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A SYSTEMATIC APPROACH
T0 THE VARIATIONAL FORMULATION IN
PHYSICS AND ENGINEERING

E. TonT:

1 - Introduction

It is known that the equations of many physical theories
have a "spontaneous" variational formulation in the sense
that there is a variational principle from which the equa-
tions can be deduced.

It is also known that there are other physical theories
in which this dees not happen: either a "gpontaneous" varia-
tional formulation does not exist (and one must resort to
more or less acceptable transformations of the equations)
or a variational formulation does not exist at all.

We are going to show the mathematical structure of the
equations of many physical theories in order to show the
reason for the existence of a "spontanecus" variational for-
mulation in some cases and for its lack in other cases. In

the latter case we shall show how the equation may be work-

ed to admit a variaticnal formulation.

Moreover we shall present a result recently cbtained by
the present author according to which every nonlinear pro-
blem (i.e. equation plus additional conditions} admits an
"integrating operator" that makes the problem of such a
kind that a variational formulation exists.

We shall take an inductive approach: we shall examine at
first four equations cf different physical theories and ana-
lyse them to show that they have a common mathematical struc-
ture. We shall find it very useful to construct a general dia
gram that may be used to display the variables and the equa-
tions of every physical theory. Later we shall show that such
a diagram has its roots in a simple algebraic-topological

structure common to many physical thecries.

Example 1: deflection cof a beam.

A beam fixed at one end and simply supported to the other
is under the action of a vertical load. The load is distri-
buted and ?ﬁg will denote the wvertical load for unit length.

The corresponding deflection will be denoted by ?(ﬁj , Fig.1.
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Fig. 1: Deflection of a beam under a vertical load.



The beam is the physical system, the loaad q&g is the in-
put, i.e. the source of the deformation, the deflection is
the output, i.e. the configuration of the physical system.
The fundamental problem 1s the determination of the confi-
guration variable ?{x) when the source variable gx)  is
assigned.

To link the source with the configuration variables it
is useful to introduce two J=+ rmediate variables. The first
is of geometrical nature: the curvature of the beam, we shall
denote by J’(x) ¢ the second is of statical nature: the bend-
ing moment m(x) .

If we limit our consideration to small displacements we

can write the two equations

¢ a?

J %) = 7z 7% T )= G ) (1.1}
where the second cne expresses} in a lacal formlthe equili-
brium., The introducticn of the two intermediate variables
j/ and m makes it possible to search for a "constitutive
law" that links the geometrical variable d/ : the curvature,
with the statical variable # , the bending moment. Euler
postulated that the two variables are proportional (the larg-

er is the bending moment, the larger will be the curvature}.

We write today
m () = ET ()  50) “+2)

where £ is the Young modulus, a material parameter and :.7f?c)

is the moment of inertia of a normal section, a geometrical

quantity. If the beam has a variable cross section, « de-
pends on x . If we consider the boundary conditions we can
represent the four variables and their connecting equations

by the diagram of Fig. 2.
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Fig. 2: The flow-chart of the bending problem.

The link between the Source variable and the configuration
variable is obtained crossing the flow-chart from left to

right following the arrows: we obtain the problem
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This is an equation of the fourth order with variable co-
efficients with boundary conditions: it is the fundamental
equation of the beam deflection.

The first thing we want to do is to give to this problem
an operatorial form. The operator of the left side of the
diagram (see Fig. 2} will be denoted by D. The operator of
the right side will be denoted by C . The operator cof the
constitutive equafion will be dencted by . We shall con-
sider the four functions

hix) , ) mix) , Gx) -4)
geometrical variables Sratical varcablas

as alements of four distinct function spaces. These function

spaces will be considered of linear kind and without topolegy.

