, thus, in pérticular, with Bt.
Consequenfiy the following theorem is an immediate

consequence of Theorem (3.1} and (3.2}.

(4.3) Theorem: Suppose that eithen the mathrices b
and b~ commute, oA that A has a puxre point aspectrum in
(v,u). Then the semilinear syastem of Schrfdinger

equations (2) possesses exactly cne sofution, provided

- _
u

';\f] o pl-asV)
e i3
j=1

s,

Ty

R

-4‘!'?5'
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C. Perdodic Sclutions of Semilinecaxr

Wave Equations

Let H be a real separable Hilbert space and suppose

that

A : dom(A)oH + H 44 seflf-adjoint and has

a compact resolvent.

Moreover, suppose that FeC(IRx H,H}, such that, for
some T > o, F{t+T,.) = ¥(t,.} for all tcIR., Then we
are interested in the existence of T-periodic solutions

for the semi-linear abstract wave equation
(3) 4+ Au = Fit,u), teIR,

where the dot denctes the time-derivative. By a
T-pericdic solution of (3) we mean a function
2 2

weC (IR ,H)NL™ (IR ,D{A)})
such that

d{t) + Auflt} = Flt,ult)}
and

ult+T} = uit)

for all t€IR, where D(A) is dom(A) endowed with the

graph norm ”'”A that is, ”uﬂi 1= “Au“2+ﬂu“2.

S

Let now M := L®({o,T)}) and

dom{L ) = (uec’ ([0, TLMAL? ((0,T).D(A)) [u(0)=u(T),u(0) =t (e) },

and define a linear operator

s -
Lo dom(Lo)c + IH

by

Lou(t} = id{t)+Aault) ¥ tel(e,T].

Then L is obviously densely defined, and partial inte-
gration shows that Lo is symmetric, that is, LOCLO*.

Finally we let

«= *
L := 1L

and say ueIH is a weak T-perdiodic soclutien of (3) {44
ugdom{L) and Lu = F(t,u) in {o,T],
that is, iff velH and

T T .
Jou(t) [¥(t)+Avit)1dt = [ v (t}F{t,u(t)}dt
(o] (o]

for all vedom(Lo). Clearly, every T-periodic sclution
of (3) is a weak T-pericdic solution.

Since A has a compact resolvent, there exists an
orthonormal basis {$j!jenﬂ } in H and a sequence
Xjeni such that \Ajl + = and Amj = Ajwj for all jgm*

(if dom({H) = «). Let
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ck cos(kTt) for k <

A
o]

wk(t) 1=

ck sin(k1t) for k >

v
-

and tgio,Tl, where 1 := 2n/T and ¢, := V2/T if k % o,

k
and co vz 1//T, Moreover, let

mjk(t) t= wk(t)¢j . o

| A
ot
[
3

Then it is easily wverified that

(4) logped trkem* x z}

is an orthonormal basis of M . Moreover, mjkedom(Lo)Cdom(L)

and

5 . = UL .
(5) 14’31: “Jk mjk.
where

ujk 1= A, - 1Kk ¥ (J,kleN*x 7

It is not difficult to verify that

dom(L) = {uem™ | I ju. <u,p. >[2< o }
. ik jk
Jek
and that
Lu = I y, <u,p., >p.
i,k ik ik Tik

for all ucdom(l) (where, of course, the summations extend

over all (j,k)elN* = z). By means of this representation

it follows easily that L is symmetric. Hence

L* = L;*::L =L :)L;* = L*,lsince L;* is the smallest
closed extension of Lo' Thus, L* = L, that is, L 4
self-adjoint. Moreover, since, by (5},the orthonormal
basis (4) of ™ consfétsof eigenfunctions of L, L .

has a pune point spectaum, thus, in particular,

a(L} = Up(L], where
op (1) = {Aj-tzkzi(j,k)em*x z}

Finally, suppose that Bel (H) commutes with A, and

let
(IBu) (£) := Bult} v telo,T!

and all ucIH. Then B¢i{IHH) and it is obvious that B
commutes with Lo' Thus 1B commutes with L, by Lemma

4.1).

Suppose now that @ is a bounded domain in hia

with a Lipschitz boundary, and let H := Lz(Q,Hﬁh

for some M > 1. Moreover A is the self-adjoint linear
operator in H defined in subsection A.above. Then,

by the above remarks, L commutes with every constant
multiplication operator on H= th(o,T),Lz(n,HJH) P
which we identify canonically with L1(Q,Iﬂq), where
Q := (0.T) x{.

