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S - Control and Identitication Problems

5.1 Statement of the Prablems.

When 4 miodel or a bwochemical reactor s realized or designed, it is impertant

to know how it is possible to control il behavior.

§.1.1. Substrate Flux Control by a Boundary Inhibitor Concentration, This sys-

tem was de-enbed in 12301
The boundury concentration of hibitor is writter e(5) = ({10, (11).

1

e TR
T = Fd) =0 shere /() 14+ Ai

i) s by = 2ty < 0 (5.1)

o ' =00 = etn fL = e (0, #x0) =0

o [

{n the -ompartments. o6} and v, () are at our disposal. Wc can change
o= {re.y) by adding mmhibitor or by creating o reaction of disappearance of

inhihitor,
The coratrads on o oare

O gt A0 ey ALM = 0 (5.2)
We deline
oo L0 TR0 o MO s e, 2 AR (5.3)

Then, v e ', . -
By charging . we want to mininuze the ditfference between a desired flux und

the substrate Aus enicring the membrane. We deline the cost function J by

, 2 STy 2
F- " (0.;1_:‘?{:)] drt | [r' (l.r;-—:,‘,u.:)] di (5.4)
I v ey

LAY

Jir) = I‘I

. w 0

and we are lookime for some & = %, such that

S = ot SN {3.5)

vl Heg

A similar problem is the subtrate conceatration control in the middle of a
membrane by a boundury inhibitor concentration. I is studied in C. M. Brauner

and P. Penet (1972).
The observation s now

el {electrode)
and we wisly to e

sty = | Doyt £3:0)

A

5.1.2. Active Transport Coentrol, This bienzyme system: has teen described
n L3.1.

It would be interesting to control the active transport velocity against the
concentration gradient,

It is possible to perform this control because the presence of an activator
(4] 7} is a necessity for the enzyvme reaction in the first [aver.
Equations of this system:
{1 ,¥2,¥; arc subsirate, product and activator concentrations).

gy, 4 2}11

= G Gy =0

dt éx=
x =]0,1{
by, Oy,
£ PR Fypyap) =0
{0, 7]
dyy @iy, 5
Y T T 0 where (3.7)
F(}’l-}’b)'s) = tr—"—"!— _._-}“l.m_
tys i+,
£ 0 v ) (o > O
Flyovny) = —g-di <y <l
Fy s
Boundary Conditions:
yi{0.1) = x>0 {5.8)
REAE § for x =1
44 fan
=g £z 0 (5.9)
-23 = () for v == Qand x = 1 (5.10}
(8%
yyl0) = 0, ¥ = () = control. (3.10) .
Initiul Conditions:
Yix0) =0, yaAx0) = 0, pyfx0) =0 {5.12)

The difference betwezen the boundury couditions for v, in x = 9 and x = |
15 linked to the compartment relative sjzes, The first compartment is lrge enough
to maintdin a constant concentration, the «econd one i smaller by fur.

The control is the activator concentration in the second compartment.

s control is in the set of admissible controls:

Fop=lrrc LNOT). 0« () o A (5.13)

2..



The cost function 7 is defined by

He) = il —2,0)dr (5.14)

A variant has been studied in J. P. Yvon (19734, |

973b}, where the boundary
titms are selective only for a concentration of product

smaller than A:;
0 iy, <k

[N i
o= {515
o .

—dis it vy > 0 (@ =10

3.1.3. Ideatification Problems. [or these
G. Joly (1974
G. Joly et al. (to appear)
G Joly er of (1o appear)

probiems one is referred to

5.2, Mathematical Part.

5.2.1. Control of the Flux of Substrate Eatering an Enzymatic
Tahibitor Concentration at the Bouadary, Th
function

Membrane by an
¢ cquations are (5.1) and the cost

‘F.

Sy o= ' r“"(- :: 0.1}~

]

: ).! cr ”’i '()2¢1 ]
S di+ e ( L LTS R £ r (3.16)
! 7 j n LA “
. ) N 3 ¢ ay
instead of 15.4) because, as we shall see later In ihis §, " - (0,r) and ¢ i (1.1)
X X
are defined and belong 10 LX0,T) for  » 1
a) Lxistence of én oprimal controf
i The inhibitor concentration / is given by

) -

[

i)y (5.17}
1
in L3(4) where

Wl = 2 sinjay

{5.18)
A2 [T ) 1 1 o) (5.19)
Since, from (5.3, 0 = 1, rp = A
2.2 41 - 202M
edi, 2 NI e )< 2x22
! T} T
and if we call
A=t we have {3.20)
¥ AT J: cﬁ(r)c!f < oo (5.21)
im0

3

i_et us show that this is equivalent o

ie LHOTH 240y Q= 30,1

et wi(x) = 3 sin jlx 1T § e22(@), 4 = ¥

Tl nﬁjwj and the application
;5. (4;) is an isamorphism from HO( =
4

LAl =12 = )47 < o)
A denoting — Jed Ilis also an isomorphism from

HA) N HYQY = D(4) — L= {3108, ¢ 15}

LAY 15 N 2L )1

s6 that e LD LAQ),: [12:12),)
1317, = AT %) e 12

R H2UO for 21-8) < 1, 6 N

D{A):L*(D), = -
[ ( ),L ( )Ja {{(ﬁws&.}{!(!—ﬂ)’ qS”- - 0} for & . _:

1 .

€ 3 13 [
Tet us apply that to (5.20): 1 -8 = T g =3 -+ 5 NI~ = ;e
whence (5.22),
ii: Let us recali also that, i{x.r) being known ¥x,t) is the solution of
R =0, Ry e (5.23
e e T =0 S P 23)
HOM) = a, i) = g, x0 =0 (5.24)

and ia particular = L% ().

. . . v .

[ be able to give a correct duefinition of -~ we are going to define a new
v

function z:

T=10(y-w)

(5.25)
where ® is the affine function
My - (x—B)r+x
(5.23) and (5.24) become
. f;;'-_,- S ZA RIS ) S (5.26)
£
HOur} = 2(1,1) = 0 (5.27)
oxfy =0 (5.28)

and, fory > 1, G = LA0,T:.L*()) = L¥Q).
The initial and boundary conditions for = are compatible and -, element of

LYO.THL()), satisfies

', Az e L)

f‘é &y 6“‘(,’5 -

. s e Lo (5.30)

e iyt

/o

(5.29)

(5.22)
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sinee

Sz = G L) (5.31)
() =0
[ 2 A i i -
We can then define -= = L30T :H (1) = L¥0.T). the application = - N
Y
being linear cominaons from HYQ) - - L340, T,
At last
Gl (232)
rs [

Ui’ A priori estimations
So we have the functional {3.16) and let r, = ((2,)., (,),) be a minimzing
sequence

v, = #,, = bounded set of (L7(0,T))? (3.33)
i, = bounded set of L2(0,7: {127 (from i) (5.34)
" - pounded set of L0, T H ™ (Q) {5.35)

4

from the last equation in (5.1}

b~ e bounded set of LM 7L n L340, T HJ) (5.36)
from
", (1,,-—lb)+l(\,,,a) F®,i) = - F(®.4)
Gy =ty = DY — 1pF(3,.0,) € bounded set of L(Q). G3In
but
oz ¢tz 2
T — ~~2 is an isomorphism from Z — L4 (Q)
it cx
where )
So= frz e HEYOY. o= 0, 20y = 0} (5.38)
s0 that
Z, ~ bounded set of Z (5.39)
¢, « bounded set of (LYO.T; 8V = (L0, 1)* (5.40)

v, Taking the limit
We can extract a subsequence, always denoted o,, and such that

r, = in (L5(0,TH* weak star (5.41)
iy = d(ry = i(e) = i in L3 D) strongly and a.c. {5.42)
v, b= pe)—@ - 3(e) - D = p—Oin LY(Q) strongly and a.e.  (5.43)

(this last point results from F(y,,1,) -~ F(r,i) in L2 @) strongly).
G, -» G in L Q) strongly (5.44)
I, —zin Z strongly (5.43)

