

UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION
INTERNATIONAL ATOMIC ENERGY AGENCY
INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS
I.C.T.P., P.O. BOX 586, 34100 TRIESTE, ITALY, CABLE: CENTRATOM TRIESTE

SMR.932/4

SCHOOL ON ALGEBRAIC GROUPS

AND ARITHMETIC GROUPS

(12 - 30 August 1996)

Notes on Bruhat-Tits-Buildings

J. Rohlfs

Fachbereich Mathematik
Katholische Universität Eichstätt
Ostenstrasse 26-28
D-85071 Eichstätt
Germany

These are preliminary lecture notes. Intended only for distribution to participants

Notes on Bruhat–Tits–Buildings

Jürgen Rohlf

Introduction

These notes are the basis of a course of five lectures at the School on Algebraic Groups & Arithmetic Groups in Trieste 1996. They contain

- a detailed introduction to the theory for SL_2 over a local field in §1 to §3
- a description of affine Weyl groups in §4
- the construction of lattices for SL_n and for split groups in §5 and the connection of the arising open and compact groups with a Coxeter complex
- the general definition of the building \mathcal{T} associated to a semi simple group G over a local field in §6
- the description of further properties of the building in §7

The notes are preliminary in many respects. In particular they are too short, since many results come without a complete proof. On the other hand, the notes are too long, since it will be unlikely that all the material mentioned in the notes can be explained in five hours. I hope that in spite of these shortcomings the general outline of the theory becomes visible.

Notation: We denote by K a locally compact commutative field with discrete valuation v and finite residue field, i.e.: $v : K^* \rightarrow \mathbb{Z}$ is a surjective homomorphism such that $v(x+y) \geq \inf(v(x), v(y))$ for all $x, y \in K$, where $v(0) := \infty$. Let $\mathcal{O} := \{x \in K / v(x) \geq 0\}$ be the ring of integers in K and $\mathcal{P} := \{x \in K / v(x) \geq 1\}$ be the maximal ideal of \mathcal{O} . Then there is a $\pi \in \mathcal{P}$ such that $\mathcal{P} = \pi\mathcal{O}$ and $\mathcal{O}/\mathcal{P} =: k$ is a finite field. The ring \mathcal{O} is a principal ideal domain and $x\mathcal{O} = \pi^{v(x)}\mathcal{O}$. The units of \mathcal{O} are $\mathcal{O}^* := \{x \in \mathcal{O} / v(x) = 0\}$. By G we denote a semi simple connected algebraic group defined over K . We often write $G = G(K)$.

§1. The tree \mathcal{T} associated to SL_2 over a local field

We construct for $SL_2(K)$, K a local field, a tree \mathcal{T} . Here we follow essentially Serre, see [S]. The properties of \mathcal{T} and the methods to construct \mathcal{T} will later motivate the construction of a building \mathcal{T} which is associated to a semi simple group G defined over K .

1.1. Let V be a K -vectorspace of dimension 2. We denote by $GL(V)$ resp. $SL(V)$ the group of K -linear isomorphisms of V resp. the group $SL(V) = \{g \in GL(V) / \det g = 1\}$.

A lattice L in V is a finitely generated \mathcal{O} submodule of V such that $K \cdot L = V$. Since \mathcal{O} is a principal ideal domain there exists a basis e_1, e_2 of V such that $L = \mathcal{O}e_1 + \mathcal{O}e_2$. We call e_1, e_2 a basis of L .

If $x \in K^*$ and if L is a lattice in V then xL also is a lattice in V . Lattices L_1 and L_2 of L are called *equivalent* if there is an $x \in K^*$ such that $L_1 = xL_2$. If $V = K \times K$ we have examples $L_1 = \mathcal{O} \oplus \mathcal{O}$ and $L_2 = \mathcal{O} \oplus \mathcal{P}$ of inequivalent lattices.

1.2. Let L_1, L_2 be lattices. Then there is an $n \in \mathbb{N}$ such that $\pi^n L_2 \subset L_1$. By the elementary divisor theorem there is a basis e_1, e_2 of L_1 such that $\pi^n L_2 = \pi^a \mathcal{O}e_1 + \pi^b \mathcal{O}e_2$. We define the distance $d(L_1, L_2)$ of L_1 and L_2 by $d(L_1, L_2) = |a - b| \in \mathbb{N}$. Apparently $d(L_1, L_2)$ does not depend on the choice of π^n and by the elementary divisor theorem $d(L_1, L_2)$ does not depend on the choice of e_1, e_2 . Since now $\pi^{a-n}e_1, \pi^{b-n}e_2$ is a basis of L_2 we have an $m \geq 0$ such that $\pi^m L_1 \subset L_2$. We see that $d(L_1, L_2) = d(L_2, L_1)$. Moreover by computation $d(xL_1, yL_2) = d(L_1, L_2)$ for all $x, y \in K^*$. Let Δ_1 resp. Δ_2 be the equivalence class of lattices determined by L_1 resp. L_2 . Then we can define $d(\Delta_1, \Delta_2) := d(L_1, L_2)$ as the *distance of classes of lattices*.