On account of the homogeneous boundary conditions the domain

of the operators [) and B will be a subset of the correspond

ing vector spaces.
The "fundamental"” problem (1.3} may be written in operator

ial language:

BCDp=g (45)
Let us introduce two bilinear forms

! ¢
(?}’7)1 :L/v?[x) p[%)dk (WJJ>=/ ﬂl[,?)o%.{)‘)d)(
. T <
o
With reference toc Fig. 3 we may say that the two pairs of

spaces H,Q and rlM form two dual pairs: H ana Q are

put in duality by the first bilinear form while " ana ™

are put in duality by the second bilinear form. Here we

definifion balgnee

Y mapping mapprog 4

R(D)

D)

Sonetronal funa)‘mn‘(
OUT’PVT o1 umfﬁn Vi wnte INPUT
sfe ae £ pce
F = BCD
undamenf‘-vf mapling
e
D(F) ®R5)
b)

Fig. 3 - a) The four functlon spaces and the three mappings;
b) the resultant fundamental mapping.



have two couples of spaces in duality as described in Bour-
baky [, p. ]

At this point we have three remarkable mathematical pro-
perties:

1)} the "balance" operator B is the adjoint of the "defi-

nitifonal” operator D r 1.e.

<B m.r7>1 = <m/D7>I C/.?)

as can be seen by an integration by parts;

2) the "constitutive" operator is symmetric, i.e.

CriFx=<<F.r )
where J’ and 37 are two functions of the domain of £ . Since
the domain of ( is the whole space [ﬂ it _follows that
is selfadjoint.

3) the "constitutive" operator { is positive definite,

i.e.
{Cy. r2 >0 “9)
We then have
8 = 0* C=cC* {10}
The fundamental problem (1.5) becomes
D*CDp =9 (.10)

Now we can easily see that this operator is symmetric:

D¥CDp 72 (C0p, 07, =<COF,09)=
- L D¥C, Do), @

The symmetry of an cperator is the necessary condition in or-

der to have a variational fermulation. In fact
<D*697—?,3’7%= {CDy, 57%~<7,57%r=
=s[f(cp?,pp%,@,?%].__zmj (12)

where
V] = % <C‘D?, Dp% - <9, 72__ (443)

The functignal VY&] represent the total potential energy of
the system (i.e. the internal potential energy plus the po—
tential energy of the applied external loads). Since C? is

a positive definite operator, i.e.
) 4
o (%) obe > O 144
Lp) r)fgyfx){f”)f’ﬂ > )
and since the opefator D is kernel free, i.e.
D7=0 ¢.15)

implies 7{54'}50 , 1t follows that the operator D'CD is also

positive definite:
D*coy gy = (<cop0p) - <cpay so. ()

Then the functional Vf[b] 1s bounded below and the solution

of the fundamental problem (1.10) gives the minimum to the

Y s
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functional.

We have in this way a variational formulation of the fun-
damental problem.

As we have seen the variational formulation is possible
because

B=D% amd CoC* (17

The "spontaneous" varis*ional formulation of the beam de-
flection is consequence of the two properties {1.17}.

We shall see that this property of the cperators is shared

by other physical theories.

Example 2: fluid motion.

Let us consider the motion of a fluid uhder the conditions
a} statjionary flow (no time dependence)

b) perfect fluid (no viscosity)

€} irrotational motion (no vorticity)

d) isochoric motion (constant density).

Let us denote by 2 a space region we suppose simply

connected, and let us call

= veleccity F = density
momentum density = mass flow density rate

= velocity potential

NS Ty o9
Il

= mass source density rate

- 10 -

The equations of the phenomencn are

d!’V‘}? = G_ bd/mzag &? Cf“lgj
Jg-f’_!b{-._-.- assf'gned_ /mdss bd./dﬂcej
2
Fa ’.9!"5;:2’ (¢ d’gﬁ‘niﬁbo 57 (f.zo}
= AsFIgnes
6’/% o
constitvive . ( / 'QU

P=p®

may summarize these entities in the diagram of Fig. 4

We
ouTPUT NPT
V?kmgy Soumc
ng;,, 7 90(1?) Sovree
s "t - é /
y au =6 g hce
- nifion Ve grad ¢ primal __T'g 5 egvation
. Zipcle nfo=
sﬂéz 0 7 Ph%
2

.Ve/my @

consTitvtive 4.
P=p¥

maass Llow
@ ddqsf@ rdfe

Fig. 4z Fluid flow (perfect, irrotaticnal, isocheric, stationary).