Finally, we suppose that the Carathéodory function

f:Qx]Rn-*]RM

satisfies hypothesis (H1) (with @ replaced by 0, of

Y ot
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course), Then, by a T-perdodic weak sofution of the
variational boundary wvalue problem

3 au _
-7 (aij(x) .)+ao(x)u = f£({t,x,u)

3t i,9=1 5x ax

(6)

ult,.) e v

for the semi-linear system of wave equations we mean

a solution cof the neonlinear coperateor equation
Lu = F(t,u) in (o.T),

where F{t,u(t,.)) = £(t,.,ul(t,.)) for all te(c,T}

and all welH.

(4.4) Theonrem: Suppose that

-+ 2,2 . *
(7) (U A A n{a-1t7k" [ (3,klel x z} = go.
5=7 173 ;|

Then the vardiational boundary value pnabtgm (6) foxr

the semi-Linean system of wave equations possesses

exactly one T-peadodic weak solution.

Procof: Due to the above considerations, the assertion
follows directly from Theorem (3.2) ( with A replaced

by L, and & replaced by Q). n

In general, of{d), hence op(L], will not be known
‘ . N
explicitly. But, if Q is the N-dimensional cube (o,7)

and A 1s induced by the Laplace operator -4 under

38

Dirichlet boundary conditioﬁs {that is, Vv = H;(ﬂ)).

then it is easily seen that each eigenvalue of A is

of the form m? oL, 4 mi : where mienﬁ y i=1,...,0.
Consequently,

2 2.2
op(L) = {m; + ... + mooTk |mielN*,kez,i=1,...,n}.

Thus, 1f 1 = p/geQ, that is, T is a raticnal multiple
of 27, then cn(L)c:q—zz, and it follows that 0(L)=cp(L).
Hence in this particular case condition (7) can easily

be checked.

In the very special case of the standard wave equation

" in one space dimension under Dirichlet boundary conditions

(that is, in the case N = 1 in our particular example)
and for T = 1, Theorem {4.4) has been obtained by
Mawhin [11], by a different method, which uses the fact,
that L] [dom(L}Nker (L}'] has a compact inverse in this
case. Since, due to the presence of nonzero eigenvalues
of infinite multiplicities, this is not true if N> 1,

an

Mawhin's method does not apply to this more general case.
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P. Periodic Sofutions of Hamiltonlan Sysiems

In this section we study the problem of the existence of

periodic solutions for the Hamiltonian system of erdihary

differential equations

(8) p=- Hq(t,p,q) , 4q-= Htep,a)

Denoting a generic point of CL L R by =x:=(p.,a}

N
with p,g € R , we assume that the Hamiltonian function

M : .
H:RxR —+ R satisfies the following conditions:

(1) H{t+T,-} = Hilt,-) for all t €R and 4ome T>0

.

(i1} *H

has a second denivative H_ with nespect to x
such that H_ € C@® x R, Lir M)y .
(iii) Thenre exist comstant symmetnic matnices b € L{nlzN)

such that

+ 2N
b =< Hxx(t,y) <b

Vit,y) € R xR

Then, by denoting by J € L(RZN) the standard symplectic

structure of R2N

where IN is the identity in RN , the Hamiltonian system (8)

takes the form
(9) Y = JH (6
and we are looking for T-periodic solutions to (9).

We shall state the solvability criterion in terms of the

4o

+
purely imaginary eigenvalues of the matrices Jhb’ For this

we need some preparation.

Let b € L(RZN) be a symmetric matrix and let ia , with

o € R\{0} , be a purely imaginary eigenvalue of Jb . Then it

js easily seen that -ig is also an eigenvalue of Jb In the

following we denote by Pia the eigenprojection cnto the eigen-

spaces of the eigenvalues ia and -ia . Then PiJRZN is a

2N

symplectic subspace of R which is invariant under Jb . In

2
particular, the dimension of PidR N s even.

Suppose now first that 1o is a simple eigenvalue soO that

dim P GRZN =2 .

i Then there is a linear symplectic coordinate

N

change in Pidﬂz such that the corresponding Hamiltonian has

the following normal form on Rz :
nix,y) = %tx2+ yz) .