(? )"(0:) t i’l(l,:)) (:":— (0,£), :f (1 :)) in (L2(0,7))? strongly  (5.40)

Ty — J(v) (5.47)
r, being a minimizing sequence, p is an optimal control
J{&)y = inf J(w) (5.48)
we Vg

b) Equations giving the gradient
We are going to prove the

Theorem 3.1. Tie system being governed by the equations (5.1), the applications
v —= }{t) from (L*(0,T))? ro L2(0,T: H(()) and v — (v} from L’ 0.7)* to LAY
are Gateaux-differentinble. If we call 8 = (y'{)d), € = (I'{r)d) (6 ¢ (L0, T
then & and € are such that

8« LY0,T; H){(Q) (5.49)

:8+A3+F(y WH+F{vi)e =0 (5.30)

80) =0 {5.51)

e L3O T HYQ), 6 < ) (5.52)

J;:—e =0 (5.53)

or = ¢ (5.541

() =0 (5.55)

Remark 5.1. A = - ;25 and F(v.0) = or(1+ v+1i) but the theorem is true
for 4 second order elliptic operator, F Lipschitz-continuous with respect to 1 and

i, increasing with y, continwously differentiable with respect to yoand L
Proof of the theoren: 5.1. Let us call
. 1 b e _
= G . = (= Ahy i, (5.56)

We have at once (5.52)-(5.55), and ¢, = ¢ is independent of #. We have in plus

te pxgy = C (Frglprgoony + 10y Leeen) (5.57)

G



We deditce rom (5.1)
8, )
- + A3+ Xy = Y, {5.58)
4
where
X = ; (FQ(e+08), i+ 8e)— F(v,i+8e))
. l . . , .
Yo = =5 (B nitla—F(pi)) () =y, i@) = i)
In {5.58) we do the scalar product with 3,

L
5o 18] +al(Be)+(term 2 0) < Lle| [§,] < E(IePHBnI’)

. ¢ . L[*
Y1803+ J a8y < L lieilzzcqy + —-j i8g(r31% dir
0 2 2 L

Taking account of (5.57) we have

84 € bounded set of L*(0,T;L*(Q)) {5.59)
8y € bounded set of L%(0,T; HI(Q) (5.60)
X, e bounded set of L=(0,T;L*1) (5.61)
Y, « bounded set of L™(0,T; L) {5.62)

(these two law properties because F is Lipschitz-continuous and because of
{5.59).

"
‘55 ¢ bounded set of L(0,T;H ~ '(€2)) {5.63)

Now, let 8, be a sequence of positive numbers converging towards 0. We can
extract a subsequence, always called 8, such that

8. — & in L2(Q) strongly and a.e. {5.64)
3p, — 3 in L™(0,T: L)) weak star (5.65)
g, 5 in LHO.T; Hi(ED)) weakly (5.66)
Xe,—> FJ(3,)8 in L¥(Q) weakly (5.67)
Yo,—= —F] ein L*(Q) weakly (5.68)

and we have {5.50) for §. .
Because of the unicity of a solution for (5.49)«(5.51), the whole initial
sequence 8, is converging, and that for every sequence 4, converging to 0. 7

¢} Adjoint system. Necessary condition of optimality,
u is an optimal controt = {(J'(W)o—u) = 0 Vv e ¥, where (,) means the
scalar product in (L0, 7). 7

] T . . - \ . 55
2_ (J'(L):‘;)) = fo tz;l l:(_' E‘Ti (0,!)—2(?) ( - :} (01[))+(;£ (‘aIJ zul‘) S,_t (Lt)] dl

(5.69)
Let us define the adjoint state by

] d
- %’ +A*LEp =0  pg= :2?(—)’ -z,,), ATy =0  (5.70)

3
vy
&

- é‘;f +A*+HFp =0  gp=0, qT)=0 (5.71)

Let us write the Green’s Jormula
28 , , &p ”
O=| pl ;- +AS+F 8+ Fle)dxdi— | 8 — = + A%p+ Fip Jdxd:
a \&t Jo of )

= .[ (p(T8(T) — p(MS(0) el — J P iﬁ d¥+ J 8 —eio— dat
a £ W £

4 Cvg,

a 28 g
+ J. pFledxdt = - J JZV(J —z,,) — di+ J- (rq —.A*g | edxds
P T évy v o \¢f

i ‘
= U+ j (@T)e(T) ~g(O)e(0))dx -+ f « - Lay
0 L P

) Jq, S | (S '(0),8)+ j ¢—6q dx
B y 2 y vy,

[y

A necessary condition of oplimality is then

e
j :.‘i- (v—u)dX = 0 Vo e Wy (5.72)
z

(‘VA,

In the precise case of the problem this is equivalent to the focal conditions

- -EE(O,I;M) (E—uy(th) =2 0, fg(laf;") E—u i) =0 (5.73)
ix ‘x

V€, 0 éxs M
That is itsclf equivalent to (5.74)

o(t) = Pylug(t) 4 p "Ti (0,:))
{5.75)

o
() = Pylu (1)—p pp (L.t:n))

where & — [0,M], p > 0
Py = projection of I on K.

T8
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Remerk 5.2, 'n generad:the inlibifor with which the control ; smade 15 gl
However it is nat aivays the case. The hmmonal heecoraes then

o . . ) :
Jich = ‘ r'.( - . u.J)—_J) ( (I - ) {zlr-! u' Coale) " s b wedt
" )

Jn o i

: C 5 70)
and a necessary condition of optimalty is -
|‘ rq . -
l Ce- dau } (t—w)ds = 1} Yo W, (577
AN
or. equnalentiy
r s P N
TSI o ( TR ——o( - —q(().r..'f)-.‘—azrou_) )) a.e. !
‘X /
. . (378)
Fiy .
w1 = Fy uE(f}”p( ',*'-11,I;tfr+a1r1(f))) doe
: \PX I

"\

5.2.2. Optimal {ontrel of the Substrate Concentration at x = 1 in the Active
Transport System. [he existence of ar least one optimal contro! can be proved as
in §5.2.1 for the preceding probiem.

a) Lynations giving rhe gradient
Let us czll

[ o
dz' St i) esg = 5y
. 1 o {
‘E) Ho+éd) e = §5 (5.7%)
(1 . N
dt Valeredheo = §s
We can verify, as mn 35.2.1, using & prior] estimations similar to those in $2.3., that
PFeE | EF
BE Y+ fyd o Bt sl e = 0 (5.80)
&y (v, iy,
¢F iF F
DA = el =5 =0 (5.81)
(1, [ iy
ENERE rttgs i = — | 8 Par e, (58
Jeoobo / CTo TS

where €. 0,12 are defined as usually

(2= 0L ... ) withE =T,ul 1", = {05
o= ), S = O,xI007T ¢ - 00

q

- Biso defined is 2K, ¥

We define

Fom olr 2 HPQ), o, = 00T (5.83)
(Bu.t) = ue x4 L ey ed : (350
B NJy - ]

' X dqﬁ;nfn'w: of A, (= 2y

(4‘!;-“!” = a(_l‘-r-.) ( - ’(, i '__t_ [':'\.) Y e V (5.85)
Jatl X
® definition of A4,
(A nr) = ater) Ve ¢ N {5.8m)
& detinition af A,
(it A1) = ¢tuay Vine < ML (3.87)

® cclinition of (J,
Q= 5yy « LUOT G, g3 Algy o L3O, gty =07 (588
We have the initial conditions
(BE)(0) = 0 vl0) = 0 (5.89)
In fuct ¢5.80) and the first equation of (5.89) dafine ioin
Vo= 00 e LOTVL B0 + 47, < L3O (BO)(0) = ¢ (5.90)
It is easy to check that ¥ is a Banach space for the norin
Wiy, = 10 o, (8P + 4,0, L (3.91)
and that the application
Lyip, = (BE) +A4, 5, + ”'L ke (5.92)
P

1 an isomorphism from ¥, on L Q).
In the same way (5.81) and the second cquation (5.89) define 1, in