If we introduce the operateorial notation and define the

two bilinear forms

<@@=fwﬂwﬁﬂ ¢W%ifmwﬁmwa
- . 4.22
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we' can easily prove that funder homogeneous boundary conditions)

is
" B=pD*
2) C=C" _ (#4.23)
3 (Cy V3 >0 |

The corresponding diagram is

@

Fig. 5-Fluid flow: the operatorial description.
In fact

<p,#>1=.£ﬁ’{—w)om=[n(i7.;jydfz +'}é'ap. #ypdS.

On account of the boundary conditions the last term vanishes:
then £3=13*. The other properties can be easily shown.

The fundamental problem of the fluid motion will be

V-[pl-Vp)] =&

¥ o Py o “24)
Y ;;E;é:JL

_‘[2_

and in cperatorial notation

D*CPy =6 (#24)

Proceeding as in eq.(1.12) we find the functional

J[?]’:_/{Z}J(V‘ffdﬂ -fé‘jﬂ an (4.25)

T
as it is well known Ib,p. ]. This gives a variational formu-

lation to the fundamenfal problem (1.24).

In both examples the equations were linear: boundary condi-
tions were made homogenecus in order to make linear the domain
of the operators. In this way the operators /7 and £3 are made
linear.

What does it happen when [ and.£3 become nonlinear? A Aif-

ferential operator may be nonlinear either because its domain

is a nonlinear set or because its formal operator is nonlinear.

When the formal operators 2 and B are linear but the do-
maing oflp and £5 are nonlinear, cne may easily see that the

- 8 ana D ™
adjointness relation between and is replaced by
1] L
B = (+26)

wherxe EB’ and D°? are the Gateaux derivatives of & ana D

respectively.

Let us see what happens when O ana B are nonlinear.

() At this peint the spaces will be supposed equipped with a topology
compatible with the duality, see later.

"

. .
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Example 3: large elastic deformations, Balance equations can be written

Let us consider the large deformations of a continuum. Let B“ & = .70' ({,32)
us denote by Let us introduce the bilinear forms
Uy the compenents of the displacement vector .
e,w the components of the Green strailn tensor <J€i u% - fft. “h o1 éI.B)
G-hk the components of the Kirchhoff stress tensor 5
fh the components of the body forces. <6’ e>I =[L G-"" e - ({'S‘U
The strain tensor is defined by the relation [3,9.435]. We have the Gateaux derivative
E‘hkﬂf(uh,}r"f Uty + Uih Wk {.27) Se&g=z{'[r‘)k5“n+qhguﬁr+ u;}k?h Su; + &y 'D,,E'ui}
If we add the boundary condition ' ("{'35)
\
Uy an_:' 0 (128}

Let us perform the adjoint
we obtain a nonlinear operator D . The eguation and the boun-

{8, Se% - <&, D, 3:?1 = 6',,,‘,[’2),, Sy + D Sty + Uy 4 O s+

dary conditions can be written in operatecrial notation

-rL .
” < ‘ .
e=D(«) t.29) ¢ 4D, Su]/2 492 ,ﬁ_fa,,[m“u,,,) G| Sus L2+
Ar}

The stress tensor is linked to the body force by the balance ) 3

) B n( v uin) G Sui 452 { BT, Sk (.26)
equaticn [3,p.441] N e, T
. 4. 30 Th ha
._'Dk[(,g”. *“QAJGJ:H]':’J[: 4 _) en we ve

B 5 Sub =G D.duy . (137
to which must be added the boundary conditicn < w7 ?1‘ ( e >1i’" ')

flk (51'11 + U A} GN;,;-,F/ = 0 (,/‘3{) In words: the balange operatcr is adjeint of the derivative

KD 1 of the definition operator. The constitutive mapping for an

elastic material is

. . ' 57 bis)
{(®) As it is usual in mathematical physics dummy Indices are swmued, I.e. gh/( = C;,krs = C1
08, TEANS —5-;«?“ @
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Sovrce variablse

cﬁt;f@ ________ (f u} e _@ badj/ﬁme

“(94””%‘"’ balences
mapping | € = D/U-) pnha/ apele Bu 6'=f mapbing

conast /W‘ tre
7”7, a,b,b " 9
Srean | e=C(e)] ﬁ’ra/uigé"
lonsor Hookwe Iaw)

fansor

garf_‘yura)‘fan Variable

Fig. 6 - Large elastic deformations.