The number

jnvariant, and we call ix the "positively oriented” eigenvalue

of the pair * ia .
Let now the multiplicity of

I1f we denote by Eid the complex eigenspace‘belonging to the

eigenvalue ia , then

ey ev, 3T > vEER

defines a nondegenerate Hamiltonian form.If this from has an

r+-dimensiona1 positive and an r_-dimensional negative subspace,

where T _+I_=T , then we set r  of the eigenvalues equal to

ijal and r_ of.them equal to ~i|a]l . Then

a (which may be pesitive oOr negative] is a symplectic

i« be r>1 . Then dim pileZN =2r .

o ke,

4

Y

[T

e

ey
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—

%

lie € S(b%) {1jcact(3+1)]-{ia e S(b*) [~1 (§¢1) <ac-19]

flat e i]al “ilal,. .., ~ifal _ _
-— — = [ie € S(b )|1j ca<t{i+1)]1-[ia € S(b V=t (3+Mca < ~14]
r —times r_-times

forn all j € W
are called the "positively oriented eigenvalues" of the

restriction of Jb to PiaRZN . If this restriction is

Proof: te let H:= 1%((0,1),R*™) and define A:dom(A)zH~ K

by
symplectically diagonizable, then the is a lecti
ymp g gon e n re is symplectic dom{A):={u € H1((U,T),R2N)iu(0)= u(T)}
coordinate change which puts the corresponding Hamiltonian into and
- . 2N
the following normal form on R : Au := -0 .
r r oA _ _
hixy) - g E+(x2 . Y?’ ) ;- 2—(xi o yi +‘, . Then A 1is self-adjoint and o{A)= UP(A) =17 , where each
j=1 J 321 473 +73 X € g(A) is an eigenvalue of multiplicity 2N ({ecf. [3]).
. . . . .
If the restriction of Jp to PiGRZN is symplectically We define a nonlinear map F:H-~H by
diagonizable for every pair of purely imaginary eigenvalues +io , Flu)(t):= Hx(t,u(t))
then we say "that imaginary part of Jb is symplectically

Then F is G-differentiable and has a symmetric derivative

3 " 3 i 3 ] i
diag®nizable". It is known that this is the case if the quadratic F' such that

Hamiltonian 2—1 <bx,x> 1is definite or if 211 the purely _ +
‘ {10) B < F'(u) < B Yu€H,
imaginary eigenvalues of Jb are simple. For more details we

+
refer to [12]. where B~ are the constant multiplication operators  induced

+
by b~ . Writing equation {(9) in the form -Jy = Hx(t.y) , we
After these preparations we can ncw state the following

see that every solution of Au=F(u) defines (by T-periodic
existence and uniqueness result, where by [M] we denote the

. continuation) a (classical) T-pericdic solution of (8)
cardinality of the finite set M

Conversely, every T-pericdic solution of (B) defines {by re-

, , . +

(4.5) Theorem: Suppose that the tmaginany Eaktd of Jb striction) a solution of Au =F(u) . Thus it suffices to show
are symplectically diagonizable and that o(Ib )Nnitz=¢ ,

. that the equation Au =F(u) is uniquely solwvable.
wheare tT:= 2m/T . Denote by S(b ) <the set of afl positively

. R Choose B € R+\ 1z such that
ondlented purely imaginary edigenvalues o¢f Jb . Then the

- +
- . . 1 - ]
Hami{ltondian sysifem (8) posscsses exactly one T-pendiodic solution Gamn BB <F{u<B <8 Vu € H .

id For each X € 7z 1let E(X)}) be the eigenspace of A to the
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eigenvalue 3 , and let

H := 6] E(13) and H

+ - @
Tj< -8 Ti>8

E({tj) .

It is not difficult to see (cf. the proof of Lemma (12.3) of
[3]) that E(73)+ E{~1j} 1is an invariant subspace for A- Bt .
for each j € W . Thus the restriction of A-Bt onto

E(rj)+ E(-1j) defines a quadratic form Q:j for all j e n

+
Since the imaginary part of Jb~ is symplectically diagonizable,

" it can be shown that the positive Morse index m(Qij) of Qij
(that is, the dimension of a maximal subspace of E(1jl+ E(~1j)

. +
on which Q;j is positive definite} is given by
+
m{Q ;)= 2N-2(is € (") [a>ti] + 2(1a € S(b)|a< -ri]
if j >0 , and that
+ : +
M0y} = N+ [ia € S{b)|a>0]-[ia € S{b }|a < 0]

{ef. Lemma 1 and the proof of Lemma 5 of '[4]).

Thus it follows from our hypthesis that

(12} m(Q:j) = m(Q;j) ¥iemn .

Since o(Ib*)Nitz = ¢ , it follows that 0¢ pla-BY)
- {cf., [3, Lemma 12.3]). Thus each cne of the forms Q;T is

nondegenerate.

For each j € N with 1 < 8 , we pick a maximal subspace
Z; of E(tj)+ E{-tj) on which Q:j is positive definite,
and a maximal subspace z; on which Q:j is negative definite.