We note that $d(\Delta_1, \Delta_2) = 0$ iff $\Delta_1 = \Delta_2$. Let $d(\Delta_1, \Delta_2) = l$ and represent Δ_1 by L_1 . Then there is a unique representing lattice L_2 of Δ_2 such that $L_2 \subset L_1$; $L_2 \not\subset \pi L_1$ and L_1/L_2 is generated by one element. Then $L_1/L_2 \cong \mathcal{O}/\pi^l \mathcal{O}$.

1.3. We denote by \mathcal{T} the topological realisation of the simplicial complex whose vertices (= 0-simplices) are the classes of lattices and where a 1-simplex is a pair of vertices

(Λ_0, Λ_1) with $d(\Lambda_0, \Lambda_1) = 1$. We call \mathcal{T} the *building associated to $SL(V)$* .

1.4. We recall the definition of the topological realisation. Let \mathcal{L} be the set of classes of lattices. Then \mathcal{T} is the set of maps $f : \mathcal{L} \rightarrow \mathbb{R}_{\geq 0}$ such that

i) $\text{supp } f = \{\Lambda \in \mathcal{L} / f(\Lambda) \neq 0\}$ is a simplex

$$\text{ii) } \sum_{\Lambda \in \mathcal{L}} f(\Lambda) = 1.$$

In particular if $\text{supp } f = \Lambda$ then $f(\Lambda) = 1$ and if $\text{supp } f = (\Lambda_0, \Lambda_1)$ then $f(\Lambda_1) = t, f(\Lambda_2) = 1 - t, 0 < t < 1$. We view f as a point t on the line connecting Λ_0 and Λ_1 . We define a topology on \mathcal{T} which after identifying $\Lambda_0 \cup (\Lambda_0, \Lambda_1) \cup \Lambda_1$ with $[0, 1]$ induces the ordinary topology on $[0, 1]$.

1.5. Let Λ_0, Λ_l be vertices. A *path* c in \mathcal{T} from Λ_0 to Λ_l is a sequence $\Lambda_0, \Lambda_1, \dots, \Lambda_{l-1}, \Lambda_l$ of vertices in \mathcal{T} such that $d(\Lambda_i, \Lambda_{i+1}) = 1, i = 0, \dots, l-1$. We denote by $c = (\Lambda_0, \Lambda_1, \dots, \Lambda_l)$ also the simplicial realisation of c . If $\Lambda_0 = \Lambda_l$ then c is called a *closed path*. If $\Lambda_i \neq \Lambda_j$ for all $i \neq j$ then c is called a *simple path*. A closed path $c = (\Lambda_0, \dots, \Lambda_l)$ is called *simple* if $(\Lambda_0, \dots, \Lambda_{l-1})$ is a simple path and $l \geq 3$. In particular we consider $(\Lambda_0, \Lambda_1, \Lambda_0)$ not as a simple closed path.

Let $c = (\Lambda_0, \dots, \Lambda_l)$ be a path with $\Lambda_0 \neq \Lambda_l$. Then there is a subset $I = \{n_0, \dots, n_l\} \subset \{0, 1, \dots, l\}$ such that $n_0 = 0, n_l = l$ and such that $(\Lambda_{n_0}, \Lambda_{n_1}, \dots, \Lambda_{n_l})$ is a simple path. To see this we choose $i \geq 0$ minimal such that there is a $j > i$ with $\Lambda_i = \Lambda_j$ and replace c by $(\Lambda_0, \dots, \Lambda_i, \Lambda_{j+1}, \dots, \Lambda_l)$ and so on.

The complex \mathcal{T} is called *connected* if it is pathwise connected and \mathcal{T} is called a *tree* if it is connected and if it contains no closed simple paths.