Y, = P ELHOTIH ), Pl A, fy o L3O, 0 = 0 (593

and the :lpplicalion
.. . i F
Ly:fy-»ii4A,p,— — iz (5.04)
iV,
is an isomorphism from ¥, on L3(Q).
At last (3.82) define a unique 7, in L2(O).

b) The adjoint syvitem
We define the udjoint system (p,,p..0,) in the Tollow Ing way
i/ since L1 is an isomorphism from ¥, on L), LY is an isomorphism
from L3Q) = (LW on Yioand i particular it exists jn L° ) a unigue

AO



function p, such that:

of )
(LY p ) = f T pz‘}’dxd’_ZJ ¥y —z)dE
oy Y
{5.95) can be written also

¢F
jpll-1¢dx‘!’ zj ,—pzsﬁdxdrdj (yi—z9dE Ve, (596)
2 a9 £

i/ in the same way p, is the unique element in L*(Q) such that

GF
f polypdxdt = — j L—-Pl'/'dxdf Vg Y,
Q e

(5.97)
li/ thirdly p, is the unique element in Q, such that
) . OF
AP+ - (pi—py) = 0 (5.98)
Y3

pT) =0

c) Computation of J == d—‘;!(v+§¢)u 0

Using (5.80} and (5.85) we get

>

eF aF
0= ‘ I G .
Pl 9, P 9.+ E P13 )dxdt

+ @
. éF
—U p,Llﬂldxd:—J‘ 5o Pafdxdi+2 (ri-z 9. dz] (5.99)
Q 2 Y1

h ]
cF o oF
= Py —P2HD— P+ —— dxde-J
.fo( Yoy, 1 ey, R c'ylp’ﬁ‘)

In the same way, using (5.81) and (5.96)

F
0=J ( z?z‘——ﬁl %_—Pa)d-‘d‘

3

oF
- j szzpzdxdr+j a—p,ﬁzdxd:
[+]

(5.100)
cF oF
= J;( P2 _.pl P2 5 393— a;:plﬂz)dxdr
Adding (5.99) and (5.100) we get
oF
=J‘ P;; (p)—p3) dxdt (5.101)
o Vi

A

VeV, (5.95)

But from (3.101), (5.98) and (5.82)

. - )
J= = | pa-pitAtpdet = | 4 g (5.102)
v Jro v
Whence the resule -+ -0 0o T
d P,y )
= S(erE) g = J ——- L (3.103)
dé le=o I r/'h
which can be expressed
ips .
J(e) = =7 (5.104,
(ylm

d) A necessary condition of optimulity and the a.ociawed disarithn of researcii
of the optimafl control (simple gradient aivoriiim)
A necessary condition of optimality for i is

(uhe—w) = 0 Yr: o #., (3105
or, which is equivalent
=Py (u—pSlup, a0 (3106,
Pg,, = projection on the ¢ 4 (> uT
We deduce from (5.106) the algorilhm
w ghenin ¥y o' =Py, (v - win. N

Remark 5.3. It is easy to prove cxistence and uniqueness of (p p o1 doan
by (5.96), {5.97):

i’ We define the application

F
'4:(¢'|‘¢2)_:’( 1',»‘]'1" !,l:'z,.[_-pf;, — 'J’l)

(7!'1

t:3.109)

/7
from

Y, x ¥y - LYQ) x L.

iif It is an isomorphismi. Indeed, f, and f> Seing given in £(0), there
exists (¢,,,), unique in ¥, x ¥,, such that

o ) J
(‘}; (W‘l),t‘l‘)*’(:{[ -.-":-l'z) tolatubr) =

| AV S L AN §11)]
Vet e (e’
a0y sar,) = [“ fgradd, grade, + grady . grade , ki

e Qb iF f o .
+J S s b Gy (3 111)
TN 3 ) U o '

AT

. .

L

. .

. .



[ving

We have

A lﬁ{‘gr.uirll;"-l- jgrade - Hdy

- _|'n(;a-1§1+:fl;l)c£x (5.112)

N GRS

it Censequently there exists a unique couple (p.r,) such that

. e o |
‘ [;,,(Lll/,l.kf ,,a3)+[,;(z:.,.<-;__ : e,'}l)]dxu't = () (5113)
Jo t b \ [4 )

\ My

LACTIC PV RS S &

which 1s equivalent 1o {5.96), (5.97).

5.3, Numerical Methods amd Results.

5.3.1. Optimal Control. (Substrate flux control by inhibiter).
Numerical Argorithm
First step: Assuming ¢ 10 be known. we define 17* " and ! by the solution of

Pt i e N AR B |
A N

PO = a, THL = B

i"H0) = i, ML) = ),

-l_,u+ l('\_’o) — 0, [.1+ I(.\',DJ — 0
Second step; We define next p*7 ! and ¢* %' by the solution of

. 6F )
— (fpua- 11 ot __{‘zpm [,éx..+ .“L' (),-+i,’|+])pn+l =0
P

Y
_,E(’n-l";; ._(-Zf!u*-lirx‘*' ; (O I"nFI)q 1.9
r
r (..ui-l ‘
) = 2L~ e 0,y - 25r)

St
L = 2[--‘;-“ (I,n;-:},(z)]

q;w](o’,) ;0’ qfwl(l’” =

Pt T =00 " (T) = 0 '{5

Of course, each step is solved by numerical approximation. We define the

new value of u by
st 1

610y = P+ = (01)

aont 1

A+l —_— L Lq
upt o) = Pylui(t)—p B (L}
where Py = projection of R on K = [0,M).

Numerical Results

We solved using the explicit method, taking the following vailues:
Ax == 0.] = space mesh size, Af = 0.004 = time mesh size, £ = 120 Az, ¢ = 36,
a=@0=1 M= 12z, obtained by

20 =2 0n=-2Zon
fx ix
for vo(t) = v)ir) = 6; initial estimation of »: oJ(r) = (1) == 12, When p is
properly chosen the results are very satisfactory.

Figure 18 shows the value of the cost function J, at the iteration number 9,
according to p. The initial value of J was J, = 20x 10™* and, for the best
value of p, which is 15<10%, J, = 3 x |07%,

Table 1 shows for p = 15 x 10?, the decreasing of J and of the gradient

2 1j2
dr)

iy
(33

e-(],

0%,

1 L . I

L P~
3] 10 15 m:ip

Figure 18. J, as a function of p(J° = 940> 10-*).

Al



‘Fable 1. Cost Function J and Gradient G.

fteration number C ot met Gradient
0 VRV I u.001 952

5 0.000 829 0.000 135

10 0.000 263 0.060 064

20 0.000 079 0.000 030

30 0.000 037 0.00C 017

50 0.000 013 0.000 007

75 (.000 006 0.000 003

99 0.000 003 0.000 002

Conclusion

This werk is the result of a collaboration between Biochemists and Mathema-
ticians. The above experimental systems are performed in the “E.R.A. N° 338
du C.N.R.&.—Université de Technologic de Compiegne™. The discussion about
the interest of these systems at both fundzmental and applied points of view can
be found in Thomas and Caplan (1974).

At the mathematical and numerical point of view it is possible 1o get more
detatls from:: Kernevez (1972) for a general survey of the mathematical problems,
Kernevez ¢/ al. (1973) for a stochastic feedback control, Brauner and Penel
(1972) for vstemns without michaelian assumption, Dubus (1972} for a multi-
enzyme system and Yvon (1973) for optimal control of systems governed by
variational inequalities.
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Hysteresis, Oscillations, and Pattern Formation in
Realistic Immobilized Enzyme Systems

J. P. Kernevez, G. Joly, M. C. Duban, B. Bunow, and D. Thomas
Université de Technologie de Compiégne, U.T.C., B.P. 233, F-60206 Compiégne, France

Summary. Hysteresis, oscillations, and pattern formation in realistic biochemical
systems governed by P.D.E.s are considered from both numerical and mathe-
matical points of view. Analysis of multiple steady states in the case of lllys-
teresis, and bifurcation theory in the cases of oscillations and pattern formation,
account for the observed numerical results. The possibility to realize these
systems experimentally is their main interest, thus bringing further arguments
in favor of theories explaining basic biological phenomena by diffusion and
reaction.