Thus it follows from (12} and the nondegeneracy of the quadratic

b,

dim z; + dim z; = dim(E(13}+ E{=13))

"
forms . that
L]

Since, by (10}, A-B" > A-B" , it follows that z; Nzl =0}

Hence E(rj)+ E(~1j) is the direct sum of Z; and z;
Finally , let
+
25 =0+ ] 2t
0<j<p

Then 2z Nz =1{0} and 2% + 27 = H . Moreover, there exists

a ¥y » 0 such that *

<(A=B)u,u > <—vy]ul? Vue€z™ n don(a)

and'

<(A=B )u,u> 37"u"2 Yuez'n dma)

+ +
Finally it is obwvicus that the projections Q7 : H+3Z  ,
¥
parallel to 2 » leave dom(A) invariant. Hence the assertion

follows now from Theorem (2.6) . m

(4.6) Corotlany. let the hypotheses of Thesrem (4.5) be
satisfied and suppose, in addition, that H is {ndependent
0f t , that {s, that the Hamiltonian system (8) is
autonomous.Then the unique sclution of (8) is constant in time.
Proof: Since the Hamiltonian vector field is time independent,
with every solution x the function t »x{t+s) 1is5 also a
solution for every s € R . This implies that the eguation
Au =F(u) is invariant under a strongly continuous unitary

representation Ud : S1 +L(H) of the circle group S1 (cf. the

proof of Theorem 4 in [4]).

Consequently, 1if u is a solution to Au =F{u) , then the whole

LD

Y ok

Yot

e .

2E o

Ty e——



L5
orbit {Ugulc € S!} consists of solutions However, we have
shown abcve that Au=-F(u) has precisely one solution u .
Hence the orbit {Uoulc € S]? consists of the point u alone,
which means that u is independent of t . o
(4.7} Remaxk: Suppose now that the Hamiltonian Hit,x) 1is of

the special form
1 2
Hi{t,x) = 5!p| + V(t,q)

Then the Hamiltconian system (8) is eguivalent to the second

order system

-u = V_(t,u
u q( )

Suppose also that there are symmetric matrices c* € LURN}
such that

N

- . .
t, < t. ERxR .
€ SV ltiy) 2c Vit,y)

Then, letting

it follows that

BT < H (t,y) < b* Vit,y) € R x BN .

Moreover, if A; +» 1 £ J £« N, are the eigenvalues of ct
fwhich, without loss .of generality can be supposed to be simple
{cf. the beginning of Section 3)), it is easily verified that
the eigenvalues of Jbt are given by i/fzfq P I B L

Thus each A; > 0 corresponds to a pair of purely imaginary
eigenvalues of bt » and these are the only ones. Consequently,

the imaginary parts of Jb1 are symplectically diagonizable

L6

\ * /ot .
and ia € S(b) iff a-= Aj for some j € {1,...,N} with
+
A; > 0 . Thus, in particular, ie € S(bf) implies o > 0

r

and, consequently, the condition of Theorem (4.5) reduces to
{13) [ia € S(b+)|rj <o <r(j+1¥l=[in € S(b7) {13 <a <1(3+1)]

for all j € W
Now suppose that 1 =1 (that is, we are looking for

2n-periodic solutions) and that there are integers Nj such

that
2 - + 2 7
N, < A, < A, < (N.+1 =1,.4..
TR TR L R C R
Then
‘ Nj</A;:/?\;_<_Nj+1 i=1,...,N

and, consequently, condition (13} is satisfied.

This shows that Theorem (4.5) contains as & verv special
case the resultsof Lazer [8] (uniqueness) and Ahmad [1]
(existence)}, and Brown and Lin (6], referred to in the

Introduction.

(4.8).Remadh: It should be observeq that Theorem (4.5)
is a special case of the following more general result,
which has in fact implicitely been proven above:

Suppose that U(Jbt}f]iTZ = ¢, where 1 1= 2n/7T, and

choose A& R\ 1Z such that

- B <B <F'(u) <8 <3,
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Denote by E the sum o4 the eigenspacea ¢4 A beleonging

to the eigenvalues in (-8,3), that {4,

E = & E(13).
-B<13<8

Then the Hamiftonian system (8) possesser exacily one

T-pendiodic solution L§

n((A-87)[E) =nya-8")|E),

+
whene m((A-B ) |E) denotes the positive Morse index 0§ the

quadratic foam Ainduced by the nestriction of a-B* to the

invardiant subspace E.

However, due to the fact that the interval (-8,R)

contains only finitely many eigenvalues of finite multi-

plicities, that is, E is finite dimensional, the above

formulation is essentially a restatement of ‘Theorem (2.6).
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