whare C‘Infrrs’ Crshie and €=g,, st' This constitutive mapping
1s linear and symmetric:

£ ‘n

='fC‘;,,.,,5 E.rs 6‘,& d_Q = <Cé, 921_. (".3?)
e

Now on account of the property (1.37bis} and of the symmetry

{1.38) the fundamental problem
Fla)=D,*C Dln) . 38)

admits a variational formulation. In fact

- 16 -

(DL*CDM) - f, Suy = CDM), Di8u) - (£ 0
= {com, Sbw) - S<fru) =
- 5[ §<COMm), Dt} ~fuy [ = SVIW o)

vwhere

Y(u]= } f Cotrg Ense (&) €rg (1) 610 ~ £ fowndd )
2

18 the total potential energy.

In same physical theory the constitutive operator C? is
nonlinear yet it has a Gateaux derivative that is symmetric
{(l.e. it £s a potential operator). So in fluid dynamics of

coampressible fluid flows the constitutive equation is
B=pl(va) 7 ¢92)

Now the first variation

becomes

PN
. . e LRSS .

Y



Op =8 [peryn ] = ZELY S o )y, - pora) S
= d—f__(:y,?z};v‘hgu;: + PvYoy .

dv .
= Z/Eifgéyj? 23 Vi JDfﬁFfJCSL;iJZAYq; . (744
L

The expression in square brackets is symmetric in A”% then
!
the whole operator C:L Tz symmetric, i.e.

Copyy =<cibp). ¢ 4)

In many cases the operator C is strictly monotone, i.e.

(C(u,)_C[E)} u-t?,'% >0 & 45)

for d#iz . If Cf has a weak derivative (Gateaux derivative)

this condition becomes

, .
i.e. the derivative is accretive. For example the nonlinear
operator (1.42) is strietly monotone as long as the fluid
motion remains subsonic [4,p. ]

We may summarize our findings in table I.

Table I. A recurrent relation among the three operators £3, f:,.[) of
physical theories.

linear nonlinear
operatars operators
I
2) C? = C:* C:“ = Cai*
3} C=accrafive C=strictty monolon

Anti-ipating what we shall prove later we can say that the
"spontanenus® variational formulation of many fundamental e-—
quaticns of physics and engineering rests on the two propexr-
ties

1} adjointness of balance and definiticn operators B ana

l) respectively (or of their derivatives)

2) symmetry of the constitutive operator C?.

Mcreover if

3 C is strictly monotone

4} D is kernel free
then the functional is convex and the variaticnal principle is
a minimum principle.

This shows that the variational formulation in many physi-
cal theories rests on a peculiar property of the operators
that constitute the "fundamental" operator of a theory, i.e.
the operator forming the field eguations or the equations of
motion.

In time dependent phenomena the properties 1) and 2) on
which a variational formulation is based are lost. Let us

examine some examples.
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Example 4 - Particle dynamics

The configuration variable is the radius vector while
the source wvariable is the forcef. The two intermediate

variables are velocity D’ and momentum F We have the re-

lations
Fo a7
= EE“ definitioral equation
ag .
7 = balance equation (balance of momen tum}
—
/5".: mv constitutive eguation

F-F (274 F ™

The diagram for three relations is shown in Figq.

interaction equationy ({4@

radivs wcipy phenomencl, ap.

ferce

o Tty e et
-~
3 _G/_r_" Jbﬁeno.manaf.ez// _d£=f z.[?déudeaf
| aF Payrtyr ) (mom entom
Ploj=# — Pro)= | Oalance)
g '
E4
consltvhve #f Aerom otz

F=pl) 7] Py

AN

Fig. 7 - The scheme of particle dynamics.

