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hese are much harder problems due to the difficulty in obtaining
priort bounds, Some progress has been done by the work of
mbrosetti-Rabinowitz [7], Brezis-Turner [8], Crandall-Rabinowitz
9], Nussbaum [i0]. Puel [11], Turner [(2]. There is still a 1ot
o be done on this subject and many questions require 2 more
omplete study, and we hope that these lectures will xotivate soe

tudents to take them up.

CHAPTER 1

LINEAR EIGENVALUE PROBLEMS WITH AN INDEFINITE WEIGHY

1.1 SOME DIFFERENTIAL CALCULYUS. Let U be an open subset of a
Hilbert space H, and f: U~ R and g: U + R be ¢! real -valued

functions defihed in U. Consider the hypersurface

$ s {xe U: g{x) =0, g'(x) # 0}

which of course ts supposed non-empty. Problem is
Ext {f{x): x e S}

which consists 1n looking for extrema of f with the subsidiary
condition g = 0. This 1s a classical question in the Calculus of

Vartattons, which is solved using Differential Calculus as follows.

We say that x, € S is a critical point of f restricted to
S 1f for all ¢! paths a: (-€,€) = 5, with a(0) = x,, one has

(M o T(e(t))]yao = -

Observe that points x_ € S where fIS has a local maximum or a local

(]
minimum are critical points,

Proposition 1.1. x, € S is a critical point of f|S iff

(2) '(x,) = Ag'(x,)

for some X ¢ R.



Introduction

The past twenty years have witnessed a tremendous
development of the theory of boundary value problems for semilin
elliptic equations - positive solutions. We do not intend to sur
it in this set of lecture notes which were rather prepared to be ’
an introductory course on the subset for presentation at the lLat
American School of Differential Equations heid at the University t
of S30 Paulo, July 1981, For example we have nothing on bifurcatic
problems or existence of branches of positive solutions: these
questions will be eventually discussed by other lecturers in thiiz
conference. Extensive references may be seen in Krasnosel'skii's
boak [1] and in the paper by Amann.[Z] for the literature up to
1975. In the present work we concentrate in a single aspect of tf
theory: the existence of positive solutions of the Dirichlet |
probiem, Our 2im here is threefold. First we develop in detatl & t
theory of eigenvalue problems with weight, which has shown %G be
an important tool in treatling these problems; see Ambrosetty L_3]
Ambrosetti-Mancini [4], Berestycki (5], Katu-Hess {p], among othe
The possibility of dealing with indefl:{te weights has given us
more general results, see Seatfon 2, Second wve show.that sublina:
problems can be studied efficienily via the method of merctone %
{teratton; this line of research was intensively pursued by Herpe f
Keller, Donald Cohen and others, In the present form is essentia!i't

due to the work of ilerbert Amann and David Sattinger; see reversy

(2. Third we study some special cases of superlinear prohlems.
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Remark. A 13 called a Lagrange multiplier and in case of existence
it 15 given by

A m p(xg) 0% (x,) Dot (x 2.

In this sectfon we use the dot notatfcn for the 1nner-procuct in H

Lemma 1,2, letwe H, withw 1L g'(xo). Then there 1s a C! path

a: (~e,£) + S, with a(0) = Xy Stch that a'{0) = w.

Proof, Let Hz be the one-dimensional subspace of H generated by
g'(xo), and H, = H;. Then H = Hy OHZ, which means that each x ¢ H
has a unique decomposition x = usv, 4 e H]. ve Hz. So Xo = Ugtv,.
First we proceed to obtain a Cartestan representation of S, For
that purpose it {s more convenient to work with the representation
of H as the Cartesian product Hy x Hy: pach x = usv ¢ H 13
represented by (u,v) ¢ HI x Hz. Define 3: U] x U2 + R by .

F(u,v) = g(u+v), where U; and U, are neighborhoods of u_ in Hy and

°
L 1"'"2' respectively. These nefghborhoods are chosen in such a
way that utv e U for all u e Uy and all v e Uy, It is easy to see

that g is a C' mapping, and its partial derivatives are given by
Flnaw) = g'(x)e §3upavg)ev = g'(x)-v.

Consequently ﬁi(uo.vo) is an isomorphism between Hp and R. Thus
by the Implicit Function Theorem there are neighborhoods V] c Il.I

of Ugs vz < Il2 of 'o‘ and a (:I

function h: vl + vz such that
Yo = h(u,) and

(3) gu, h(u)) = 0, Vuenw,.

5.
Now define p: v, rHyx Hy by p(u) = (u, h{u}). This s the
Cartesian representation of S. Observe that
p'(ul)u = (u, h'(u1)u). Vue H.
It follows from (3) that
3ugev)eu + 93(ug o) o[ (ug)ud = 0

and since ;i(uo.vo)-u = 0 and ai("o’vo) f 0 we obtain h'(u,)u = 0

for .]] ueE H-l. So
pl(uo}u -.(u.O),

Now given w L g'(xo) define
a(t) = ply, +wt) for 1t <€,

where € > 0 is chosen in such a way that u it € LT for all

[t] < €. Clearly
a(0) = pluy) = (ugs hluy)) = (ugavy)

a'(t)|pag = P'(Uy) 8 = (8,0). Q.E.D.

s
Proof of Proposition 1.1. x, being a critical point of fls give

Cf'(xg)+a'(0) = 0 (from (1))
for all t:'| paths a: (-€;e) * S, with «(0) = Xge Then by Lenma 1.2
'(x,)-a = 0 forall e L g'(xo)

which gives (2). Next observe that



(4) 9°(x))-a’(0) = 0 (from g(a(t)) = 0)

1
for all €' paths a: {-c,c) = S with a(0) = Xoe S0 4f (2) 1s assumed

we obtain from {4) that f'(x,)-a'{0) = 0 which shows that x
critical point of f|S,

is »
Q.E.D.

1.2 SPECTRAL ANALYSIS OF COMPACT SYMMETRIC DPERAfORS

Let T: H +~ H be & compact symmetric linear operator in & Hilbert
space H. [1nner product: {( , }. Norm E-I]. An operator is safd to
be compact if it is continuous and takes bounded sets into
relatively compact sets. [Df course such a definrition makes sense
for not necessarily linear operators between Banach spaces]. In
the present case the notion uf a compact operator fs equivalent to
that of complete continufty. An operztor fs said to be completely

continuous 1f ft takes weakly convergent sequences into strongly
convergent ones,

Lemma ¥.3. If

{5) A, =
1 ":rgl(Tx.x) >0

then there exists #, € H, with l6;li = 1, such that

(6) -
(Thaty) = X0 T = 44y

Proof. Since {Tx,x) < ||T =
Proof (Tx,x) < ITH for §xll = 1, we have A € =. Let us take

HxJI = 1 such that (Txn.xn) - ll. Passing to subsequences we may
assume that x —= " L— designates weak convergence, while
— means strong convergencé] and Tx, * TQI. in view of the
compactness of T. So we obtain the first part of (6).fo¥ the second
part we use Proposition 1.1 with f(x) = {Tx,x) and g(x) -%[l]xlz-l].
observe that feéqll < tim inf lix, I = 1 and 10 fact foqll = 1, for
otherwise x = ¢7/114;1 would lead to (Tx,x) > Ay, which is
{mpossible. So 0‘ is a critical point of £}S. Then there is AeR
such Téy = Adye Taking inner product with 4 and using the first
equality in (6) we obtain T Q.E.D.

By completely similar arguments we prove

Lemma 1.3°: 1

—————  —

7 2 = inf (Tx,x) < 0
( ) =1 lx“ =) )

then there exists ¢_; € H, Jo 4l = 1, such that

(B) (T‘_] |¢_]) - l-'l' T’-‘ - l"]“l

Remark. Observe that 2, defined by (5) is the largest eigenvalue
of T. Simtlarly 1_1 f§s the smallest one. This procedure can be
repeated to obtain other eigenvalues of T, considering its
restriction to the orthogonal complement of Ré;. This possibility
rests on the following easily proved fact: "Let VC H be a
subspace of H such that T(V) = V. Then Ts vt + v 15 compact and

symmetric*, S50 we obtain



Proposition 1.4. 1f

(9) A, T sup {(Tx.x): fixll =1, x o ¢]"""n«l} >0

then there exists ¢, € H, with Hinla 1, such that

(Thputp) =2, To, w2 .

A similar statement holds when

(10) A_, = inf {(Tx.x): fIxlf =1, x o_}....,o_(n_])} < 0.

Before proceeding we collect in the following Temma some facts

Lemma 1.5, (a) Eigenvectors corresponding to different eigenvalues

are orthogonal,

(b} If A is an efgenvalue of T, then the eigenspace
N(T-2I) has finite dimension.

(c) The eigenvalues of T cannot accumutate at a point

A g0,

Next we claim that all the eigenvalues ¢ 0 of T are obtained by

the process described in Propositfon 1.4, To Prove that we need

the following result,

Lemna 1.6, For each x € H one has
() C Tx = I Aplx,eg)e, .

jmum

[* means that 1 = 0 does not appear in the summation].

9.

Indeed suppose that there s an eigenvalue 0 ¢ A # Ai for all 1.
By Lemma 1.5 (a) a corresponding eigenfunction ¢ (T¢ = A9) s
orthogonal to a}l $4. By (11) T¢ = 0, which is impossible, In the

proof of Lemma 1.6 one needs

Lemmg 1.7. Let T: H+ H be a symmetric operator $n H. Then

(12)

x| - Tx|
HEII(Tx x) 1 “iﬁg] Hrxil

s
fix
[The expression fn the right side of (12) is the oorm [T} of T,
and let us denote by n the left side of (12)].

Proof. The only issue is the proof of [|T{l < n. For any x,y € H
nlherll? 2 (T(xey)axty) = (Fxax) + (Ty,y) + 2(Txay), and
-nﬁx-yﬂz < (T(x-y)x-y) = {Tx,x) + (Ty,y) - 2(Tx,y). Subtracting

the second fnequality from the first we have
(13) 4(Tx,y) & an(lial? + lIvl?).

Naw for [[x]]l = 3, efther Tx = 0 or Tx # 0. In the latter case take
y = Tx/HTx|l 1n (13) to obtain |[Tx[| < n, which holds for all [x]=1,

in either case. Q.E.D.

Proof of Lemma 1.6. Lat

ln = X - E. (:”‘)¢1.

{sen
It suffices to prove that Txn + 0. Since %, L 41 for

1 = -ny3.e.9=-1,1,...,.n we have by Proposition 1.4 and Lewma 1.7

that
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Fre ) < max CIx_ f, 2 M.
So we have the conclusion because anﬂz-ﬂxlz - f (1.01)2 < i x 2.
j=-n

Q.E.D.

Formula (9) for the n-th positive eigenvalue presents the
inconvenience of requiring the kno-lec-ige of 211 previous positive

ones. Similar statement for A__ in (10). The next result improves

n
this situation.