Key words: Immobilized enzyme systems—Diffusion-reaction—Hysteresis,
oscillations—Pattern formation

1. Introduction

The aim of this paper is to consider some immobilized enzyme systems vaith
hysteresis, oscillations, or pattern formation, which are simple, can be realized
experimentally, and which illustrate the theories explaining short term memory,
biological clocks, or morphogenesis by diffusion and reaction phenomena.

a) Hysteresis. It has been suggested that hysteresis effects in biochemic_:al systems
are adequate to account for short-term memory (Changeux and Thiery, 1968;
Katchalsky and Oplatka, 1966; Katchalsky and Spangler, 1968).

Such an hysteresis effect was found experimentally (Naparstek, Romette, Kernevez,
and Thomas, 1974) in an uricase system governed by the following P.D.E.
S — S+l +s5+ kD=0, 0O<x<l, : (1)
50, 1) = s5(1, 1) = 5.
In Section 2 we find the numerical solution of the initial boundary value problgm
(1) for a succession of values s, and use at each step the steady state of the preceding

step as a starting value. In a first phase, 5, is increasing, then in a second phase
it is decreasing. For a given so, the steady states in each phase are found to be

distinct.
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These numerical results are explained by a mathematical analysis of the solutions
of the ordinary differential equation boundary value problem:

—8"tosf(l +5+ks?) =0, O<x<l, @
5(0) = s(I) = 5.

b} Oscillations. From the biological point of view, sustained oscillations have been
experimentally observed and established beyond doubt for glycolysis (Hess, 1962;
Betz and Chance, 1965).

Models to represent the observed oscillations have been worked out (Sel’kov,
1968; Higgins, 1964). A mod<! taking explicitly into account the allosteric effects
which is free from phenomenological factors has been constructed (Goldbeter
and Lefever, 1972). Oscillation phenomena were already experimentally produced
with artificial membranes (Naparstek, Thomas, and Caplan, 1973).

The system proposed in Section 3 is still simpler:
5 —Sxx toas/(l + 5+ ks =0, O<x<1,r>0
a — Pay. + oasf{l + 5+ ks? =0 )
50, 1) = 5(1, 1) = 5y; a0, t) = al(l, t) = a,.

A bifurcation analysis explains, at least in a neighborhood of the bifurcation
points, the oscillatory behavior obtained by numerical simulations.

¢) Pattern Formation. It has been suggested that pattern formation in biochemical
systems is adequate to account for the morphogenesis of a developing tissue
(Turing, 1952; Gmitro and Scriven, [966; Meinhardt, 1977; Nicolis and Prigogine,
1977; Kauffman, Shymko, and Trabert, 1978). In Section 4 we present an im-
mobilized enzyme system in which a sequence of patterns arises. It is governed
by two coupled P.D.E.s:

S~ Bs + MF(s,a) — (5o — 5)) =0

a — BAa+ MF(s,a) — «la, —a)) =0 )
with no-flux boundary conditions

and F(s, a} = pas/(1 + 5 + ks?).

We give numerical results for simulations in one and two dimensions. We solve
the initial boundary value problem (4) for a succession of values A, starting at each
step from the slightly perturbed steady state of the preceding step. Sequential
pattern formation is observed, in accordance with a linear stability analysis. A
non-linear stability analysis using bifurcation theory and referring to earlier work
{Boa and Cohen, 1976; Meurant and Saut, 1977) explains these numerical results,
at least in certain neighborhoods of the bifurcation points,

Our systems are artificial membranes where the uricase enzyme is immobilized by
polymerization with glutaraldehyde (Thomas, 1976). The uricase enzyme is a
catalyst of the reaction:

uric acid + oxygen - allantoin + other products.

i-r

The reaction rate is:
Ir = [Vud/(K, + DIS/(Kue + S + SYK), ()
S and 4 denoting respectively uric acid and OXygen concentrations.

Within the active membrane, substrate § and cosubstrate A diffuse (diffusion .
coefficients Dy and D,) and react under the catalytic action of the immobilized
enzyme.

In the model discussed in Section 2, A is in excess and consequently we can take
the reaction rate:

JB = V"SI(KH + S + Sless). (6)

In the other models (Sections 3 and 4), 4 is small with respect to X, and we can
take:

T2 = (Vu/K)AS/(Ku + S + 5%Kgs). M

2, Hysteresis

The enzyme membrane separates two reservoirs where 4 is in excess and S is at
a fixed concentration S,. 4 and § diffuse in the membrane and within it react
together, the reaction rate being given by (6). The system evolution is governed
by (1) if we take as units for concentration, length, and time, K, L (thickness
of the membrane), and 6 (¢ = L3/ Dg, Ds diffusion coefficient of §) respectively.
And finally o = 8V /Ky, k = Ky/Kss.

It is important to note that by using dimensionless quantities 5, x, ¢ the only
significant parameter is o. o comprises the membrane diffusion time @ and the
enzyme reaction characteristic time K,/ V.

Numerical simulations were performed following the procedure indicated in the
first section. For s, values first increasing, then decreasing, we found the succession
of profiles reported in Figure 1.

These profiles obey Eq. {2).

Before proving the possibility of multiple solutions for (2), let us see, using a
simpler system with the same qualitative behavior, why multiple steady states
may appear when diffusion is coupled to substrate inhibited kinetics.

This simpler system can be viewed as an inactive membrane (i.e. without enzyme)
separating an outside reservoir with fixed concentration 5o and a well-stirred
reactor with concentration 5. At the steady state, s is a solution of the algebraic
equation:

So — 8= psf(1 + 5 + ks?), (8)

The state s of the system is a (multi-valued) function of the two parameters s,
and p and is represented by a catastrophe surface as shown in Figure 2.
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Fig. 1. The profiles 1-2-3-3-4-56~
6-7 represent s/s, as a function of
x. Low profiles 1-2-3 correspond to
increasing s, values, until a jump to
the high profile 3. High profiles 4-5-6
correspond to decreasing s, values,
until a jump to the low profile 6.
e = 1200, profiles 3 and 6 correspond
° x to 5o = 68, 55 =~ 61 respectively

Suppose that p is kept fixed and that s, varies, first increasing, then decreasing. The
representative point on the surface follows a path 1-2-3-3-4-5-6-6-7 with jumps
at points 3 and 6. For 5 in a suitable range there exist two stable states. The state
in which the system lies depends in fact upon its past history. There is an hysteresis
effect.

0 f, 1 | p/
. /; i
Fig. 2. Path followed by the point
¢ (5o, p, 5) on the catastrophe sur-
* face 5o — 5 = psf{l + 5 + ks%)
when p is kept fixed and s is
H varying as in Figure 1
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Coming back to the distributed system (2), a first integral for (2) is:
—5"%x) + 20G(s(x)) = 20G(p), 0 < x <1

where G is some primitive function of F and p (= 5(1/2)} is the minimum of x(x) -

for x e (0, 1).
5'(x) = (20"*(G((x) — GG for xe(1/2, 1)

ox) l

ey - 10 = | By ®

and the condition s(I) = s, is equivalent to:
A Rl i

G~ ww= s (19
(9) defines a solution s(x) if ¢ is a solution of';

S = (/)4 - ay
where

_ % d¢ . s B ay
/&) =), e@—- ey [, oo e 12

) = -1 1% _F@® - F
/6 = Gy — @™ " 1), @0 - G a3

Our purpose is to show that: we caa find 5, and ¢ such that (10) admits at least 3
solutions. .

Let us choose p* such that F/(u*)'< 0 (u* > 0). When s, - +oo the first term
in (13) tends towards O and the second one towards a limit / < 0. Let us take 5,
large enough to have f’(x*) > 0. For such an s, the graph of f looks like {c) in
Figure 3. (It is casy to check shat f(u) — +co when z— 0+ and f(u) — 0 when
B> 85.)