1.6. Proposition. — \mathcal{T} is a tree.

Proof. We show that \mathcal{T} is pathwise connected. For this let $\Lambda \neq \Lambda'$ be vertices of \mathcal{T} represented by lattices $L' \subset L$ such that $L/L' \cong \mathcal{O}/\pi^n \mathcal{O}$. Hence the preimages of $\pi^j \mathcal{O}/\pi^n \mathcal{O}, j \leq n$ in L define a sequence of lattices

$$L' = L_n \subset L_{n-1} \subset \dots \subset L_0 = L$$

and $L_i/L_{i+1} \cong \mathcal{O}/\pi \mathcal{O}$. Then L_i represents a vertex Λ_i and $(\Lambda_0, \Lambda_1, \dots, \Lambda_n)$ is a path from $\Lambda_0 = \Lambda$ to Λ' . Hence \mathcal{T} is connected.

Let $(\Lambda_0, \dots, \Lambda_n)$ be a simple path. If we can show that then $\Lambda_0 \neq \Lambda_n$ it follows that \mathcal{T} is a tree. Now $d(\Lambda_0, \Lambda_n) = n$ implies $\Lambda_0 \neq \Lambda_n$. To prove that $d(\Lambda_0, \Lambda_n) = n$ we represent $(\Lambda_0, \dots, \Lambda_n)$ by a sequence of lattices

$$L_n \subset L_{n-1} \subset \dots \subset L_0$$

with $L_i/L_{i+1} = \mathcal{O}/\pi \mathcal{O}$. If we can show that $L_n \not\subset \pi L_0$ then by 1.2 we get $d(\Lambda_0, \Lambda_n) = n$. We assume inductively that $L_{n-1} \not\subset \pi L_0$. Then πL_{n-2} and L_n are contained in L_{n-1} . Their images in the 2-dimensional k -vectorspace $L_{n-1}/\pi L_{n-1}$ are non zero and cannot coincide for otherwise $\pi L_{n-2} + \pi L_{n-1} = L_n + \pi L_{n-1}$ and $\pi L_{n-2} = L_n$, i.e.: $\Lambda_{n-2} = \Lambda_n$ and $(\Lambda_0, \dots, \Lambda_n)$ would be not simple. Hence $L_{n-1} = L_n + \pi L_{n-2}$ and since $\pi L_{n-2} \subset \pi L_0$ an inclusion $L_n \subset \pi L_0$ would imply $L_{n-1} \subset \pi L_0$ which contradicts our assumption.

We note two consequences:

1.8 Corollary.

- 1) Two different vertices Λ, Λ' of \mathcal{T} are joined by a unique simple path.
- 2) $-\mathcal{T}$ is contractible.

Often the unique simple path joining Λ and Λ' is called the connecting *geodesic*. The contraction of \mathcal{T} to some vertex Λ_0 is given by shrinking of the unique geodesics from Λ_0 to points different from Λ_0 .

Let Λ be a vertex of \mathcal{T} represented by a lattice L . Then a vertex Λ' with $d(\Lambda, \Lambda') = 1$ can be represented by a unique lattice $L' \subset L$ such that $L' \not\subset \pi L$ and $L/L' \cong \mathcal{O}/\pi \mathcal{O} = k$. Then $\pi L \subset L'$ and $L'/\pi L$ is a 1-dimensional k subvectorspace of

$L/\pi L \cong k \oplus k$. The number q of such subspaces is equal to the number of points of the projective line $P_1(k)$ over k . Hence $q = |k| + 1$. We have shown:

1.8. Proposition. *If \wedge is a vertex then*

$$\#\{\wedge' \in T / \wedge' \neq \wedge, d(\wedge', \wedge) = 1\} = |k| + 1.$$

For $k = \mathbb{Z}/2\mathbb{Z}$ we get the following picture of T containing all points of distance ≤ 4 from the middle vertex.

The chambers here have decreasing size with respect to the distance to the middle vertex.

§2. Group actions on the tree T

2.1. If $L \subset V$ is a lattice and $g \in GL(V)$ then $g(L)$ is a lattice. Moreover for $x \in K^*$ we have $g(xL) = xg(L)$. Hence g acts on the classes of lattices and induces a permutation of the vertices of T .

Since $GL(V)$ acts transitively on the set of basis of V it follows that $GL(V)$ acts transitively on the vertices of T . Moreover if $G(L)$ denotes the stabilizer of a lattice L we see that $G(L)$ is isomorphic to $GL_2(\mathcal{O})$. In particular the stabilizer of a lattice is compact.