Proposition 1.8. For each positive n

14 A = {nf Tx,
( ) n F"l_"l ":lTE] ( x ‘)
XLFn_I

where the infimum is taken over all- subspaces Fn-l of H with

dimenston n-1. A similar formula holds for X__

{15) A__ = sup dnpf (Tx,x)
L M 1 B
xiF g

Proof. Let us denote by An the right side of (14). Taking

Fn-l = subspace generaied by ¢‘.....¢n_1. we see by Proposition 1.4
that An < kn. On the other hand let hl""'hn-l be any system of
mutually orthogonal vectors in H, and Fn-l the subspace generated

by them. Choose a vector ¢ » f 0‘01 1h such a way that (O.hJ) =90
i=l

n
for j=1,...,0-1, and normalize ft, i.e. iil uf =1, Xow J¢ll = V¥ and
p o2
(Teu#) = T o)y 22

]‘I

which 1mpiies

sup {Ta,x} > 2
d=1 =
xFoy

and consequently An 2 AL, . Q.E.D.

Formula (14) has still a set back since the sup (Tx,x)
has to be taken over x in a subspace of {nfinite dimension. This

situatfon 13 improved by the following result,

Proposition 1.9. For each n positive

{(16) A = sup inf (Tx,x)
AV
xE Fn

where the supremum is taken over all subspaces F, of H with

dimension n, A similar statement holds. for l_n

{(17) A_, = inf sup (Tx,x)
" ke
xeF,

Proof. Let us denote by Pn the right side of (16). Taking Fo the

——

subspace generated by ‘l"""n one has for all x = ; l"i’i € F.,
Ix§2 o za? = 1, that
n
(Tx,x) = ; oA, 2 A,

So rn > An. Conversely given any subspace Fn of dineqsion N,

choose a x ¢ Fn such that x o 01.....0 By Proposfition 1.4,

n-1"
{Tx,x} < An. Consequantly



12.
inf (Tx,x} <, VF,
xan ' n n

which implies I < L Q.E.D.

Remark. Observe that all the inf's a sup’s in the above
characterizations_of An and A-n dre actu2lly assumed, Se they

could be replaced by min's and max's.

1.3 THE EIGENVALUE PROBLEM WITH AN INDEFINITE HEllGﬁ]': THE VARIATIONAL

b — L EAL R LN

FORMULATION

Let us consider the eigenvalue problem

(18) Lu = uypu in R, u«0 on 2,
where

N
?
Ly = .1§j.] Fi;(aid[x)§¥%) + a (x)u

is a strongly elliptic operator in a bounded domain @ of R", i.e..,
there s a constant €y > 0 such that

N -
(19) 1£ O ¢ 1612, wxed, veenrh

oJ=

We assume 85 " °ji and ao(x) >0 in B, The wetght function m:0 + R
ts assumed to be 1n L"(Q) with r > N/2. [In particular, this is the
case 1f m 1s contfnuous 1n i, However we should allow discontinuous
functions m viewing future applications]}. We emphasize that m could

change sign in Q. One assumes a4 € L7(Q) and 3y € M2 gy,

Let us recall Poincaré's inequality

13,

full 2 s clull y» Yue Hl(a)-
L H
which fmplies that the inner products
{20} Ivu-vv J[vu-vv + uv}]
are equivaleant in Hl.

Problem (18) is studied here in 1ts varfational

foraulation:

afu,v] = HIIUV. ¥ve H:.
{21)

ue H;

where a: Hlx Hl + R is the bilinear form defined by

afu,v] = I[?aij(x) g%; fg% + a (x)uv|dx.

1 1

[Since Hy

on a, and m, that expressions like Jnuv and Iao

are well defined]. This form defines in H, an inner-product

equivalent to the original one [in (20)] since

afu,v] = alv,u]. [a(u,v)| < cllu[[H||[v|]H . afu.d] > c||u|;‘:l.
1

Let us denote this fnner-product by (-,-)
by ll * “g'

For fixed u ¢ HI. the map v +—— Imuv is a bounded linear

functicnal in H:. 50 by the Rie- -Fréchet representation theorem,

there is an element in H;, denote 1t by Tu, such that

(22) (Tu.v). - Inuv.

.
c 2 + where 7% » % - %. we see, using the hypotheses

uv, for u,v ¢ "o

and corresponding norm



ta,

1
Clearly T: Ho + Hl 1s Hinear syometric and bounded. Moreover T s

compact; indeed Jet (un) be a bounded sequence 1n H;. Passing to a
subsequence we may assume that U, —=> u in H;. u, > uin Ls. for

s < 2'. using the Reilich-Kondrachov thecrem on compact imbeddings
of Sobolev spaces. Use (22) with u replaced by u,-u and v by
Tun-Tu:

(Tun-Tu.Tun-Tu). = Iu(un-u)(Tun-Tu).

Using Holdepr* 1,102
g er's inequality, with . 1 it we get

2
ITu,-Tuf} < Il-IIL,.Iu,,-uIL, HN,pTUIILz-

which gives

IITun-Tulla < cﬂun—uliLs —=> Tu, + Tu 1n H .

Problem {21) may be rewritten as

1

(u.v)‘ L) u(Tu.v)a ¥ve Hy

or
WTu = u or Tu = l-u.
¥

S5o-we can apply the theory developed in the previous section to

describe the afgenvalues and eigenvectors {in Nl) of problem (18).

Propositicon 1.10. The eigenvalue problem (21) has a double sequence

of eigenvalues

s S M S My By, S L,

whose variaﬁionnl characterization;’are

15,

2 ] 2
(23) e sup  inf Jnu s T inf _ sup. Jlu .
Fo [l o -n  F, bl

u:Fn utFn

A
Ua

where F_ varies over all n-dimensional subspaces of Hl. The

corresponding efcanfunctions ¢n are such that

(24) afe, . » unfuonv. ¥ve H:
and
(25) alp, ¢, =1 u‘l; . I-oﬁ.

By the results of the previous section the eigenvalues
above do not accumulate, except at 4= or =, and the situation fis-

describad by

Proposition 1.11. Let @, = {x ¢ A: m(x) 2 0}. Then

() I8 ] = 0 ~=> there {s no positive .

{6) |a_| =« 0 => there is no wegative ¥_.

{c) |Q+l > 0 ==> there is _a sequence of posftive W, * 4«
(d) |a_| > 0 ==> there t u_, .

[I-] denote the Lebesgue measure of the setl.

Proof. (a) and (b) follow readily from Propositton 1.4, To prove

{(c}, Tet ‘l""'an be a set pairwise disjoint balls in g such that
. -

the sets '3 n ﬂ+ have positive measure. Let uy,...,u, be C,

functions with supports in the corresponding balls and such that

Inu§ > 0. [uj can be obtained as an L2" -approximation to the



characteristic function of the set By n a_, where 1/r' + 1/r » 1].

Let us normalize them so as to have -ui =1 for J=1,,..,n. We

clain that u, > 0, Let F, be the subspace generated by the mutually

orthagonal functions Uje So for u = Iujuj € F, we have

[ - ;‘ o? [au? - g o2

alu,u] = { aga[hj.uél < ctui

and

where ¢ = J-l?ff..n l[hj.uj]. Hence

Imu2 3_% afu,yl], Vuce Fpe

The result follows from this and (23). A simflar proof for {d}.
Q.E.D.

The next two results exp!iin how L un(m) varies as a

function of m. Both of them follow readily from Propesition 1.10.

Proposition 1.12 A, Let m,&: @ = R be L™ functions, wit» r > N/2,

such that m(x) € w{x) for x ¢ R, Let us suppose that for & given

n, ne t], 22,,.., the eigenvalues un(m) and un(;) exist. Then

(26) o{m) > u (&),

~
Moreover 1f m(x) < m(x) on a subset of positive measure in 9, thea

one has strict fnequality in (26).

Propositionjl.lz B. un(u) is a continuous function of a2, in the

norm of LNIZ(D). In other words, if mg € Lr(ﬂ) converges fn the

7.

(M2 norm to m e Lr(ﬂ). then un(mj) converges to un(m).

Remark, If m(x) =1 in 0 we use the following notation uJ(I) = Aj.
J =1,2,.... Observe that there are no AJ with negative J. It is

easy to see that
-1
g} =
uj\u} Aju for a > C,

This reiation will be used extensively later on for values of o

being equal! to efgenvalues hk.

1.4. A THEOREM OF THE XREIN-RUTHMAN TYPE

Theorem 1.13. Let m: & + R be an L"-function, with r > N/2, (not

necessarily positive). Suppose that m > 0 on 2 subset of 0 with

positive measure., Then the first positive eigenvalue uy of (21) is

simple, and @; can be taken > 0 in 8. A similar statement holds

if m <0 on a subset of f1 with positive measure.

femark, The above result is due to Manes-Michelettd ﬂﬂ. Asimilar
result for non self-adjoint problems with m continuous has been

proved recently by Hess-Kato [6].

Proof, First stzc. Let w e Hl be an eigenfunction corresponding to

the first positive efgenvalue By At this stage we do not know

whether or not scme other uj's are equal to vy and consequantly w
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may be a linear combtnation of ¢J's. In any clée w 1s a solution of

!

(27) dfw,ev] = "'l!""" ¥ve Ho.

We first claim that u does not change sign in 8. Indeed, suppose
it does, and Ietlﬁ"" = max(w,0} and v~ = min{w,0). We know that w*

and @ are also in H;(ﬂ), see Stampacchia [14]. So
Iluz - I-(u+)2 + [m(67)? = aj4a,
alv,0] = afot,0*] + afw",u"] = By + By, B,,B, >0,
A simple arithmetic shows that either | |
Applying this to ff [st? s [

) a fu,u] - eo¥,0%] + alw,u7]

we conclude that w* and o” are alss eigenfunctions carresbonding_

to ¥. So they are solution of {27) and zccordingly to & result of
Stampacchia [I5, Corollary 8.1 p. 238) w* >0 in Na.e.) and v~ < 0
in o(a.e.}, which 1s fmpossible. The fact that ¢, can be taken >0

in 01t follows from the efcre-mentionned result by Stampacchia.

Second step. We rew prove that the geometric rultiplicity of "1 is

1. Indeed, let w and w, be eigenfunctions corresponding to w.
By the previous step we kncw that for each a € R the eigenfunction

W + owy has & definite sign. So the sets

A-{usﬂ:u1+w230} and B-{asﬂ:n‘-lcmzsﬂ}

19,

are non-empty, closed and A UB = R, Consequently there fs
W EANB = 0 + Emz = 0, which says that w; and w, are linearly .

dependent.

Third step, The algebraic aultiplicity of #y is 1, 1.e., uy s a
simple efgenvalue. Indeed, referring to Section 3, our claim 1s to
prove that N(I-uyT)% « R(I-w;T). Let u € N(I-u;T)2. Then u-ny Tuste,
for some t ¢ R. TQking inner product with 9 (u-u]Tu.¢1). -

= (Uaby-u T ), = 0 = £(9),4,),, which impites t = 0, So veN(I-pT)
and the proof i{s complete. Q.E.D.