Fig. 3. Sketch of function f(g) for
5o values similar to those in Figure
1, and, for given value of o,

p determination of the correspond-
ing values of #

« -
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If we take a value of ¢ for which (11) can have 3 solutions, and assume that s, s
varying continuously, first increasing, then decreasing, then we again find a path
1-2-3-3-4-5-6-6-7 with two jumps (Fig. 3), and a range of values 5, for which
there are multiple steady states. In fact, from Sattinger (1972) we know that the
minimal and maximal steady states are stable. Thus the profiles of Figure 1 are
explained.

3. Oscillations

Equations (3) come from the modelling of an enzyme membrane separating two
compartments which contain S and A. These substrates diffuse throughout the
membrane and react because of E. The reaction rate to be taken is (7). By using
the same dimensionless quantities as in Section 2 for concentrations, space and
time, we find equations (3), where 8 = D, /D. is the ratio of A and § diffusion co-
efficients in the membrane. s and ¢ boundary values are fixed.

In order to simplify the analysis we choose 5, and @, such that s, = Ba,.

As a consequence Eqgs. (3) admit a trivial steady state solution, (5, ), defined by:
—F"(x) + (@/B)FHxW( 1+ §(x) + ki*x)) =0, O <x <1
F0) = §(1) = 5o (14)
a(x) = 5(x)/B-

Linearization of (2) around (§, &) gives a linear system obtained by substituting
§:=1F+ u,a=d+ v, and retaining only terms up to first order in w and v in
a Taylor expansion of F(s, a):

U — Uy + oFu +oFp =10
v, — Bty + oFtt + aF,w =0 (15
u(0,1) = u(l, 1) = (0, 1) = v(l, 1) = 0

where F, and F, arc defined by:

F(s,a) = asi(1 + 5 + ks%)

oF , aF 16
F0) =L 60.a00),  F) = 2 60 ao). e
In a condensed form (15) can be written:
du
S HLU=0 (an
if we define:

u — U, + oFu + oF,t
— = 4 3 a 18
U [v] LU [_Bv# 4 oFu + aF,,u] (18)

24

whereas (3} can be written:

4 LU + MU) =0 (19)
with:
MU) = o[FG + u,d + v) — F(G, &) — Fau — Fﬂv][}]. (20)

For the parameter values indicated in Figure 4 the leading eigenvalues of L, are
complex conjugate. The plot of these eigenvalues is given in Figure 4, where it can
be seen that for 2 critical values of o, ), and oy, the spectrum of L, crosses the
imaginary axis by the two purely imaginary simple eigenvalues, the remaining
part of the spectrum lying in the half space Rez > 0. In that situation there is an
exchange of stability between the trivial steady state {§, &; and a periodic bifurcated
solution (Iooss, 1973; Meurant and Saut, 1977). More precisely the trivial steady
state is stable when the spectrum of L, lies in the half space Rez > 0 and unstable
when at least one eigenvalue lies in the left half plane Rez < 0. Moreover in a
right (resp. left) neighborhood of the bifurcation point o, (resp. ¢;) a family of
bifurcated stable periodic solutions is defined. In fact from the numerical simula-
tions it appears that these oscillations exist in the whole interval (e;, ¢3).

LIS

Fig. 4. Leading eigenvalues of L, for o
varying from 10 to 35, s, = 100, a, =
500, 8 =0.2,k=0.1
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4. Pattern Formation
4.1. Modelling of the Uricase System with an Inactive Layer

A coating in a Petri dish (Fig. 5) is a superposition of 2 layers: the inner one is
an active layer, with a thickness L, of about 50 u (L, = 5-10~? cm), which is in
fact an enzyme membrane as previously described in Section 1, and is stuck on
the Petri dish. Just above is spread an inactive layer with possibly a lipido proteic
layer, This inactive layer (thickness L) is in contact with a well stirred solution
In a reservoir with fixed concentrations of substrate S, and cosubstrate A,

The enzyme membrane can be considered as a 2-dimensional region Q where s
and a, the normalized § and A concentrations, (s = S/K, @ = AlKy), functions
of space r = (x, y), and time 1, are governed by Eqgs. (4). The space coordinates
x and y are measured with the Petri dish diameter Z, as a unit of length.

= (resp. B} is the ratio of 4 and § diffusion coefficients in the inactive (resp. active)
Iayer:

a = D)/D, B = D, D,
The time unit § is the diffusion time of S in 0:
8 = L3{D,.

Two characteristic times, plus 6, play a role in the definition of p and X: 6 =
L,L,/ D, characteristic of diffusion transport through the inactive layer from the
reservoir to the active membrane, and X,/V,,, characteristic of reaction in the
enzyme membrane (1: p and A are now defined:

p=64/(KJVi) and A= 0/8.

Itis interesting to note that A, which will be in the following a bifurcation parameter,
is proportional to L3, and therefore to the area of the coating, and to Dj.

The insertion of a lipido proteic layer within the inactive layer acts as a barrier
and lowers Ds. On the other hand by using a larger Petri dish L3 is increased.

1 Reservoir

Fig. 5. Substrates S and A diffuse through II from I to
- IH where they react and diffuse

1.2, Numericd! Experiments and Results
Two series of numerical experiments were carried out:
4.2.1. I-Dimensional Case. In the case of a ribbon-like coating s and a are func-

tions of only one space coordinate x so that in Eqs. (4) 2 = 10, I[, A = 2%3/ax3,.

and the no flux boundary conditions are 85/6x = 2g/éx = Oforx = 0and x = 1.
By using the numerical procedure outlined in Section 1 we found the steady-state
profiles indicated in Figure 6.

5
]
n W A=20
o
12} A=79
) A=120
@
s \ :
, ‘M/
0
s
- W A 250
31 A-400

=

0
Fig. 6. Steady-state patterns obtamed for the parameter values of Figure 8, § = § and A as

indicated ‘ ‘ 2 L|_
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4.2.2. 2-Dimensional Case. In the case of an ellipsoidal domain Q a similar
numerical procedure gave the patterns shown in Figure 7.

In both series of experiments the parameter values were:
5o =102.5, g, =795  «= 145 p=13, k=0 B=35
satisfying the conditions (H1)}-(H6) given in the next section.

We used the finite difference method in the 1-dimensional case, and the fimite
element method in the 2-dimensional case. The latler can be employed without
any change to a geometrical domain of arbitrary shape, and the ellipsoidal shape

106 1=0.3

Fig. 7. Steady-state patterns oblained for the parameter values of Figure 8, f = 5, and A as

indicated 2 5

was chosen only because of the possible comparison with the predictions of
Kauffman et al., and the corresponding experimental observations on sequential
compartment formation in Drosophila.

In both series of experiments, every time A was changed, the preceding steady-
state was triggered off by random disturbances in order to have the whole range
of spatial wavelengths in the Fourier expansion of the initial disturbance.

In fact these environmental conditions, so that the system may undergo its sequen-
tial alterations, seem to be a good simulation of the ever present thermal noise

in Nature.

4.3. Assumptions and Notations
4.3.1. Statement of the Assumptions and their Meaning
(H1) There is (Fig. 8) an unique solution (£, &) for the algebraic system:
F(s,a) — (5o —5) =0, F(s,8) — elagp —a} =0 1)

(H) « > 1, B>1
(H3) F,+ 1 + F, + o> 0.

Here

oF . _oF
F'=B_s(s’&)’ Fa—aa(jsé)-

[~ 1]

3 50 5
oo Flsal-ls-sl"0; 900 Fis,al- alg,-0! "0
a- L45, k=0.1,3, 101.5, 0, 79.1, p 13, §-8,.8 W4 Fig. 8. Values as indicated
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HY) oF,+ F, +a>0
(HS) BF, + ) + F, + « < 0
(H6) (F¢+Cl—,8(F.+]))=> —4ﬁFaFn-

The hypotheses (H3)~(H6) are similar to those given by Kauffman et al,

From (H1) it results that there exists one and only one spatially uniform steady-
state solution to (4), the trivial one s = fS,a=4.