.
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If we introduce the two bilinear forms
7‘_» .
<4 r% =f f) - rle) &
o
7- o
</°"’>.zr“f P -7
v/
we obtain

. T
<P/ Dry _f,g.;gma =b/[-d%,5‘/-ﬁodé+/]?-r*/; (:50)

Now if we consider, at first, homogeneous initial conditions

Pre)=7 (59

(43

Floj= T
we have

g -2 L4
D= { @ D*= ot B={ #
/o) =3 B (7)=C Fle)=0.
(1.52_)
In this case, typical of evolution problemslis D’\;&B We have L‘Z'

lest the property on which a variational formulation s pos-—
sible.

At this point one may cbserve that the difference between
Ea and £>* is in the minus sign in the formal operator and,
what 1s more important, in the final condition /3/'73':5’1::
place of the initial one ?’/o).—:ﬁ’

One may be tempted to change artificially the physical
problem substituting the final condition p’ﬁj:b’ to the

initial one ﬁ/pj::? . If one does this we arrive to the follovi:
ing scheme:

. -

"4 -

T

Rt



minus Stgn

C et
P-g97]

(m onofons o,b-ruﬁr:)

Fig. 8 - The modified scheme of particle dynamics,

With this trick we have realized the relation S=0%
Since C? is a symmetric operator, it follows that the fun-

damental problem

BC D fit 453

d dP d’P _";‘m/amnd't
’32[?’/% 'Jg‘/”f (7. 54)
Plo)=C  F(T)=d

admits a variational formulation. So if we take the newto-

nian ceonstitutive law F:.-mf/’ the functicnal will be

- 23 -

T T

F[?]= 4 <cCbn Dr%:— <Firy, = %f m?-V&—fJE"F’db

> g5y

that is the total energy (kinetictpotential) of the particle.
We have obtained in this way the Hamilton pirinciple.

As strange as it may appear, the Hamilton principle is
based on a trick: one replaces the physical initial condi-
tion ?[0)33 with an unphysical final one F[T)as The motion
of a particle is a typical initial value problem that is
arbitrarily converted in a boundary value problem to the
purpose of giving a variational formulation. The result is
that since the momentum —’5 at the final instant is unknown
one can neither use numerical methods to solve initial value
problems using Hamilton principle, or use it for existence
proofs.

As we shall see later it is possible to replace the Hamil-
ton principle by ancther varlaticnal principle in which only
the initial conditions are used. In this way numerical methods

can be applied.

Example 5 - Neutral meson field

The fundamental eguation of the meson field, i.e. the

1
Klein-Cordon equation is obtained by the equation th

(T) is the fourdimensional momentum,{f.gl,Q,E, Gpuv is the metric tenscr
of space-time, e . <, % are respectively the proper mass of the par
ticle, the light speed and the Planck constant divided by 2.



- 23 -

9P P pa = (mec) ¢.56)

replacing P by the operator ﬁ“fD,(. One cobtains

GE(EU)(59p)Y — (moc)’I p = & Pomction (1.57)
Ehat is

-—‘ti‘z'[jk/} = (MBG)Z‘l/’ — B'M"“ﬂa‘r.'v. 0_59)

If we consider besides the two functions ’9// (amplitude) and
6 the intermediate variables #y=- qyand 4/7‘ such that
‘})fm“_e'r'"""‘ we can construct the scheme of Fig.

Since the time is invelved we have initial conditions.
If one uses the usual trick of replacing one initial condi-
tion by a final condition it is obtained the adjointness
relation between the operators 5 and O of Fig. 9.

In fact

fﬂfﬂ‘&?’)dﬂ =/¥.@4 wjy;d_ﬂ-»—f vena ¥ ¥ ((#59)
' JL

5L

The fundamental operator BCD 1s symmetric and then we have

the functional

= §<coy, 08 ~ LMy, ¥ (69

which in explicit notation becomes

Tt = 4 (475 3% Pep By —res)y2[ 42 (e
L
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that is the usual action functional for the Klein-Gordon

flela  [6,p.96].

ovTPUT self intzractron mPUT
———-q b Cmc‘)l}ﬂ b ———
M

clefinifion

! | balance
{Md = :-m yl D 5 ;/75 7/765 G—Ml‘w»tf.
= 4 ‘d o F d
}}' ikl u 7 Wﬂ.namﬁh

constitvtive law C

O e ) e

Fig. 9 - The scheme for Klein-Gordon equatjon (meson field}.’
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Example 6 - Flectromaynetic field