1.5 A MAXIMUM PRINCIPLE. Let us start with some considerations on
the Dirichlet problem

(28) Lu=h 1n Q, u =0 on ag

where the operator L has been introduced in Section 3. We shall

discuss the variational formulation of {28) namely

afv,¥] = th. VYve I-Il
(29)
ue H:(n)

For the needs of the present discussicn we assume that h e hd
where 0 = 2N/(N+2). Under this assumption it follows Trom the
Sobolev imbedding theorem that the map v r—= Ihv is a bounded
tinear functional in H:. So by the Riesz representation thooren_
there axists h ¢ H: such that Ihv - (g.v).. Vve Hl. Such an h
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is the unique solution of (29) [recall that the bilinear form a is
coercive in Hl]. In this way we have defined a bounded linear

mapping S: L + Hl

by S(h) = h. Applying Theorem 8.1 [I6, p. 168]
we see that h > 0 wherevar h > 0, Obsarve that this statement is a
maximum principle cnd it has 2 cruzisl zzsumpiion: &, fx) >0 ia Q.

The next result shows how tafs aypoihosic cen pe velaxed somehow.

Theorem 1.14. Let v e H;(n) be a solutisn of

(30) Lu - Amu = h in@l, v =0 on 30

where h e L9(R) and h > 0 in 9. Suppos: that m e L7(Q) ie pasitive

on_a subss2t of O with sositive weasure. Assume also that O¢A<u](m).

Then v > 0 in @, Karecver, If 5 > 0 1n & s2t of positive maasure

then v > 0 in 0.

Proof. a} (30} s to be understoond in the weak form
(31) ale,v] - h[muv - !hv, ¥ov e )

Mithout loss of generality we may sssume that |m{x)}] < 1 fer x

and that fact will be used later. (3}) may be rewritten as
(32) a, {u,v] = Aj(m+l}uv + th. ¥ve H;
where a,{u,v] = afu,v] + J\Iuv.

b} Given X > 0 let us daznote by ¥ the first positive efgenvalue
of
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al[u.v] - uJ{ml)uv. ¥Yve Hl

1
uE Ho

We claim that 0 < & < ul(n) el ul.l' {To simpiify the

notation: o = "],A] Indeed, suppose by contradiction that & <A,

Then
J(m+1)v2 I(m+1)vz
5 " SUp —————— < SUp ——————
2 2
a[}.€]+AIv a[}.i}+c[v
Hence, for any given € > 0 there is 2 v & Hl such that
I(m+1)v [vz Jnva
l-es —[--s)-as <
s a[\f.\’]MI afv.v] ~ alv,v]

By the variational characterization of the eigenvalues we get

[-}'8]'“717 —m- ve>o,
which {mplies u,{m) < o < X < ¥;(m): fmpossible:

c) In analogy with the mwepping S defined in the beginning of the
present section let us denote by S1 the operator associ{ated with

the bilinear form a,. Then (32) may be written as
u = ASA((m-rl)u) + Sa_h_.

Let W: Hl * Hl be the operator defined by W(u) = ASA((m+I)u). This
operator fs compact in view of the compact 1mbedding'H; c LY, By

part b) we see that the spectral radius of W is less than 1. So

-1 A
33 « (1-W S.,h = W ({S.,h
{33) u e (I-¥) 'S, jzo (s,m)
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and the positivity of u follows from the positivity of S) and W.
The last statement follows readily from the strong maximum

principle. ¢.E.0.

The result of the prceding theorem is sharp in the sense

that problem (30} cannot have a positive solution if A > ul(m). In

fact, we have

Proposition 1.15. Let v e C‘(ﬁ) be a solution of (30), where

h € to(ﬂ) and h > 0 in Q. Suppose that m ¢ L.(ﬂ) i{s positive on a

set of positive measure, and 2 2 ul(m). Then u > 0 {1.e., u(x) >0

in o and u(x')l> 0 at _some point x* € Q] fmplies A = Bi(m}, b =0
and u = téy, where 0, is the efgenfunction of {21) corresponding

to uy(m).

Remark. If the soluticen v e Hl and the coefficients of L have the

appropriate regularity for the use of the Lp-theory for the

dirichiet problem we can conclude that in fact u e C}(ﬁ).

In the proof of Proposition 1,15 we use the following

form of the strong maximum principle,.

Proposition 1.16, Let v ¢ C](ﬁ) and assume that afu,¢] < 0 for all

ve nl(n), $ > 0. Suppose that 30 satisfies the interior sphere

condition at x

au
o & 30 Then the outward normal derivative Fi(xo)

is > 0, provided u is not constant in Q, and u(xo) > 0. The latter

restriction is not necessary when a (x) = C.

Proof. Let Bn(y) < Q@ be an open ball of radius R centered at y and
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such that {xol = 3By N 30, Let 0 < p < R be fixed and consider the

auxitiary fqnction

2 g2
v(x) = ¢ - e R e e eyl

defined in the ring ' = BR(y)\Eplyi. a will be choosen later. Let

wix) = v(x) - u(xo) + ey(x), for some small € > 0, fn T, We assume

‘that u s not constant. By the strong maximum principle BG,

Theorem 8.19, p. 18] 1t follows that u(x,) > u{x) for all xeN\x }.
So on 3BR(y) we have w(x}) < 0 and on 3Bp(y) we can choose e small
enough so that w({x} < 0. On the other hand, an easy computation
shows that for o > 0 large afB.W] < 0 for v e Hl, ¥ 2 0. (Proceed
as in [[16, p. 33] to show that a[v,#] < 0; here we have to
{ntegrate by parts throwing all the derivatives over v}. Using
again Theorem B8.19 of (il one concludes that w(x) < 0 on I'. Then

normal derfvative

Bixg) 2 0 —> $x ) 2 ~ed¥(x,) > 0. Q.E.D.

Proof of Proposition 1.15. Equation (30) may be written as (32),

from which follows al[h.i] >0 for al1 0 S v e Hl. Proposition 1,16

then implies that u > t¢, for some t > 0. Let to-sup{tzo: u 2> t¢l}.

One has
alt e ,y‘_]q.;[to¢]v.pl(m)lmtoo‘v+AIto¢‘v§AI(m+l)t°¢1v. VO <veH.

Subracting this expression from (32) and denoting by v = "'to’l

one has

afw.v] + x]uv > al(nﬂ)uv + ]hv. v 0 <veH.

r
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Applying again Proposition 1.16 we obtain %% < 0, But this implies
that for t* > 0 sufficiently swall o > t'¢] — >(to + t')ol.

contradicting the maximaltty of t,- Q.E.D.

The conclusios of Theorem }.14 can be strengthened if
we sssume regularity on the coefficfents of L to apply the LP
theory of the Dirichlet probleam.

Theorem 1.77, Same assumptions of Theorem 1.14 plus the following:

(1} regularity of the coefficients of L, (11) h ¢ LP(R) with p >N.

Then the solution u e C!*%(g) and %%“ Gon 3 ifh>01n a set

of positive measure in 0.

Procf. a) By a2 standard bootstrap argument we conclude that

uE C!'n(ﬁ). b) If h e Lp(n) with p > N then Sh (see beginning of
this Section 5) belongs to C'*%(fi) and Proposition 1.16 can be
applied to conclude that 3%(Sh) <0onag, tfh > 0. c) Using

part b) we conclude that the operator W (see proof of Theorem 1,14)

has a similar property. Finally the result follows using (33).

Q.E.D.

25.

CHAPTER 2

SUBLINEAR ELLIPTIC PROBLEMS

2.1 EXISTENCE OF POSITIVE SOLUTIONS. Let us start posing the

following problem. Let g: axpt » R be a C] function. Suppose

(]) 1im infﬂ.‘."f:l.)ll
s+0

and

(2) Tim sup ﬂ.(.x_fil < l.l
5+ 40 s

Prove that the Dirichlet probiem
{3) -4u = g{x,u) in 8, u = 0 on 30
has a positive solution u e Cz'a(n).

We prove a result which includes the problem above as a
special case. Besides the theory of linear eigenvalue problems
with an indefinite weight function developed in the previous
chapter, the other main tool {s the method of sub and supersolutions,

which we expound next,

Let L be an elliptic operator as in Section 3 of the
previous chapter. We make all the assumptions on £ and on the
coeffictents of L in order to be able to apply Schauder's theory
and the LP theory of the Dirichlet problem. Let g: axR* + R be a
C® function (i.e. a HYlder continuous function with exponent 0<a<l).

He consider the Dirichlet problenm
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{4) Lu = g{x,u) inQ, u =0 on 2Q.
- 2 - ,
A function ue €°(n) is said to be a supersolution of (4) if
Lu > g(x,¥) fnQ, u> 0 on aa.
A function u e C2(3
Ye C°(R) s said to be 2 subscluticn of (4) if

Ly <

g(x.u) inn, u < 0 on 0.

The result below §s due to Amann [1]] and [2], see also Sattinger (€]
and [09].

Theorem 2.1. Suppose that problem (4) has a subsolution y and a
supersolution U, with v < W. Assume_that g: axR* + R §5 a ¢*

function and that there is a constant k > 0 such that

(5) 9{xs5)) = 9(x.55) 2 -k(s)-sy)

for all x ¢ @ and sy > sp with |sql.lsy] < max(llull oo fufl ). Then
problem (4) has solutions U,¥ ¢ Cz’u(ﬁ) stch that : < ﬁ <cv < u.
These solutfons are gbtained by an jteraticn ;ghgm; (;ee-the-Pnnf).
Moreover any solution u of (4) with u < u < U is _such that U<su<V,

[It is not stated that U # V].

Proof, 8y the Schauder theory, for each given u ¢ c2-°¢5) there {3
a unfque w € Cz'“(ﬁ} such that

(6) bw + ka = g{x,u) + ku in 2, w =0 on 30,

This defines a mapping T: cz,u(a) + cz,c(a) which is monotone in
the tnterval [g,ul,-that is, tf u < v .u, <@, then

n Uy g up =—> Tu, < Tu,
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Indead, weiting (8} with v = iy and u = uy and subtracting one

from the sther ue obtain

L(”l“wz} L SUFECPY IR g(xlu]} - 9‘“3"2) + k(ui-uay.
Heare using {5} and the manisum srinciple wo ehtzin (7). For the
cenutructton of sctubion U and ¥ precees by trgration 25 follows

u, =g 3 vy =Ty, y, V¥, = U

. = T °

n n-1"*
We clatim that

2 = g

< < < < Q.
R TIRN PISIETRINI P I Vo, * U, tin

The proof of the monatonicity of the seguepces (un) and (vn) is

done by induction., Flirst observe that

L{g-u])+k{g-ui} v fytky - [g(x,g)+k§] < 0in 8

aad
g-u g0 on ¥,

This implies by the maximum principle that y-u; < o in &. A similar

argument gives vy ¢ 4. The monotonicity of T gfves the rest. So

there are functions U and V such that
{8) u, + V and v, =+ ¥ pointwisely.