In Section 4.4 we shall study the stability of this trivial steady-state solution
(3, @) according to the value of A. In Section 4.5 we shall see that when (3, &) loses
its stability by A crossing some critical value, then jts symmetry is broken and its
stability is transferred to a steady-state space-dependent regime. (H3) and (H4)
mean that (3, 4) is a stable steady-state solution for the O-dimensional dynamical
system.

j—:+F(s,a)—-(so—s)=0, §+F(s,a)-u(ao—a)=o.

Finally (H6) means that the quadratic polynomial :
T@) =Bz + [B(F, + 1) + F, + «lz + «fF, + 1Y+ F,
has 2 real roots z’ and z* and (H4) and (HS) that these roots are positive:
0<z <2
4.3.2. Choice of the Parameters. Parameters k and B are given

It is not obvious that the other parameters «, 8, $o, a,, p can be chosen so that
(H1)(Hé} hold. Here is one way to obtain a set of such parameters. We use the
fact that hypothesis (H4), (HS), (H6) are equivalent to the fact that the polynomial
T can be written:

T@=fz—-2N(z—2) 0<z <2,
which itself is equivalent to:

BEA+D+Fotea= - +2), oF +1)+F,=pz
or

Fo= =@+ DE+ 11— aff), F=(+ B}z + «/fX] - «/f).
22

As a by-product we see that we must have « < B in order that F, < 0 (implied
by (H5)). From Egs. (4) we have:

Fs, a) = paGls), with G(s) = s/(1 + 5 + ks?).

Now take values for 2, z°, «/f, p, 5 such that 0 < 2z’ < Z,l<e<pB p>0,
G'(5) < 0.

From Egs. (22) we know the value of F, = pG(5), whence p, and from the first
one the value of F, = pdG'(5), whence 4. By using Eqs. 21) withs = fanda = &

we obtain 5, and a,. Then we check whether (H3} is satisfied and at last by con-
sidering the plots of:

a=(so — s){(pG(s)),  a= am/(x + pG(s))
we readily see whether (H1) holds. _
4.3.3. Other Notations. The following notations will be used hereafter: s = § + u,
a=4d+uv,

U= [:], LU= [:;:vthl(\;‘:i 2}:‘: -;\-F;;,”]

1
MU) = NFG + .3 +0) ~ F6.8) - Fas - F) ]
(ttn: Wp), n 2 0, will be the eigenpairs of —A:
—Aw, = g,w, on Q

subject to no-flux boundary conditions:

ow,
— =0 on I'=8Q,
oy

Here y is the direction of the outward normal to the boundary T

4.4. Stability Analysis of (3, &)

It is well known (Tooss, 1973; Marsden and McCracken, 1976) that if the spectnn?l
of L, lies in the right half plane, then (3, 4) is asymptotically stable, whereas if
there exists an eigenvalue k& such that Rek < 0, then (5, @) is unstable. In fact
the eigenpairs of L, are such that:

Lamn = kn‘pn d’n = WQ[A} ]s

k, satisfying the dispersion equation:

p‘+A(F.+l)_kn AF,
AF, Bpn + NFy + @) — &y

and the corresponding M, fming sseh that:
fn + ME, + 1) = Ky + MMy = Q.
(23) may be rewritten in fve fopen of the'quadsatieeguation:

=0 (23)

k3 — tr(m)k, + det () = 0. (24)
Here tr (n) and det (n) ate given by:
tr(n) = (B + Lpa + XMF, +1 + F, 4=, 25

det (n) = Bul 4+ NP, + 1} F, +odga #+ X((F, + 1) + F,).

We have the: 2 g

o
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Proposition 4.1. Under hypothesis HI-HG:

i) The eigenvaluesky arereal: Xy <ki,nz 0

i) Forn=0,0 <k < k¢

iii} For every n 2 1 there is an interval 1, = (p,[2", pof2) such that if Ael,, then
kr < 0 < ki, so that (8, &) is unstable. On the other hand if A¢1,, then 0 <
k; < ki and if A is outside all the 1, then (8, &) is stable.

Proof.
i) the discriminant of the polynomial expression in (24) is:
te? (n) — ddet(n) = [(B — Dpa + MF? — (= FP + Mo — 1]
x [(B — Dea + MFF® + (—F))7 + Ma — 1]
{from (H5) F, < 0).
From (H2) this discriminant is positive.
ii) for n = 0 we already know that (24) has 2 real solutions k5 and kg¢. From
(H3) and (H4) k5 + k¢ > 0, kgkd > 0, whence 0 < kg < kg
iit) for n > 1 we always have:

ki + kF = tr (m) > 0, from expression (25) and (H3). Hence at least k7 > 0.
We also have k7 > 0, except if det (n) < 0. But:

det (n) = AT (uafX) = A2 (EX - z') (T" - z")
so that:

det (1) < 0«2 < pfh < 2" <> A € (uo/2", pafz’) = In.

4.5. Existence and Stability of the Bifurcated Branches

Let A, be a critical value such that when A enters I, by crossing A, (3, &) loses its
stability, Then this instability is symmetry breaking in the sense that there appear
2 branches of stable bifurcating steady-state solutions of (4). This is a consequence
of operators L, and M, properties, as they have been established in detail by
Meurant and Saut for the Prigogine model, and of bifurcation theory results
(Iooss, 1973; pp. VIIL.19 and IX_12).

The same methods may be applied to our system. Of course it is only possible
to claim the existence and stability of bifurcating branches provided that the
parameter A is in an unknown neighborhood of A,.

4.6. Formal Calculation of the Bifurcated Branches

By a two time-scales method already used by Matkovsky (1970), Kogelman and
Keller (1971), Boa (1974}, Boa and Cohen (1976), we can show that if A is entering
.0, then for A near Ag and A = A, A = Ay + £% and:

[:] B {;] + e(f(e"‘t)wno[ﬂ;;u] + e.d.) + O(%).

29

Here e.d. means exponentially decreasing terms and £(r) takes the form of:

£(r) = EO) E(e0)|e /(40 (e ~ 1} + &)™,

When ¢ — o

[:] - [;] + (- f\a)mf(oo)wﬁo(r)[ﬂ;;o] + 002 — Aok

5. Conclusion

The simplicity of the models studied in this paper is such that most probably
similar situations currently arise in living cells. Uricase is just one example among
many other common enzymes having the same kinetic properties. An enzyme
layer separating two solutions, or an enzyme layer separated from a solution by
a boundary layer, are frequent situations. Consequently it is to be hoped that
more and more biological phenomena will be explained by considering spatially
and temporally ordered solutions of reaction and diffusion equations.
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ANALYSIS AND QPTIMIZATION OF SYSTEMS WITH MULTIPLE STEADY STATES

J.P. KERNEVEZ

U.t.C., BP 233, 60206, Compi2gne (France)

* ABSTRACT

“This communication presents an algorithm for optimization of aystems with
multiple steady states. This algorithm is a variation of the generalized gradient
method, with the possibility to deal with bifurcating sheets of steady states. A
motivation for studying such systems is the behavior of an enzyme system modeled
by reaction-diffusion equations. This system can show pattern formation, and the
problem is to maximize this pattern. The phenomencon of pattern formatiom im iom-
mobilized enzyme systems is explained, and its relation with morphogenesis is
pointed out. Pattern optimization is a problem. of the form: wminimize J(z,v),
where the staﬁe and comtrol variables z and v are related by a state equation
f{z,v) = 0 with possibly multiple states z for each contrel v. It is shown how
methods for continuation and bifurcation can be adapted to find sequential points

(zn.vn) with decreasing values of J(zn,vn).
1. INTRODUCTION

Diffusion-reaction systems have been extensively studied during the last
decades, one of the motivations being that such systems could account for pheno~
mena occuring in liwing organisms., In particular it has been suggested that mor-
phogenesis in embryos could be of the game nature as pattern formation in simple
model chemical systems where diffusion and reaction interact. The pioneer in

this field was Turing in 1952 [1], who was followed, among others, by Prigogine

Lo
aud coworkers [2]. Thelr Brnxellator has heen the most popular model for many nu-

merical and mathematical developments,

Immobilized enzyme systems are other examples of dissipative structures, i.a,
of structures in which temporal or spatial order may occur as a cousequence of the
dissipation of energy or of substrates coming from the external wedium, We will

focus on the system gpoverned by the following equiations:

%% ~ Ag + A[paF(s) - (sD -38)] =0 inQ,

3a

5T T BAa + X[paF(s) = ala_ - a)] =0,

(r.n

with no-flux boundary conditions

F(s) = s/{1 + s + ks?)