The equations of the electromaqnetic field are

Uzll’l‘fébzo

first set of
Maxwell equations

2 = a0k .
{ é? = -f:%ﬂf—nyfﬂwi 4

These may be written

putting
( b =
jﬁ =
{ s -
&MY =
o -
we have

Fap= Vo Fo ~ V2 Pu

géqyéaiz. q;seynea’

cong tltutive

Z?== & i?b dir Z?.if7
oo g f,naéﬁ? __T%fquﬁ e
FaowZ

second set of
Maxwell equations
equst 3

general solution

of the first set ﬂé:?')
of Maxwell equation.

in space-time notation as follows:

e
space-time potential =(._i_/, - AJ
z

four current = /ﬁc,jj

7. 64
first electromagnetic tensor ( )
second electromagnetic tensor

o4
constitutive tensor =JX15” (symmetric)

e o 3~
ry-éi”;/ = asigned
Yy 12

&M= fAXF R /165)

The corrvesponding diagram is shown in Fig. 10.

j%urpoﬁWﬁh[ f%urcurranf

76" J*
n, G/Z = O

Nl

Fq;ﬁ%a%“?% 5 5

¢5.,¢ 212: o u

c
Gr L XV F

Fig. 10 - The equations of the electromagnetic field.

The fundamental problem is

RLEX" PV to-Bota)[= T

?5.(/9110 ", & %EO'

This is the equation of the electromagnetic waves.

The operator D has a kerrel: if gé,(:Z,Zand Z,},’ézo
V(%) - Ve [42) =0 #.67)

then the fundamental problem

BcDg=J 449

has many solutions. One usually eliminates the indeterminacy

of 95 adding the condition (of Lorentez)
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Ve 9= O )

Once more the operator £3 is adjoint of D {(if we substitute
the initial condition with a final one as in particle dynamics).

Then we have the functional

N[ =7COF D) <7 ¢) -
_-,;zif;/?/“"ﬁ" laSe ot A2 — 794, o prze)
3 .

In particular for the vacuum is

Y s F/‘?—’;; Vg /jv/—‘g "’F_.y/‘/‘y’*y (47)

(see 5 } and the functional reduces itself to
AL =1 [ &5 (g #)(9)9n- [ 74uon. ary

that is the usual action for the electromagnetic field [ﬁ,p. ],

- 28 -

One can ask what are the roots of the existence of the re-
lation fis[)*in many physical theqries. An investigation in
this direction (see author's paper [7],[8],[9]) leads to the
discovery that physical theories have a remarkable mathemati-
cal structure that can be described in terms of algebraic topo
legy using the notions of cells, chains, coboundary operators
or in the equivalent terms of differential geometry using the
notions of differential forms and exterior differential. The
adjointness of £3 and l) can then be traced back to the adjdnE
ness of the boundary and coboundary operators in algebraic to-
pology, i.e. to Poincaré duality theorem. It has been shown
that one can construct general classification scheme for physi
cal variables of practically every physical theory. The simple
diagrams shown in the proceeding pages are pieces of this gene
ral scheme. We report in Tables ][ and ][ two of such general
schemes,

These schemes are based on the fact that in every physical
theory there are physical variables that are referred to space
and time simplest objects, i.e. points, lines, surfaces, volu
mes, time instants and intervals, denoted P,L,S,V,],T
respectively. This explains the four ellyptic boxes for va-
riables depending only on space coordinates and the five box-

es for those depending also on time.

-

“

Y s
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Table flud motion
perfecl irrotational. stationary, csochoric
AP - 0 W Uy =0 = const.
fw»damufﬂ/ #.
K o=t V[P(-Pp)fS P‘&:H K
7 Foisson eq. v *
velocily rMass prodive-
porential Yo densily
defimfton Fimet! mass balan
""’“’7/ v=-Vyp a;;:- Vp=6 (7 6wo conservm.
Tenron af e [ fyrets iy anss Fom larg)
) nft 1
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