By the Lebesgue convergence theorem, it follows that U and ¥V are

in Lp(n) and the convergence in (8) is in the LP sense for any

pgzl. Using the a priori estimates tor solutions of Tinear elliptic

aquations in the Soboievy spaces we get

ﬁ“p““ﬂlHZ,p s c{ug(x,un_‘} - g(x‘“m-l}“Lp * “un-l'um-lulp}



where C is a constant independent of n and m. A similar axpression

for the sequence (vn). So the convergenca in {(8) ts in the norm

of Hz'p(ﬂ). Next we use the Sobolev imbedding theorem (take p > W)
te conclude that ¥ and ¥ are in C]'u(ﬁ} end the convergence in (8)
is in the norm of Cl'n{ﬁj, Ly the Schouder estimates tt follows

that U and ¥ are in c2°%

{(#) and the convergence in (8) 15 in the
norm of Cz’a(ﬁ). S50 U and ¥ ave sclutions of (4). The remaining

assertions of the theorem foilow czsily from (7). g.€.D.

Now let us consfder the Dirichiet problem (4} with a c®

function g: GxR* + R which satisfies the foilowing conditions:

{cy) There is a continuous function 9,1 fi - R, with 5o(x) 2 0,

and $o > 0 such that

8(xus) 2 go(x)s, ¥ xell, vOo<s <5,

(c,} There are continuous functions g_, c: f = R, with c{x) >0

such that

9(x,8) < g (x)s + cf{x), ¥xel, ¥s >0,

Theorem 2.2, Suppose that g satisfiss the hypotheses just stated.

Assume also that

(9) wlg,) <1

and

(10) Bi{ge) > 1

[the latter assumption is made only if g.(x,) > 0 for some x, € 9.

Otherwise it should be dropped, and the remaining assumptions on g

will suffice]. Then the Dirichlet problem (4) has a positive

solution,

Remarks, 1) Conditions (cO} and {9) are satisfied, for 1nstance,

if 1im g(:nt,s)s'I *= 4=, In particular {1f g{x,0) > C.
st0

2} If g{x,0) =0, then v = 0 is a trivial solution.

3) The function g could assume negative values. If there {s an
Sy > 0 such that g(x,s;) < 0 for all x £ 2, then (c,} and (10) are

superfluous. Indeed, in this case 0 = s, 13 a supersolution of (4).

4]
4) Hypotheses (cy) and (9) in the previous theorem {mplies that

go(x) > 0 on a subset of positive measure in Q,

5} Theorem 2.2 is essentially due to Amann [2].

Examples of functions g satisfying the assumptions of Theorem 2.2:
1) g9(x,s) = Ae”> for any A > 0. i) g(x,s) = As - f(x,s), where
A > u1(1) and f: @xR* + R s a C® function such that lim f(x.s)s’luo

s+0
and 14m f(x,s)s' « +=, {11} the function g of the Problem in the
sw

beginning of the present section,

Proof of Theorem 2,2, a) Suppose that g“(xo) > 0 for some X & Q.

Choose C! functions an. ¢: 4 + R, with £(x). > 0, such that
(1) g(x,s) ¢ 9_(x)s + €(x), ¥xed, ¥s5 20

and u](aw) > 1, This fs. possible in view of (10}, using
Proposition 1,128, Now let v € ¢2*%(f) be the solution of the

Dirichlet problem
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(12) Lv = 3.(x)v + 3(:) in @, v = 0 on 20,

It follows from Theorems 1.14 and 1,17 that v > 0 1n @, and %; < 0

on 33, Expressions (11) and (12) show that v {s a suparsoiution of

{4).

b) If g, (x) <0 for all x ¢ R, we can proceed as in part a) above
taking g_(x) = ¢, with 0 < ¢ < u(1).

€) Choose a C] function 9, 2 + R such that

(13) g{x,s} > En(x)s ¥Yxeq, VO <8 <8,

-~
and u‘(go) < 1. This s a consequence of Propositfon 1,128,

Now the eigenvalue probliem
lu= uso(x)u tn 8, u=0 on 3
has a positive eigenfunction ¥ € cz'u(ﬁ) corresponding to the first

.
efgenvalye ¥1{9,). Let t > 0 be chosen in such a way that t¥ < o

&nd ty < v, Then using (c) and (13) we have

L(ty) = u(9,}a,tw < g(x.t¥),

which shows that ty is a subsolution of {4). So we can apply
Theorem 2.1 to finish the proof. Q.E.D.

Let us now apply Theorem 2.2 in the discussion of the
nonilinear efgenvalue problem

(14) Lu = Af(x.q) in @ us=o0on 3

where f: axR* + R 15 a ¢® function, and let us suppose that the

n.

Timits below are continvous functions:
7]
() = Hm ane H&3) L f (k) = 11w sup TLEes), \
$40 $ S+ 4w i
Then the following statements [warning: these are just sufficient t
conditions for the solvability of (14)] are immediate consequences '

of Theorem 2.2,

a) If fo(x) % += (in particular {f f{x,0) > Q) and f {x} < 0, then :
probiem (14) has a positive solution for all x > O, '

by If fo(x} 2 4= and f.(xo) > 0 for some point x_ € 2, then problem,

0
{14) has a positiversolution for all1 0 < X < ul(l)l[Eup f,(x)] ‘g
€) 1£ 0 < f,(x) < 4= 1n 0 and f_(x) 5 O, then problem (14) has a  }
pesitive solution for all A>u (1)/[inf fG(x)].

d) If 0 < fo(x) < 4= {n 5 and f_{xo} > 0 for some x, ¢ @, then
problem (14) has a solution for all uI(I)/[}nf fo(x)] <A<
<uy(1)/f5up £,(x)]. Of course 1f inf f, < sup f_, we cannot say
anything about the existence of positive solutifons of (14), at
least by the present method. Observe that the above bounds on A

for existence are not necessarily sharp, Compare with [20].

2.2 UNIQUENESS OF THE POSITIVE SOLUTION. In this section we

establish some uniqueness results for solutions of ﬁrob1em (4)

idvolving some special type 6f nonlinearities g. Besides other

assunptions on g we always assume
(15}  the function s-+g(x,s)/s, for s > 0 is non-increasing. f
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It is easy to see that {(15) holds for instance when g(x,s) 1s

concave in s and g{x,0) > 0.

Lemma 7.3, Under the hypotheses of Theorem 2.2 problem (4) has a

maximal positive solution,

Remark, If g{x,0)} > 0 then ereiTom {4) has also & minima)l posttive
solution, This follows readily from Theorem 2.} using the fact

that gy = 0 is a subsolution which {c not a solution.

Proof of Lemma 2.3, We claim that any positive solution u of {4}

s such that U £ v where v {s the supersolution given in (12),
Once this 1s d&ne we use Theorem 2.1 to conclude that u < ¥, and
then ¥ is the maximal solution of {4). To prove the claim we use
{11} to see that

9(xiu) = G_(x)u + d(x), d(x) £ &(x)
and consequently

L{v-u) = E,(x)(v-u) + E(x)- d{x).

Since ul(a.(x)) > 1 and E(x)ad(x) > 0 we can use Theorem 1.14 to

conclude that v-u > 0 as required, Q.E.D,

Theorem 2.4, Assume that the hypotheses of Thecrem 2.2 and (15)

above hold. Suppose alsg that

(16) the function Y{x,s) = 9(x.s)/s is uniformly continuous for

xegn,0<s <s_, for some s, > 0. Then problem (4) has a unfque
o ——=""" %o

positive solution.
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Remark. The function y can be extended continucusly te s = 0 by
y(x,0) = ¥im g{x»5,) /s, where ((xn.sn)} fs any sequence
converging to {x,0). Hypothesls (16} {s satisfied for instance If
we assume g € c‘(ﬁxn*) and g(x,8} = 0 for all x € fI; in this case

v{x,0) = g;(x,O). which follows From the mean value theorem.

Proof of Theorem 2.4, Let u; and up be two positive solutions of

(4). Without loss of generalfty we may assume uy < Uy, in virtue

of Lemma 2.3. Then

(17) lug = mi(x)ui in 0 u; 0 on 20
for 1 = 1,2, where
Eﬁ;:;%;:ll fn {xef: ug{x) ¢ 0}
1
ﬂf(*) =
Y(x,0) in {xef: uy(x) = 0)

Clearly g is a continuous function in @ and it is positive on a
subset of positive measure in 2. Moreover in view of (15) we see

that my 2 my and Uy £ u, impiifes that my > m, on 2 subset of

- positive measure. It follows from Proposition 1.12A that

¥y(my} < uy(my). But from (17) and the fact that u; 2 0 we arrive

to the contradictory statement that u‘(m‘) = u](mz) =1, Q.E.D.

Assumption (16) in Theorem 2.4 can be relaxad as follows.

Theorem 2.5, Assume that ths hypotheses of Theorem 2.2 and (15)

hold. Suppose also that
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(18) any positive solution u of (4) §s such that u(x) > 0 for all

XxXec Q, and

(19) there are constants ¢ > 0, sg * 0 and 0 < g <2/K such that

g{x,s)/s < es*%, for 0 < s <5 .
fLids 0

Then problem (4) has a unique postifive soiution.

Remark. Hypothesis (18} is verified for instance if g(x,s} > 0 for
all x¢ @, s 2 0. [That 1s a consequence of the strong maximum
principle]. Observe that hypothests (19) {s weaker than {16). While
{16) requires that g(x,s) vanishes at s = 0 like const.s we see
that (19) allows a behavior 1ike const.ss, with 0 < B < 1, An
analysis of the proof below shows that {18} can be weakened, being

replaced by the requirement that u{x) > 0 in 2 (s.e.).

Proof of Theorem 2.5. Proceed as in the proof of Theorem 2.4,

However the continuity of my has to be replaced by the assertion
that m; € L(R) for some r > N/2, and then Proposition 1.12A is

used again. In view of (79) we can choose r > N/2 and r < 1/a.

Q.E.D,
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2.3 SOME MULTIPLICITY RESULTS FOR SUBLINEAR PROBLEMS. In this

section we show how to use the previous results to obtain some
results on the existence of myltiple solutfon for the Dirichlet

problem

(26) Lu = Ay - f(x,u} in 2, v = 0 on 20,

where L ts the second order elliptic operator introduced in
Sectfon 1.3, [ve also assume smoothness of 30 and of the
coefficients of L in order to be able to apply the Schauder theory
and the LP theory of the linear Dirichlet problenj .and f:. 9xR = R

is a c‘ function satisfying the following assumptions:

(21) £(x,0) = 0 £1(x,0) = 0

(22) the function s —» ﬂi‘;él is nonincreasing in the half-line

(-=,0) and nondecreasing in {0,»).