Here s and 4 are thé concentrations of two substrates reacting together and dif-

-fusing through-a membrage . The reaction is catalyzed.by enzyme moleculns uni-

formly distributed in @, 1 is a planar disk (Fig. 1.1): The substrates congumed
in 0 are transported across a boundary layer from a well-stirred reservoir where
those substrates are at fixed concentrations s and a . In the first equation of
(1.1} the terms of diffusion through @, reaction within Q and transport acrocs
the boundary layer are respectively -As, ApaF(s}, and (so - 8). In the 2nd equa-
tion a«(resp, B} is the ratio of diffusion coefficients in the boundary layer

(resp. ). A and p are the ratios of characteristic times:
(1.2) A= GDIBT and p = BTIGR

where BD, 9T, and BR are the characteristic times for diffusion within §, trans-
port across the boundary layer and reaction in @, This system and its properties
have been studied in detail in [3]. ¥ts main interest is that it admits, in ad-
dition to a trivial, spatially uniform, steady state solution (§,3), defined by:

8§ -5 - paF(s) = O
(1.3 ‘ °

ala - aD) - paF(s) = 0,

other {stable) steady state solutions which are patterned (Pig. 1.2). By steady-

state solution of (1.1) we mean a solution of:



3

' s ~As + i[paF(s) —'(so - 8)}] =0;
(1.4) ) -gAa + MpaF(s) - ala_ = a)] =0

33 da
woh owo

. and its'stabilify ie relative Ed,che1“dynamical" system (1.1), Figure 1.2 shows
the patterns of s for auch a solution {(s,a). The higher the concéntratién, the
greyer the level,

The background of this communication is the ‘following optimal contrel problem:

‘the state of the system is a solution of the teaction—diffusion equations (1.4),

Thy aontrol v = (sa,ao. A, P} is a vec :ir of 4§ positive and bounded pArameters,

The cost Ffunction is:

(1:5) - I{z,%) = -]g(lvé!lz'-* [va] *yax * M(al ‘*;s:' NPEIR p%y, "
“where z = (s,a). The problem.to finﬁ |
(1.6} inf J(;,v), (z,v) related by {1.4),

corresp nds to the goal of achieving patterns with gradients ae large us possible,
at the iowest price for v. Problem (1.4), (1.5), (1.6) is just an example of the
following:

A dynamical system:

dz
a.n Jc * fz,v) =0
depends upon a vector of parameters v, and admits, when v ig conveniently chosen,

miltiple steady statcs:
(1.8 fl{z,v) = 0.

The aim is to find a pair (z,v) satisfying (1.8) and minimizing a cost functien
J(z, v},

Thus after explaining pattern formation in eénzyme systems in Section 2, re-
lating it to morphogenesis in Section 3, we give, in Sections 4 and 5, general

metheds for optimization and, respectively, continuation and bifurcation,

4

2z, PATTERN FORMATION IN IMMOBILIZED ENZYME SYSTEMS

Maybe one of the simplest dissipative structures is the one we are going to
introduce mow, At first, consider the two substrates § and A reacting together in
a homogeneous solution of these aubstrateds and of the enzyme -E which catalyzes

their reaction. The.evolution.of-theirfconcéntrations.is governed by the Q.D.E.s

ds _ da I
-—= o= = = —— aF(s)
S.dt dt 6R .

(2.1)
( F(s) = s/(] + 5 + ksz).
This system is not very interesting ~ both concentrations tend to 0 ag time evolves,

Ler us remark at this stage that the velocity term, increasing with a and
tending to 0 ag s » o, is tepresentative of a large class of énzyme reactions,

which are said to be activated by A and inhibited by exceeding-§.

Now let us cdmplica:e a little our system, by introducing an inactive (i.e.
without enzyme) membrana between the reactor containing the enzyme and an external
reservoir containing the substrates at tconcentrations L and a, The governing

equations for the concentrations of § and A in the reactor are now:

%% = - ar(s) + EL (s, - 3)
R T
(2.2) :

g% = - 5% aF(s) + éi (a° - a).

At equilibrium we have:
S PaF(s) - (s_ - &) = 0’ a = (s - s)/pF(s)
(2.3) A4

( paF(a) - u(ao -a) =0 a = aaol(aao + pF{s)),

where p = BTIBR. This defines a point (5,3) which, for convenient values of 8
8, @, and p, is unique and stable with respect to the dynamical system (2.2),

Again the behavior of (2.2) is not very interesting: s(t) and a{t) tend

towards § and 3 as t >,

The sityation becomes much more interesting if the reactor vessel is separated
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into ? compartments by a membrane imposing diffusional constraints on the trans-
port of 5 and A from each compartment to the other. The atate variablea are now
8y, a, and 955 39, concentrations of § and A in bolh comportments. 8, and Byy for

example, are governed by:

m-—

!
T e ate) T o) g (s =8y

(2.4)

|

FT E% 8 F(s)) * 3= (a, = ap) + 5 (a; - a))

and we have analogous equations for 3, and a,.

It is easy to check that & = s, = 5, a =a, = i is still an equilibrium
solution that one could still think of as stable. However this is not true. The

steady states are the solutions of:

s) ~ 8y + A[palF(s]) - (50 -s5)] =0,
Bla; - ap) + Alpa,F(s ) - afa - all=o,
(2.5)
=8 * 8yt A[pazF(sz) - (s0 - 52)] -0,

B(-a, + az) + A[pazF(sZ) - o.(a0 - a2)1 =0
where A = BD/&T and p = GTIBR.
The representation of s, for example as a .function of h locks like Figure 2.1,
where full (resp. dotted) lines represent stable {(resp. unstable) steady states.

Thys when A is small or large the trivial steady state (&,d) is stable, which can

be casily understood since in the first case we are approaching the condition

where there is no diffusional constraint (BD = () and in the second we are approach-

ing the condition where both compartments are separated by an impermeable wall

(GD = =), But there is an interval (X', A") such that, for each value of Abetween
A" and A", the trivial steady state is unstable and the two steady states which
are stable are non-symmetric (i.e. s, # s, and a, # 32)' Usually diffusicon has
a smoothing effect and tends to make the conecentrations uniform. Here it is the

contrary: diffusional constraints may cause a gradieat of concentrations.

This two-compartment model is simple enough to be realized experimentally.

The problem is to find optimal values of the parameters, i.e. values minimizing:

G

(2.6} J(z,v) = =(s; - 32)2 - (a; - az)2 + M(a; + Si + A% 4 p%y,

where z = (8, 2,, a;, a,) and v = (ao, S0 X, p) are verifying (2.5). This is a
discrete version of problem {}.4), (1.5), (1.6), which is posed by bicchemists for

their experiments.

We must point out the analogy with polarity in biology. In the preceding mo-
del, diffusion constraints, interacting with a very tommon enzyme activity, may

cause a differentiation between 2 compartments.

In bioclogy too, polarity phemomena (i.e. for example anterior-posterior dif-

ferentiation) maybe due to a similar cause,
3. MORPHOGENESIS

Insect imaginal discs are assemblages of cells which metamorphose into the
different adult appendages {wing, leg, genital, haltere, eye—antenna, S %
During the development of a disc, say the bDrosophila wing disc for example, there
is a sequential formation of compartments: anterior-posterior, dorsal-veﬁtral,
wing-thorax, ... . Kauffman [4) observed that the compartment lines resemble the

nodal lines of the mode shapes:

-Aw = uw in 1,
(3.1)

v -

EY 0. onl =30
the nodal lines being those points (x,y) such that w(x,y) = 0. Whence tha idea
that diffusion of "morphogens"" was playing a role, together with some reaction.