Let \wedge_1, \wedge_2 be vertices of T and $d(\wedge_1, \wedge_2) = n$. We can choose representing lattices L_1

with $L_1 \subset L_2$, $L_1 \not\subset \pi L_2$, $L_2/L_1 = \mathcal{O}/\pi^n\mathcal{O}$. Hence $d(g\wedge_1, g\wedge_2) = d(\wedge_1, \wedge_2)$.

Example: Let $L = \mathcal{O}e_1 \oplus \mathcal{P}e_2$. Then $GL(L) \cong \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(K) / a, d \in \mathcal{O}, c \in \mathcal{P}, b \in \pi^{-1}\mathcal{O}, ad - bc \in \mathcal{O}^* \right\} = \begin{pmatrix} 1 & 0 \\ 0 & \pi \end{pmatrix} GL_2(\mathcal{O}) \begin{pmatrix} 1 & 0 \\ 0 & \pi^{-1} \end{pmatrix}$. If $\wedge_0 \in X$ is represented by $e_1\mathcal{O} + e_2\mathcal{O}$ and if L represents \wedge_1 then $d(\wedge_0, \wedge_1) = 1$ and the element of $GL(V)$ corresponding to $\begin{pmatrix} 1 & 0 \\ 0 & \pi \end{pmatrix}$ maps to \wedge_0 to \wedge_1 .

2.2. Proposition. *If \wedge is a vertex of T and $g \in GL(V)$ then*

$$d(\wedge, g\wedge) \equiv v(\det g) \pmod{2}.$$

Proof. Let L be a lattice which represents \wedge . Then there is a π^n such that $L_1 := \pi^n g(L) \subset L$. By the elementary divisor theorem we find a basis v_1, v_2 of L and $a, b \in \mathbb{N}$ s.t. $\pi^a v_1, \pi^b v_2$ is a basis of $\pi^n g(L)$. Another basis of $\pi^n g(L)$ is $\pi^a g(v_1), \pi^b g(v_2)$. Hence here is an $A \in GL(L_1)$ st. $\pi^a v_i = A\pi^n g(v_i)$, $i = 1, 2$. With respect to the basis $\pi^a v_1, \pi^b v_2$ of L_1 we get an equation

$$E = Ag \begin{pmatrix} \pi^{n-a} & 0 \\ 0 & \pi^{n-b} \end{pmatrix} \quad \text{where} \quad A \in GL_2(\mathcal{O}).$$

Hence $v(\det g) \equiv a + b \pmod{2}$ and $a + b \equiv |a - b| \pmod{2}$.

2.3. Corollary. *If $g \in SL(V) = \{g \in GL(V) / \det(g) = 1\}$ and if $\wedge \in T$ then $d(\wedge, g\wedge) \equiv 0 \pmod{2}$.*

In particular if $d(\wedge_0, \wedge_1) = 1$, then $g(\wedge_0) \neq \wedge_1$ for all $g \in SL_2(V)$.

In the following we work only with $SL_2(V) := G$. We denote the stabilizer of a lattice L by G_L and let $G_\wedge := \{g \in G / g(L) = xL, x \in K^*\}$ be the stabilizer of the class \wedge of lattices represented by L .

2.4. Lemma. — $G_L = G_\Lambda$.

Proof. Of course $G_L \subset G_\Lambda$. If $g \in G_\Lambda$ then $gL = xL$ for some $x \in K^*$. Then $x^{-1}g \in GL(L)$ i.e. $v(\det(x^{-1}g)) = 0$ and $v(x) = 0$. Therefore $xL = L$ and $g \in G_L$.

2.5. Proposition. Let H be a closed subgroup of $G = SL(V)$. Then the following are equivalent

- i) H is compact
- ii) $H \subset G_\Lambda$ for some vertex Λ of \mathcal{T} .

The maximal compact subgroups of G are the stabilizers G_Λ for Λ a vertex of \mathcal{T} .

Proof. Since a stabilizer G_Λ is compact the last claim follows from (i). Apparently i) follows from ii) since G_Λ is compact. Let L be a lattice. Then $G_L \subset GL(V)$ is a open and compact subgroup. Hence $H \cap G_L$ is open in H and since H is compact then $[H : H \cap G_L] < \infty$. Hence $\sum_{g \in H/H \cap G_L} gL = L_1$ is a lattice which is H -stable. We choose Λ to be the class represented by L_1 .