(23) Mo HX25) ang 1t LS) are 52, - 2y,

S+4o s S s
where ll and iz are efgenvalues associated with L for the Dirichlet
problem, see end of Section 1.3. We emphasize that f {s not
supposed to be odd in the variable s. An example of a function

2n+l

satisfying hypotheses’(ZI)-(ZS) s f(x,s) » g{x}s » Where

'H Q+R1s o c' positive function and n s a positive integer.

Theorem 2.6. Let f: axR + R be_a ¢! function satisfying assumptions
(21), (22) and (23). Suppose” that Ay < A < 1,, Then problem (20}

has exactly thres solutions,

]

M

‘*
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Remark. This resuit extends Theorem 1.7 of Ambrosetti-Mancini [4]
and Theorem 6 of Berger 2Il, and 1t 1s due in the present
generality to Berestycki [(5]. we remark however that Berger's
applies to elliptic operators of higher order. The procfs in the

first two papers use different techaiques.

In the proef of Theorem 2.0 we use the following

Lemma 2.7. Let 9: XR + R be a C' function such that gglx,s) < 12

for x € & and s € R. Then any two solutions u, and u, of the

- Dirichlet problem

{24} Lu = g{x,u) in 8, u=0 on 3,

are ordered: gither u; < u, or u; £ oug.

Proof. From
L(“l'“z) = glxyv,} - g(x‘uz} in 2, u-u, =0 on 38
we obtain

{25) tw = m{xjw $n 2, w =0 on 39

where w = up-uz and

(Ixu (X)) - g(2,u(x))
U {X) = U, (x) '

if u](x) F ouy(x)

a{x) =

gg{xsuy{x}} o T up{x) = up{x)

From {25) and the fact that m{x) < A, we obtain
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A
(26) Vs ugtm) > u(3y) = I%' for some § > 1.

[This is the case 1f m(x) > 0 at some point. If m(x) <0 for all

x e, it follows from (25) that w = 0, and so in this case:

Up = upl. It follows from (26) that § = 1, and consequently o is
an eigenfuncticn corresponding to the first eigenvalue ](m) Thus

the resu?t follows readily from Theorem 1.13, Q.E.D.

Proof of Theorem 2.6. a) First we observe that {22) implies that

fe(x,s) 2 0 for all x € 2 and all s ¢ R, Consequently
{As - f(x.s)); < Az and temma 2.7 tells us that any two solutions
of (20} are ordered. Since u = 0 s a solution, then the other

solutions have a definite sign 1n Q; they are e{ther >0 or < 0.

b) Hypotheses (21) and {23) permit us to apply Thecrem 2.2 {or
1ts coroliary in the form of the problem posed in the very
beginatng of Section 2.1), and conclude that there is a positive
solution u; and a negative solution Up. For the existence of the

negative solution we look at the Dirichlet problem
Ly = Av - ?(x.v) in® v =20 on 30,

whe re ?(x,v) * =f{x,~v).

¢} Finally using theorem 2,4 we have that ui 1s the only positive

solutfion and u, is the only negative solution. Q.E.D.

Theorem 2.B. Let f: GxR = R'be_a cl-function satisfying assumption
(21), (22) and
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(27) 1 f08) L

[ L]

Then, {1f Ay < X <)y and Ao, is simple, problem (20) has at least

four solutions. Moreover {f f is odd then problem {20} has at

least five solutions,

Remark. This result 1s due to Lazer-McKenna [ZZ], with 2 siightiy
different proof. Assumption {27) may be weakened: cuppose that

those two iimits are > ). The proof is the same.

Proof. As in the previous theorem we already know that there are

at least 3 solptions: g, Uy > 0 and uy < 0 we also know that Y is
the only positive solution. A similar statement for Ug. The idea
now is (i) to transform problem (20} in a suitable operator
equation #(u) = v - T{u}, where 7 %5 a compact operator in

cl'“(n), (#1) to obtain an & priori bound for the sojutions of
o{u) = 0, (1i1) to compute the degree of ¢ in some large ball in
C;'“(ﬁ)). {iv} to compute the indices of the three known solutions,
(v} to use the additivity of the Leray-Schauder degree and to

conilude. We solve these questions 1in the sequel,

Lemma 2.9 (A priori bound on the sclutions of {20)). Let a > 0 be

such that

{28) As - f{x,s) <0 fors > a, and As - f(x,s) > 0 for s < -a.

Then ﬂuIL. < a for all solutions of (20).
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Proof. Let
u(x), 1f u{x) < a
u,(x) =
a » ¥F uix) 2 a
The solutions u of (20) are in C2*®({i) and in particular in H:(Q). y

By a result of Stampacchia [15, p, 196] wu, ¢ Hl(n), and then

aE:.u-u;_] = I[Au-f(x.u)] (u-u,).

Since afu,,u-u,] = 0 we obtain from (28) that

cllu-uaﬂ:‘ < a[u-u..u-u‘] = J[Au-f(x,u)](u-ua) <0
0

which implies u = u, and censequently u < a in Q. Similarly we

prove that -a < u. Q.E.D.

F

Modifying the nonlinearity. The above lemma allow us“to_replace

the nonlinearity Au-f(x,u) by y{u)[Au-f(x,u)] where ¥: R = R 1s a
non-negative €~ function with compact support and such that

v(s) = 1 for [s| < a. Indeed the Dirichlet problem
(29) tu = p(u)Pw - f(x,u)] tn @, u=0 on W

has the same solutions as problem (20).(As in Lemma 2.9 we prove

that also for the solutions u of (29) one has HuﬂL_ < a).Problem (29}

has the advantage that the right side is a bounded function of u.
So we can replace problem (20) by the following 225:.

(30) Lu = g{x,u) fin &, u=0 on 3

shere g: xR+ R 1s a bounded C' function satisfying the assumptions

¥

i

-

Y

¥

M
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(31) 9(x,0) = 0, gi(x,0) = A A, <X <2y

{32) the function s —— ﬂl%#il ts nondecreasing in (-a,0) and

nonincreasing (0,a).
(33) 9(x,s) < 0 for s > a and g(x,s) 20 for s < -a.
Observe that the solutions u of {20) are such that Jull _ < a.
L

Setting the operator equation. Let X = Cg’u(ﬁ) be the Banach space

of functfons u: @ + R which are continuously défferentiable and
their first derivatives are Haldef continuous with exponent

0 <a <1 satisfying the boundary condition w = 0 on 32;: the norm
is the maximum of the sup of the function, of its derivatives and
of the H3lder quocients. Let K: X - X be defined as follows:

given v € X, let u be the unique solution of the Dirichlet problem
Lu + ku = g{x,v) + kv on & u=0 on 32,

for some k > 0 fixed.

By the Schauder theory one knows that u e Cz'“. So K is a compact
mapping. The solutions of (30) are the zeros of I-K. Row we

proceed to compute the degree of I-K in certain subsets of X.

Lemma 2.10. Under the above assumptions there is an R > 0 such

that deg(1-K.Bp.0) = 1, where By = {u e X: Jull, < R,

Proof. We claim that there is an R > 0 such that (I-tK)u # 0 for
alt t ¢ [0,1] and all lull = R. Once this has been done the result

follows from the homotopy invartance of the Leray-Schauder degree,

4

To prove that claim observe that (I-tK)u = 0 is equivalent to

Lu + ku = tg(x,u) + tku 1n R, u = 0 on 2R, By the argument used in
Lemma 2.9 we see that ”u]lﬂ £ a, which implies Hu"x < const
through a standard combinttlon of LP estimates, Sobolev imbedding

theorems and Schauder estimates. Take R larger than this constant.

Q.E.D.

Now recall that the positive solution " is obtained by
the monotorne iteration method (see the proof of Theorem 2.2): let
us denote by u the subsolution and by U the supersolution obtained

there. We can choose them fn such a way that

(34) Lo > g{x,u) {nn, Lu < g(x,y) inQ, yay=0 on a9,

Lemma 2.11. There is an r > 0 such that deg(I-K.O].O) = ] where

. - aa au BQ
0y = {u € X: u<wu<uyinf; Wiy < P on 3an; H"l& < r}.

The proof of this lemma follows the general line of
tdeas of the procf of Lemma 12 fn de Figuefredo Bd. 1t will be
presented below for convenience of the reader. Let us assume

Lemma 2,11 and finish the proef of Theovrem 2.8.

Proof of Theorem 2,8 completed. Observe that 0, 1s an open set

tn X containing the solution u;. In a similar way we obtain an
open set 0, containing u,. It {s easy to see that 01’? 0, = ﬂ and
0 f ollJ 02. Now by a4 well know result going back to Leray~Schauder
(see for instance Berestycki [{]) we have that the index
1(1-K,0,0) = (-1} « 1. Next let By be 2 ball centered at 0 1n X
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containing both 0‘ and 0, and let § be 2 smal) ball centzreéd st
0 and disjoint of both 01 and 02. Then

deg(I-K, 8 \FT U 050 8¢,-0,0) » =2

by the additivity preperty of the desree. Su there is &t teast onge

further solution ug of {30} ir B NTYG 005, If ¢ is odd then

=ug §s 3t117 another solutton. Q.€.D.

Proof of Lemma 2.11. Let k = max{|gl(x,s)|: x ¢ Q, u(x)es<u{x)

and deffne a function g: A& + R by

g{x,uix)) + ky(x), if s g ulx}
g{x,5) = {3(x,8) * ks . if u(x) €5 < U(x)

g{x,0{x}} ¢ kg{x), #f s 2 U(x)

So-§ is bounded and nondecveasing in the variadle s. Frow the
Schauder theory for the Iinear Dirfchiet prodlem, we conclude

that for each v ¢ X there is 2 unigue zolutfor u € c2o%(d) of
{35) Lu + ku o g{x,v} in @ w =0 an 24,

So we have defined a compact mapping X: X + X with the property
that ¥ = K in 0;. Now we claia that K maps X fnto Oy, provided r
1s properly chosen. First let us show How to choose r. Since ;
is a bounded function it follows from the LP estimates that the
solutions of {35) are uniformly bounded in X for 8ll v ¢ X, Take
ro> |up{ﬂiv|k= v ¢ X}, Hext take v € X and iet us prove that

u = Xv < 0y Clearly l“‘x < r. From (34) and {35) we have
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. (_Li‘k‘_).(’i—l-u) > g(x_-.ﬁ) + ku - S[x,v) 2_°,f-n,a, i"-u~-,0fu;l"aﬂ :

It follows from the strong maxtnum principle that u < & 1n @ and

u u
v < 3y on 9. A similar reasoning for the subsolution, which then
completes the proof of the assertion 'I'('(J()C 01. Now let Y e O, and

1

co de: K

nsicer the compact homotopy Haf{u) = OK(u) + (1-0)Y, 0 < o <1,
Since u # Hy(u) for 211 u e 30, and al1 0 ¢ [0,1] we conclude that
deg(I- -

g{ H,,o,.O) = deg(l H°,0|.0}. But H, 1s & constant mapping and
clearl; deg(l-Ho.Ol.OJ - 1. So dag{I-K.OI.OJ -1, Q.E.D



CHAPTER 3

SUPERLINEAR ELLIPTIC PROBLEMS

3.1 THE FIXED PQINT INDEX. Let ¢ be a closed convex subset of a

Banach space X, and WC ¢ a retatively open subset of C, that is,
Wa00Cfor some open subset 0 of X. Let : § + C be a compact
mapping such that ¢(x) # x for W\W. Associated with each such a

mapping we define an integer ic(@.w), called the fixed point index

of ¢, as follows. By a theorem of Dugundji B3] the mapping ¢ has

a compact extension ®: 0 ~ C. Then deffne
n ic(9,N) = deg(1-3,0,0).