Kauffman's theory is that a reaction~diffusion system:

38

Fri As + M(s,a} = 0 in Q,
(3.2) % - BAa + Agls,a) = O,

+ no=flux B.C.s

acts throughout development and generates a sequence of differently shaped chemi-
cal patterns. More precisely (3.2) passes, as ) varies, through a sequence of

stable spatially non uniform steady states, inducing one commitment (for example
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anterior) in cella where s {or a} is above some threshold level, and the alternate

commitment (posterior) im c¢ells below threshold.

Increaging values of A correspond to increasing sizes of the diasc . Since
our § =~ A system (].1) is of the same form as (3.2), it was interesting to check
whether it was possible to find sequential patterns as A varies., It is indeed
what was found, as shows Figure 1.2, A complete diagram of the steady states of
(1.1), either stable or unstable, is shown in Figure 3.1, which was obtained by
Sharan [5] by employing the method of Kubicek [6} for continuation and of Reller
[7] for bifurcacion. This bifurcation diagram was obtained for the following

values of the parameters:
(3.3) a " 719.2, k= 0.1, s, = 102.5, oo = 145, B =5, and p = 13,

On this diagram the abscissa is A and the ordinate is the value of s at some
-point of {1, Full (resp. dotted) lines correspond to stable (resp. unstable) solu=
tions of (1.4). The straight line A -~ I corresponds to the trivial steady-state
(£,3), and the points A - 1 are bifurcation points from this branch. Points J - qQ
are secondary bifurcation points. The path followed by system (1.4) as )\ increasqs
(we assume the variation of A slow enough for sequential steady states to settle,
i.e. we make the quasi-steady-state hypothes{s) can be inferred from this bifurca-
tion diagram., Befurc attaining point A, the system follows the trivial braach.

Then it follows an arc AB of the first loop. Between B and C, (8,d) again is stable,

but after € it becomes unstable, and the system passes smoothly to steady states
which are structured im space, between C and J, then jumps from J to one of the 2
branches of stable steady srates existing for A > AJ, say the upper one, until N
jumps again to, say, the upper line and follows it until R, ... . Of course, if

A was permitted to decrease, thé aystem would describe arc RP, jump from P to arc
NL, jump from L to arc JC, ..., so that an hysteresis phenomenon would be observed:
for a given value of A the system can occupy different steady states according to
its past history.

Now we see the importance of beimg able to tontrol syatems like (1.4), if

diffusion amnd reaction play such a role in morphogenesis.

4, OPTIMIZATION AND CONTINUATION

It can be shown that the optimal contrel problem {1.4), (I.5), {(I.6) admits
a solution, We refer for the proof to [8], where other optimal comtrol problems
arising in biology are studied, We limit curselves here to the numerical approxi-

mation of such problems. After discretization, we are faced with a probiem of the

form;

minimize J{z,v)
(4.1) subject to f(z,v) = ¢

N
VERH, zeRN, f{z,v)eR .

The numerical method is a variation of the generalized reduced gradieat

method employing techniques used in continuation and bifurcation methods.

Continuation of a branch of solutions of f(z,v}) = 0 towards a point minimizing
I(z,v) (Fig. 4.1):

We employ the Kubicek method. We parametrize by arc-length s ;

£(z(s),v(s)) = 0

(4.2)
[2¢s)|? « [v(®)|? = 1,
or1
L] L[]
fz+fvwmg .
z v
(4.3) tz)2 + |w}? =1
z{0) = io' v{Q) = vq
where z = %% and v = %% ,oghile !fzi £,1 = i
3, Ty g , FVT T
3f 355 § BfN of i
L?ZT 3z ; 5;7 avud

determines the "independent” variable w: it is that H-dimensional vector whose
components cgfreéspond to the columns which have not been selected., Let y be the

N-dimensional new "dependent' variable:
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(4.4) (z,v} = (y,w)
K+1 k+l)y (k)
(4.13) )x{+)={y( Pt
As a by-product we have B such that: stop test: |y(k*l) _ y(k)l < ﬁly(k+])|
(4.5) fyB +f, =0 x{s + h) = last found x(k*l).

(k)) ge~

ii. Descent direction: Let: At kCh iteration, Caussian elimination with total pivoting on fx(x

lects the basic N-vector y(k) to be modified whereas the non-basic vector w
(4-6) I = Iy ()W) stays unchanged.

Then the reduced gradient is: The important feature is that the selected columns may vary from iteratioms
ktok + 1.
3 T
4.7 - ' -
( ) g = J'(w) JyB +J .

Design of Continuation for Minimizing J(z,v) Subject to £{z,v) = 0

We decide that:

FKubicek total pivoting

partition (y,w} = {z,v)

(4.8 W= 08 o, > 0. on [f, : £1 B such that fyB +E =0
Since ‘
Reduced gradient where g = J'(w)
. . T v i
(4.9 fyefu-o g = d.8+ 7, J(w) = J(y(w),w)

with f}r nonsingular, it results:
(4.10) ¥ = ~a e
with
(6.a8) o . incleeg® + lel®.
iii. Prediction: (Fig. 4.2)

§ = y(s) + hy(s)

(4.12)
@ = wis) + hw(s)

iv. Corrector satep: (Fig. 4.2). Let x = (z,v) = (y,w).

<0 5.5

k ket d
Ey(k)(x( N -8 -

Lo

)

(#(46.13) continued)

w e a g, " o Be
a = (sl? + 8elH7}/?

!

Euler prediction
@ = wis) + hw
9 = y(s) + by

|

- dw
where w = .’

Newton cortection
£ Ger)
x(k+!) - (y(k+|),w(k))
L (0}

=_x{a8)

where x = (z,v)

ALY LD IR S TL, - (y,

Ere g
x(s + h)

BIFURCATION OF A BRANCH OF SOLUTIONS OF f{z,v) = 0 TOWARDS ANOTHER PQINT

MINIMIZING J(z,v)} (Fig. 5.1)
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_________ Desipgn for Bifurcation

) . . NO
Let B be the bifurcation point (zo,vo). CONTINUE det fz(a) .« det Ez(s +h)<o?

(i) £(z v} =0, ~YES
i 2 - oy . . 6y o
(11{ dim N(fz) codim F(fz) ' F bissection refinement for 3 |[—3m-M and P: last 2 pts.
N(f:) = gpan {¢}, N(f:”) = gpan{¥t}
B ~
(Lii) R(ES)  R(£3) M
(&vi, £ €R(E)) & ¥ =.0), £9 =0, f¥=o0 L300 and ¥
i i
(iv) the roots of the bifurcation equation are distinct: -
NO
(5.1) aof + 2ba o + cu; -0 CONTINUE —eg—| ¥%f =0 Wi ?
‘ i
where: LJYES : BIFURCATION POINT !
.2) a = ¥ 00 and b = ¥ (£2.0.0 + £0 4d) =W | v (vi(® - v /e, 2 = (2(P) - (Ve
°¢ 0 ) " . -
£20 + £.d =0, d = v/|v], : —— .
{5.3) a, = Jv| , ¢ = v/ {¥|, @, = ¥z YRR
¥ie =0,
o -
With these assumptions the tangent to the first curve {(Fig, 5.1) is: % Yi(z(P) -~ z(M)) .
—_ . ¢ ={(z-a,/a
o, viF) - v(M) ] 1 o
v=ad
' <
{5.4) 5 +o .
; - QOQQ + u[¢] a= \P“fzz¢°’ b= w"(fzz¢0¢ * fzv@d)
8 ¥ d, z + 8.0
and the tangent to the second curve rata-b_ fl v=Bd, z=820 +82
8 a a ' 24~/
. o () B;(idf2 + I@o + r@l] y 2
v = Bod
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z= BOQD * B1¢1
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