To see that this is {n fact a good definition we have to settle
the three following points: (i) S(x) £ x for all x e 32, (ii) the
degree in the right side of (1) is independent of the particular
extension 3, (1i1) 1t does not depend either of the particular
open set O, These-facts are easily proved using the homotopy
fnvariance of the degree and the excision property. The usual
properties of the Leray-Schauder degree are transferred
fmmediately to the fixed point index. So we have the following

properties.

I) Normalization. Let ¢: W -~ W be a constant mapping, that is,

$(x) = a e W for all x € W and some fixed a € W. Then (W) = 1.
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IT} Additfvity. Let W, and W, be two disjoint (relatively) open
subsets of W, and #: W + € » compact mapping such that ®{x) A x
for all x e ﬁ\(ﬂ]lJ Wy). Then

Te(®N) = 10N + §c(0,W,).

f!l) Homotopy ihvariance, Let I & R be a compact interval and

h: IxW + ¢ a compact mapping such that h(t,x) # x for all x € i ]

.and all t e I. Then ic(h(t,-),w) = constant with t e [,

IV} Excision. tet VC W be relatively open, and #: § + C be a
compact mapping such that ®(x) £ x for x € W\V. Then {C(O.V)-ic{G.HL

V) Solution property. 1c(¢¥) # 0 ——> J x € W such that €(x)} = x.

We shall apply the previous facts to the case when C is a
cone. Let us recail that a cone C in a Banach space X is- a closed
subset of X such that (1) if x,y € € and «,B > 0, then ax+By ¢ C,
(1) if x e C and x # 0, then -x 4 €. A cone Induces a partial
order in X defined as follogs: X £y if and only 1f y-x € C, In
the present section we yse the following notation: for r > 0,

B, = {x e C: {xlf < r}. A cone C is said to be normal if there is

a constant k > O such that 0 < x <y implies |Ix|| < klyl.

Theorem 3.1. Let C be a cone in a Banach space X, and ®: C =+ ¢

a compact mapping. Assume that there are real nuymbers r, R > 0

such_that

(2) x # t¥(x) for 0 <t <1 and fIxll=r, xec,
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(3) there exists a compact mapping F: ikx[b.-) + € such that
F(x,0) = #(x) for Ixll = R, F(x,t) # x for Jx| = Rand t > 0,

and F{x,t) = x has no solutfon x € ﬁln for t > t,.

Then: 1) (2) -;o ic(O,Br) = 1, and §1) (3) =——> {.(#,85) = 0.

Proof. 1) A direct consegrence of the homotopy invariance and the
normalization properties of the fixed point index,

11) Let us denote by Fo: By = C the mapping Fy(x) = F(t,x). The
second part of (3) implies that §.(F..Bp) = const, "and the third
part implies that this constant 1s zero. So 1C(F°,8R) = 0, Since _
Fo(x) = 3{x) for x ¢ ER\BR. the result follows from the homotopy

i{nvariance property of the index. ¢.E.D,

A sufficient condition for (2):

(2') There exists a bounded linear operator A: X + X such that
A{C) € C, where C is a normal cone, A has spectral radius

r,(A) strictly less than 1 and #(x) < Ax for x £ C and [Ix}f=r.

Indeed, suppose that x = t&(x) for some [[x][ = r and 0 < t < 1.
fhen x < tAx, which by iteration gives x ¢ t"A"x. If C 1s 2 normal
cone then [x|l < 8lit"aA"x|l where & > 0 s some constant depending
only on the cone C. We then have 1 < st" A" . Taking !

passing to the Timit we come to 1 < tro(A). which 1s an absurd.

roat and

Another suficient conditfon for {2}:

(2*) o(x);i x for a1l x € C and lIxll=r

¥

'd e

A sufficient condition for (3):

(3') There exists v e C\M0} such that x # #(x) + tv for x| = R
and t : ¢,

Indeed, Tet F{t,x) = #(x) + tv. The first two assertions in (3)
are readily seen, and the third is verified taking t°7>(R+u)I|vH
where u = sup{fJ¢(x)[]: x ¢ C, lIx]l ¢

Another sufficient condition for (3):

(3") o(x) i x forall xeC and [x|j=R.

The following set of corollarfes are easy consequences

of Theorem 3.1.

Corollary 3.2, Let C be a cone in a Banach space X and #: C » C

a compact mapping. Assume that there are numbers 0 < r < R for

which (2) and (3) hold, Then t.(¢,U} = -1, where U={xeC: r<|px] <R}.

In particular, ¢ has a fixed point in U. [(Simitar considerations

can be made 1f 0 < R < r}.

Corollary 3.3. (Cougression of a cone). Let #: C+ C be a cougact

mapping in the come C. Assume that there are numbers 0 < y'< l
such that (2") and (3") hold. Then ¢ has -a fixed point x ¢ c.
with ¢ <llxll < X,

R n
Coroltary 3.8 (Expension of B cone). Let &: C~+ C be a compact

mapping in the cone C. Assume that there are numbers 0 < j?< jﬁ
such that (2°) and (3*) hold. Then # has a fixed point x ¢ C,
with & < [xf < £,

. ¢

R g

IS o
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- 3.2 DIFFERENTIABLE MAPPINGS IN CONES. A mapping ®: C + € defined

1h.a cone € of & -Banach space X is saidito be (righf) differentiable
8t a.point x € C {f there is a bounded linear operator T: C-C + X

such that 7
RO o i Mxeh) = #(x) o Th
- h+0 L ‘
he €

[Recall that E:E_is_the closure of the set C-C = {x-y: x,y ¢ C}].
This operator T is called the {right) derivative of ¢ at x and
it is denoted by o (x}.

Proposition 3.5. If ¢: C+ C 1s a compact mapping in the cone C,

which is differentiable at x € C, then O;(x)lc is a compact
mapping in C,

Remark. If the cone C is generating, that is, X = C=C, then
¢.(x): T-T + X 1s a compact operator, cf. Krasnoselskii-[1, p. 102]

Proof of Proposition 3.5. Suppose by contradiction that there are

h, € C Ihy 0l = 1, such that JITh -Th,ll 2 €, > 0 for n # m. It

follows from (4) that there is a § > 0 such that
le(xsh) - 8(x)-Thil  J e inll, for n € c, In} £ 8.

Using this expression with h = hn. hm to estimate the expression

€,8 < [IT(8h. ) - T(8h )|, we are led to
fex + 8n) - s(xssh )]l 2 % €,6 forall nfwm

which contradicts the compactness of &, Q.E.D.

{5) U e Hx)e Tx g
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_ A mapping #: C + C defined in a cone C of .» Bamach -
space X is said to be asymptotically linear if there is a hounded
linear operstop T: T=F + X such that

-

lixls= x|
xeC

In this case T s called the asymptotic derivative of ¢ and it 1s

e

Proposition 3.6. If &: C+ C fs asymptotically linear, then

denoted by ¢'(=}.

@'(ﬂ)ic is a compact mspping in C, flj Cis a generafing cone

then ¢#'(=}: T-T + X 1s a compact operator, cf. Krasnosel'skif,

loc, cit.].

Proof. By contradictfon: x, € C, [lxyll = 1 and ITx ~Tx [l 2 €, > 0.
It follows from (5) that there 1s a & > 0 such that

)
le(x) - x| < 33 Ix]} for Ix|| < 5. As in the previous proposition

. 1
we come to the contradictory statement: “¢(6xn)-o(sxn)ﬂ 2 3 E8-

Q.t.D.

Proposition 3.7. Let &: C + C be a compact wapping in a normal

cone C, which is differentiable st 0, and #(0) ~ 0. 1) Suppose

that the efgenvalue groblem

(6) #1(0}h = Ah, heC,

has no eigenvalue X > 1; then there exfsts a number r, > 0 such

that (2) holds for all 0 < r 5'r°. i1) On the other hand,
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suppose that 2 = 1 is not an efgenvalue of (§) and that there is

an eigenvalue strictly greater than 1; then there exists a number
R, > 0 such that (3*) holds for all 0 < R<R,.

Proof. 1) By contradiction: there exist r + 0, x € C, Ixn" ® Py
0« ta < 1 such that x, = tno(xn). So

Xy = #(x,) = #2(0)x, + o(x,)
or o(!n)

Yo " ’;(0)§n P Yn ” x /1

§1“ Jﬂ"

Using Proposition 3.5 we conclude that.t;]yn +z2¢ € and tn*-t'> 0.

So z = t'91(0)z, which s fmpossible.

1) Let v = C {0} be the efgenvector of (6) corresponding to the
eigenvalue A > 1 anounced in the hypothesis. We claim that {3°)
holds with this v and sowe positive R. Let us prove it by
contradiction: there exist R, + 0, x, € C, Ix/l = Ry, t, 2 0 such
that x, = #(x;) + t v, Then x . = ®:{0)x, + o(x,) + ¢t v. Dividing

o{x_) t .
by “x“ﬂ we get y, = ¢i(0)y, + Ti;?— . “Eﬁu v, which shows that

{tnllxn'} is a bounded sequence. Passing to a subsequence wa may
assume that it converges to o". Using the compactness of $.(0) 1t
follows that y +y € Cand y = {0)y + u'v. Iterating we gst
o;(o)“ ysys= c'£i+lz + 4ee * l"iv. which {s impossidle (in the
case o > 0), since the left side is 1n C and the right side is
not for large n. Indead, 1f 1t were one would get

b (Ae... A" vl < klyll, where k ts the constant of normality of

51.

the cone C. Consequently @ =0 and Y- O;(OJy which {s also a

tontradiction to the hypothesis. " Q.E.D,

‘Proposition 3,8. Let #: C + C be an asymptotically linear compact

mapping in a normal cone C. (1) Supposa that the eigenvalue probies

(7) #'{=}h = 2n, hec,

has no efgenvalue A > 1; then there 1s a number r, > 0 such that

{2) holds for all r > LA (¥1) Suppose that A = } is not an

eigenvalue of (7) and that there 1s an eigénvllue strictly greater

than 1; then there is a number Ry, > 0 such that (3') holds for all
R2R,.

Proof. Analogous to the proof of Proposfition 3.7.

Application to elliptic problems with asymptotically linear

nonlinearities. We shall apply the preceding results to the
Dirtchlet problem

(8) Ly = g{x,u) in R, u=0 on 28,

where L is a2 secon& ordar elliptic operator as in Sections 1.3

and 2.1, and 9: alﬂ* + 8% s a C” function. We also assume that:

(1) 9(x,0) = 0; (11) 11m LXS) o a(x); (141) Tim UXe3) o n(y),
: s40 S+tw

and a(x) and m{x) are L' functions with r > N. Condition (11) 1s

verified 1f we ask éhat the right partial derivative gg(x,0)

exists and it {s continuous . Let'c:(ﬁ) be the Banach space of

the continuous real valued functfons in O which vanish on af,

ks

4

:

bl
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with the sup norm, Now let &: Cg(ﬁ) + C:(a) be the mapping defined

as follows: given v ¢ c:(ﬁ). then u = #(v) ts the solution of
{9) ~ lu = g{x,¥) inR, u=0 on aq.

By a sclution we mean a function ue WP, stnce the right side
of (9) ts continuous, and coﬁsequently in P for all p > 1, we

have by the Sobolev imbedding theorem that y ¢ C"“. This shows
that mapping ® is compact. Also by the strong maximum principle

#(Cc)C C, where C = {u ¢ C:(ﬁ)'. u >0 in 8},

Lemma 3.9, Mapping ¢ t{s differentiable at 0 and fts derivative

¢1(0) is defined as follows: given v e €, let u = ¢,{C)v be the

solution of
(10} Ly = a{x)y 1n &, u =0 on 20,

Moreover the eigenvalue problem (6) is equivalent to the following

eigenvalue problem:

(1) Lh = 2 Va(x)h, h >0 in 8, h =0 on 3n.
Proof. It follows from {9} and hypothesis (i) that ®(0) = 0. From
{9) &nd (10) we obtain

L{e(v) - o;(o)v] = g{x,v)-a{x)v in @,

and the DirichTet boundary condition for the function fn brackets.
From the LP-estimates and Sobolev §mbedding theorem we obtain

noté}-o;(OJvlk, < ﬂgtx.V)-a(x)VIk,

and the result follows readily from (i1). (11) 1s immediate.
Q.E.D.

Lemma 3.10. Mapping ¢ 1s asymptotically linear, and o' (=) is

defined as follows: given v e C, et u = ¢'(=)v be the solution of

(12) tu = m{x}v in 0, us=0 on 3q.

Moreover the efgenvalue problenm (7) is_eguivalent to the following

eigenvalue problen

(13) th =2 Tm(x)h, h 20100, h=0 on 32, .-

The proof of the above lemma is completely analogous to
the proof of Lemma 3.9. Now we can use Propositions 3,7 and 3.8

and make the following assertions with respect to problem (8):

Theorem 3.11. Suppose that g: GxR* + &* {s a (®~function satisfying

hypatheses (1), (if) and {111) above. Then problem (8) has a
positive solution v ¢ Cz'u(ﬂ} if efther one of the following

assumptions hold

(s) mfa) > 1 and u{m) <1 (Superlinear case)

or
(s) ul(a} <1 and "l(") > 1 (sublinear case)

Remark. Compare this result with Theorem 2.2. Also as in Section 2,1

we may discuss the eigenvalue problem {14) of that section
complementing the discussion we started there, We particularize a

1ittle bit: let f: AxR* + R be & C® function, and consider
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the etigenvalus problem
order operators which are not self-adjoint. The function

{18) Lu'= Af(x,u} in @, w=0 on 34, g: fxp* « ¥ 43 supposed to be continuous and to satisfy the

following assumptions.
Suppose that f(x,0) = 0 and the limits below exist and are Lr

functions with r > N . (16) 1im inf lﬁsé_l > Ay unfformly for xc¢ a,
S+t
1am f(x28) | ¢ A 1w TLx,8) . ¢ . g(x,s)
540 [ o(x) an .*:, s 9(‘, (17} 1im X23) . 0 uniformly for x ¢ $f, where 8 = "*l.
‘ | sotw B 'O

Then 1t {s easy to conclude from Proposition 3,17 that if
AN f, < sup f., then problem (14) has a positive solution for By = #;{1). see the end of Sectfon 1.3]. Let #; be a positive
all A such that n'(l)lsup-f. < A< n1(1)llnf fo' eigenfunction corresponding to the first efgenvalue A3 for

simplicity Yet us omit the index 1 and write just %,
Remark. Observe that the second half of hypothesis (S) implies

through Propositions 3.8 and 3.10 an a priori bound on the Theorem 3.12. Under the above assumptions, there fs & constant k >0
solutions of Lu » g(x,u) + té; fn 8, w = 0 on 33, forall t 2 0, (independent to t > 0) such that Jull <k for all solutions of
2ued D I ©

~ where ¢, i3 the (positive) efgenfunction corresponding to the

, 18 -
first efgenvalue u (m) of (12). In the next section we devalop (e tu=g{x,u) +t4 in B, u=0 onda
a technique to obtain a priori bounds for positive solutions of In the proof of the above theorem one uses the Hardy-
superiinear problems, which are not necessarily asymptotically Sobolev inequality: if v e al(g), then u/¢" ¢ LY, where
1inear. ' a7t =27V - (-t 0 €t <1, and there 1s & constant ¢ > 0
such that
(19) 1Ll s clvull 5. Ve Ha(R).
3.3 A PRIORI BOUNDS A LA BREZIS~TURNER. Let us consider the ¢ L L
pirichiet problem ‘ Observe that the extreme case T = 0 is the Sobolev imbedding
1 2* * !
(15) Ly = g(x,u) fa B, u=0 on 9. theorem H, C L® , where 2 = 2N/(K-2). The other extreme case v = |

is a fact already observed tn Hardy-Littlewood-Polya Eﬂ « (see also
Lions-Magenes (27]), that the behavior of a function u ¢ ll:(ﬂ)
near the boundary 38 is such that u/é i3 in Lz(n).

where L 1s a second order elliptic operater as in Sections 1.3
and 2.1. The results of the present section are due to Srezis-
Turner {g] that proved them in the more gensral case of second
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Proof of Theorem 3,12, First step. It follows from (ls)rthat_there

(] o
there is a constant € > 0 such that

are A > A, and an s_ > 0 such that g(x,s) s for s >5_. So

(20) 9(x,s) 2 As - Yxeq, ¥g5 >0,
Nultipiying (18) by ¢, integrating by parts one obtains

(21) xl]uo - Jotxuy + tIoz.

Using (20) 1t follows that

lllut > AJu¢ - c'I¢ + t[¢z.
which implies that there are positive constants such that

[u‘ < c and Jg(x.u)é < c,. for all solutions u of (18)
t < cy 1f problem (18) is to have a solution u > 0.

{We use the same letter c to denote different constants),

Second step, Multiplying equation (18) by u, using the coerciveness
of the bilinear form afu,u] associated with L, and estimating u
by Poincare's inequality we have
(22) |vun22 < ch(x.u)m + cHVuILz.
L
Now to estimate the first term in the right side of (22) we write
Jsteama = [stxa®eacx,u 12

where the parameter a ¢ (0,1) will be determined ‘shortly, Using

Holder's inequality one obtains
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. “ -
(23) T Jg(x.u)u < [Ig(x.u)%] []EiilﬂluTré]
Ja

The first term §n the right side of (23) is bounded, To estimate

-

the second one we use (17): for each e > O there is ¢ > 0 such

that g(x,s)<esP + ¢ for all x ¢ i and s > 0. Then

£
1 1-a 1 ql-a
By T-a
e e [ =
¢T:E $1-o

Taking a = 2/(N+1} and using Hardy-Sobolev inequality we obtain
N-1

L0 uvuui

]g(x,u)u < ce g * lVUHLZ.

Using this estimate in (22) we get |jVul] 2 S c.
L

Third step. By the Sobolev imbedding thecrem Jlul] 2% < c. Using

a bootstrap argument we conclude that [lull _ < ¢, Q.E.D.
L

3.4 SHARPER A PRIDRI BOUNDS. In this section we describe a

technique due do P.L. Lions, R.D. Nussbaum and the writer P4 for
obtaining e priort bounds. It rests on two basic {deas, one is the
use of Pohozaev identity P9 for that purpose and the other is

the use of results by Gidas, Ni and Nirenberg E@ relative to the
maximum principle, Unfortunately there are some restrictions on
the class of second order operators t considered as well as on the

geometry of the domain 0, Those are due to the necessity of
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applying arguments based in Eﬂ. For simplicity we restrict at the

present work to the case L = -A and to convex domains 0. More

general cases are discussed tn Bg. So let us consider the
Dirtchlet problam

(24) ~Au = f{u) in n, u =0 on 9,

We assume the following hypotheses on the function f:

(25) r: R =+t s locally Lipschitzian and
(26) 1im tnr 2051 > Ao
goin 3

where A, is the first eigenvalue of the Laplacian acting in H;(n).
Assumption (26) is just one half of the superlinearity conditfon
for problem (24); the other half, that i1s, the behavior of f near
zero is not needed for the a priorf estimates, That witl be used
onty at the moment of proving existence of positive sclutions for

{24) 1n Section 3.5.

If 0 is convex then it follows, using arguments from [d].
that the following condition holds:

(27) there are positive numbers v, € and n (depending only on &)
such that for all xc {y ¢ a: d(y,30) < c} there exists a
measurable set Iy with (1) meas (lx) > ¥,

(1) 1,€ {y ¢ &: d(y, 30) > n}, and (111) u(€) 2> u(x)
for all £ ¢ I, and all positive solutions of (2;).
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Theorem 3.13. Assume that f satisfies (25) and (26} and that

condition {27) holds. Suppose the following condjtions in additian:

(28) 1w H(8) . o, where 0 = N2 17 W23 (gro <~ if N = 2), and
P I .

(29) 1im sup 5155112;§§l <0 for some. 0 < 8 < ?F .

sr4- s f(s)

5
where F(s) = ] f. [In the case of X = 2 this conditions {s
0

vacuous]. Then there 1s a constant c¢ (*) such that ﬁulk- < ¢ for
all positive solutions of (24}).

Remarks: Conditfon (29) is verified in the special case when

N
(30) 1im sup Ilél = 0, where T = v

Srede s

Indeed, taking 8 = 0, (29) reduces to 1im sup [f(s)s""']”'r <0,
which is an obvious consequence of (30). Observe that {if (17)
holds then (28) and (29) are verified. So the above theorem extends
Theorem 3.12 at lTeast in the special case of the Laplacian in .
convex domains.

The preof of Theorem 3.13 1s split in a series of lemmas

in the sequel.

Lemma 3.14. There is a constant ¢ > 0 such that

(*) We use the same letter c to designate all constants appearing

in this section.
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(31) JUO < ¢ and Jf(u)o £ ¢, for all solutions u of (24).

This 1s precisely the contents of the first step in the proof of

Theorem 3,12, Observe that {t depends only on hypothesis (26).
(The above statement {mpliies that both u and f(u) ave bounded in

Locl®].

Lemma 3.15. u and VYu are bounded in the Lt"-norm in a neighborhood

of 3, for 21) solutions u of (24),

Proof. Ustng (27) and (31) we have that for all xe{yef:d(y,3a)<e}

e [ uEree) 2 walmin 66,
I fel,
Also from (27) we see that there is a positive constant (independent

of x) such that min ¢(£) > c. Then
I
X

(32) u(x) < ¢ for all x e {yeR: d(y,3%) < e},

Next we use a theorem of de Glorgi-Nash type (see Theorem 14.1 of

£31. p. 201] to deduce that there s 0 < a < 1 such that

[full

-

. € 3e
¢°*%(a,) 3 Coowhere 0) = {y e 8: g < d(y,30) < S5}

Now using Schauder interfor estimates (see Theorem 6.2 of []6.p. &])

we have for §-< n < ; <ry < %; that

'ule'“(n , < ¢, where 0, = {y ¢ n: r € d(y,a0) < rz}.
2
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Finally Schauder boundary estimates gives
Hull 2.0 < cy where 2 = {y € a: d(y,38) < rpl,
c (93) :
which implies
(33) IVu(x)] < ¢ for al1 x e {yen: d{y.an) < ;].
Thus (32) and (33) give the result. Q.E.D.

Remark. (31) and {32) imply that RECH]] 1 £ ¢ for all positive
L
solutions of (24),

Lemma 3.16 {Pohofaey identity [29). Let u e Cz(ﬁ) be a solution of

(24). Then

(34) sz Flu) - (N—Z)L:(u)u - Jan (x+v) |vu|?,
2

where v = v(x) 1s the outward unit normal to 9Q at x.

Proof. The idea 1s to multiply equation (24) by x-Vu and integrate,

using next the divergence theorem. For that matter we first write

down some terms as divergences. In fact
' N-2 2 1 2
Au(x.Vy) = Ivul® + L]l x,u_u ) - = {[{ x,u ]
( z it dxexgdny 7 gl Ty

and

flu}(x-Yu) = } [x F(u) - HF(u).
u(x J[j }‘j

50 we obtain

EEHJIVU!2 * %.I 1%1 x’“’"ii i J 1{1 xJ“‘u*uu“J'J ixiv’rtu)-niftu)
a n n Y]
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which gives readily identtty (34), by cbserving that

fnf(u)u - -]n Au-u = Ia jvul2. Q.E.0.

Lemma 3,17, The following estimate on the positive sclutions of
(24) holds:

35 v
(35) I "“Lz cec

" Proof, 1) Case K > 3. Using {33) and (34} we deduce that
|zu ] Flu) - (n-z)j uf(u)| <c
Q Q
which is used in the estimation below:

36) [ivul? « [ uece) = by [Lurco-eron - gy [Loe- e
Q 2 f a
<c Iluf{u}-ef(u)l +c
a
where A {s chosen in such a way that 0 = AN¥%° S0 0 <A<,

Now we use hypothests (29) {n.b.: that {s the only point where we
use this hypothesis]: given € > 0 there is s, > 0 such that
sf(s)-0F(s) < :szf(s)ZI“ for s 2 s,. Thus we obtain from {35):

(37) I|Vu|z <cg ctluzf(u)zlu.
a G
To estimate the last term in the right side of (37) we use

Holder's inequality, the Sobolev imbedding theorem and the

boundedness of f{u) in L]:
-2
LT Ao
]uzf(ulzlu < ]f(u) lﬁ“:!‘ < c“Vu“iz.
n ’ n 0
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This estimate together with (37) gives (35), by taking & > 0 in

such a way that ¢c < 1,

f1) Case N = 2, Choose 0 <Y < 1 and use hypothesis (28) with
¢ = 1/(1-Y), which then implies

1im ).

s+ 55F(s)Y

Consequently for £ > 0 there is an s > 0 such that sf(s)feszf(s)Y

for s > s_. This is then used in the estimate below

0

J Ivui? - J uf(u) < ¢ + ;J ey,

4] 2 f
and we proceed as above. Q.E.D.
temms 3.18. The following estimate holds for all positive solutionsg -
of (24):
(38) ' HuHL, <c

Proof. 1) Case N = 2. It follows from (35) using the Sobolev
imbedding theorem that llullp < ¢ for al1 1 < p < *=, Then in virtue
L

of (28) we see that ﬂf(u)ﬂlp < ¢ for all p. By the LP theory of

the Dirichlet problem and again Sobolev imbedding theorem we

conclude that ﬂuik, < c.

11) Case N > 3, Multiplying kquation (24) by W, p>1, and

pl}Vulz W1 . L:(u)u"

integrating we have

% o

4‘.-'. : =
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or

ET' ¢ p
s [P - e
Now using (28) we estimate the right side of (39) to get

] "
(40) LquEEM' < e + ce{uc*up+g.

]
Using the Sobolev imbedding theorem to estimate the left side of

(40} and HGIder‘s fnequality to the right side we have
2/N

L] ”m[ﬂm [L] Mpsly.
Using the Sobolev imbedding theorem once mere and {35} we conclude

that
< ¢
“ulkq b

+ N
by taking ec < 1, Ne may choose p > 1 in such z way that q > 0.

Then {if{u)ll R with g > %’ B8y the regulzrity theory and Sobolev
L® '
t
2gafn we ge Bujl . < ¢ Q.E.D.

3,5 EXISTENCE OF POSITIVE SOLUTIONS FOR SUPERLINEAR PROBLEMS.

The following result 1s due to P.L. Lions, R.D. Nussbaum

and the writer [24.
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Theorem 3.19. Let f: R* +» R* be a function satisfying (25), (26),

(28), and (29), with £(0) = 0. Suppcse that (27) holds and

(41) 1im sup «i—l < Ay-
s+0

Then problem (24) has at Teast one positive solution.

Proof. Let X » {ue ¢%R): u = 0 on M} end C = {ue X: y > 0},
Let us denote by #: X + X be mapping defined as follows: for each
veEXTlet ue9(v) be the solution of -Au = f(v) in 0 and u = @
on 22, It fs well known that u ¢ X and that the mapping ¢ §s
compact. By the strong maximum principle #{C) € C. Now we apply
Theorem 3.1, Using (41) let 0 < o < ﬁ be such that f(s) <'as for
0<sc< Sg» SOme s > 0. Define the linear operator A: X + X as
follows: for each v e X let u = Av be the solution of «Au = gy in
% and u = 0 on 30, It follows that A is bounded and {ts spectral
radius ro (A} < 1, Alsp by the maximum principle A(C) C C, Now
observe that for Hu”x S s, one has ®(u) < Au. So condition (2'),
which implies conditioen {2) of Theorem 3.1, holds. Next we verify
condition (3) of that theorem. Let F: Cx[bfb) *+ L be defined as
follows: for each v € C and t 20 let u = F(v,t) be the tolution
of Ay = f(v+t) in R and u = 0 on 3. Lemma 3.14 implies that

4 = F(u,t) has no selution u e C for t 2 t,. some convenient t >0,
By the a priori estimates of the previous section there 1s a
constant R > 0 such that u # F(u,t) for al) llull > R with w € ¢ and
all t > 0. This conciudes thé proof of the theorem. Q.E.D.



66. . ' 67. §

Mow we show how to obtain existence of a positive ¥e shall need positive solutions of (43) given by a variational ’
solution for (24) without assuming {29). In this case we have to method, namely the mountain pass theorem of Ambrosetti-Rabinowitz
proceed differently since we do not know if there are a priori L7 . T 2.1.

bounds i{m this case. The {dea hare is to use the techniques )

1
developed in the previous section plus some variational methods. Second step. Let us consider the functional J : H (@) ~ R defined

by

‘ : 2 !
Theorem 3.20. B8 Let f: R* + R* pe a function satisfying (25). Jalv) = J B— fov]© - Fn(v)]. y
Q o

= 0. t (27) and (41) hold,
(26) and (28), with £(0) = 0. Assume that (27) and (41) hold In view of the conditfons on f, that is a well defined C“functiona'_t

Then (24) has a positive solution.

Now we observe that Jn satisfies the hypotheses of Theorem 2.1 in

[i]. see Lemmas 3.3, 3.4 and 3.6 of that paper. In particular

: : f nce of approximate
Proof. First step: Construction of a sequs PP there exists an R > 0 ({independent of n) such that J (R¢) < 0. So

problems. Let us choose, using (26), a sequence s, = 4= such that )

- b, = i J
s lf‘s} 2 Ayta for all s 2 s, and some fixed a > 0, Let n g:; t:uo.I] nl9(t)]
1 ¢y < (N+2)/(N-2) be some fixed constant, and define |
&
0 for s <0 is a critical value of J , where T = {ge c([o0,1]; H;(n)): g(O)-O.“i
f(s} for 0 <s < s, g(1) = R$}. Observe that the critical peint u  corresponding to =i
falsd = £ b, which is a solution of (43} belongs in fact to cz'u(ﬁ). v

f(s,) + -é:ﬂl(s-sn)Y for s 2 s;.
n

Third step. There is .a constant ¢ > 0 (independent of n) such that ‘

It easy to see that f satisfies conditions (25), (26). (28), (29) “vun" 2 < . Indeed; first observe that 0 < b < c. Also by the .
- 1 L - H
and also lim s 1fn(s) = 4o, Moreover thers exist 0 < 8, <% and results of Section 3.4 we see that IVun(x)! < ¢ for all x € 3%,
Sordw

t. > 0 such that uniformly in n. Using this 1nformation we obtain from Pohozaev
n

identity s
(42) . Fn(s) < onsfn(s) for s 2> tn l I Ivu lz _ A I F(u.) > -c. j
. 2lg " -2 LML b
where Fn(s) = ;0 fae The approximate probiems considered are This togather with °
(43) -Aun - fn(un) in 2, u, = 0 om 230. 0 < bn-- % Jdivunlz - IaFn(un) < ¢
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gives the result. As qn Lemma 3.18 we obtain that fu || < ¢
nile =
L

Forth step. Passage to the limit in (43). Since (41) holds
uniformly in n we see that there exists an o > 0 such that

ImﬁﬂL_ > a. So for -large n ¥, 1s 2 pesitive solution of £24;,
Q.E.D.
Remerk. A priort bounds for positive solutions of superiincar

problems Tike {15) have been recently obtained by Gidas-Spruck B39,
using different techniques.
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