Let $\sigma = (\Lambda_0, \Lambda_1)$ be a 1-simplex of \mathcal{T} , i.e. Λ_0 and Λ_1 are vertices and $d(\Lambda_0, \Lambda_1) = 1$. If $g \in G = SL_2(V)$ and $g(\Lambda_0, \Lambda_1) = (\Lambda_0, \Lambda_1)$ then $g\Lambda_0 = \Lambda_0$ and $g(\Lambda_1) = \Lambda_1$, see 2.3. For the stabilizer G_σ of σ in G we get $G_\sigma = G_{\Lambda_0} \cap G_{\Lambda_1}$, see 2.3.

Example: $\Lambda = \mathcal{O}e_1 \oplus \mathcal{O}e_2$, $\Lambda_1 = \mathcal{O}e_1 \oplus \mathcal{P}e_2$. With respect to e_1, e_2 we identify $GL(V)$ with $GL_2(K)$. Then $P_0 := G_{\Lambda_0} = GL_2(\mathcal{O})$ and $P_1 := G_{\Lambda_1} = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(K) / a, d \in \mathcal{O}, c \in \mathcal{P}, b \in \mathcal{P}^{-1} \right\}$. Hence $G_{\Lambda_0 \Lambda_1} = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(K) / a, b, d \in \mathcal{O}, c \in \mathcal{P} \right\} = P_0 \cap P_1$.

The stabilizers of simplices of \mathcal{T} are called *parahoric subgroups*. The stabilizers of 1-dimensional simplices of \mathcal{T} are called *Iwahori subgroups*. Apparently $SL(V)$ acts on the set of parahoric subgroups.

2.6. Proposition. There are two $SL(V)$ -conjugacy classes of maximal parahoric subgroups of $SL(V)$. All Iwahori-subgroups of $SL(V)$ are $SL(V)$ -conjugate.

Proof. The vertices of \mathcal{T} correspond bijectively to the maximal parahoric subgroups of $SL(V)$, (see 2.5), and they consist of one $GL(V)$ orbit. Fix a lattice L representing a vertex Λ . Then $GL(\Lambda) := \{g \in GL(V) / g\Lambda = \Lambda\} = GL(L) \cdot K^*$ and $SL(V) \backslash GL(V) / GL(L)K^*$ corresponds to the $SL(V)$ -orbits of vertices. From the exact sequences

$$\begin{aligned} 1 &\longrightarrow SL(V)/\{\pm I\} \longrightarrow GL(V)/K^* \xrightarrow{\det} K^*/K^{*2} \longrightarrow 1 \\ 1 &\longrightarrow SL(L) \longrightarrow GL(L) \longrightarrow \mathcal{O}^* \longrightarrow 1 \end{aligned}$$

we see that there are two such orbits and the first claim holds. We may choose P_0 and P_1 from the example as representatives of the orbits.

The Iwahori subgroups correspond bijectively to the 1-simplices of \mathcal{T} . If $(\Lambda_0, \Lambda_1), (\Gamma_0, \Gamma_1)$ are two 1-simplices there is a $g \in GL(V)$ with $g(\Lambda_0) = \Gamma_0$ or $g(\Lambda_0) = \Gamma_1$. Say $g(\Lambda_0) = \Gamma_0$. Then $d(\Gamma_0, g\Lambda_1) = 1$. If the lattice L_0 represents Γ_0 then there is a surjection $G_{L_0} \longrightarrow P_1(\mathcal{O}/\mathcal{P})$, see 1.8. Hence there is a $h \in SL(L)$ such that $h(\Gamma_0) = \Gamma_0$ and $h(g(\Lambda_1)) = \Gamma_1$. Therefore $hg \in SL(V)$ maps (Λ_0, Λ_1) to (Γ_0, Γ_1) and the stabilizers of these simplices are conjugate.

Let \mathbf{P} be the complex whose simplices are the parahoric subgroups of $SL(V)$ and where a pair (P, P') of different parahoric subgroups is a 1-simplex if $P \cap P'$ is an Iwahori subgroup. Then we have shown.

2.7. Proposition. — \mathcal{T} is the topological realisation of \mathbf{P} .

§3. Chambers and apartments of the tree T

3.1. A *ray* or half apartment in T is a subcomplex of X such that its vertices can be labelled $\wedge_0, \wedge_1, \dots, \wedge_i, 0 \leq i < \infty$, and $d(\wedge_i, \wedge_{i+1}) = 1$. We denote a ray by $\{\wedge_i\}_{i \geq 0}$ and call \wedge_0 the *origin of the ray*. Two rays $\{\wedge_i\}_{i \geq 0}, \{\Gamma_j\}_{j \geq 0}$ are called *equivalent* if there are integers $i, d \in \mathbb{Z}$ such that $\wedge_j = \Gamma_{j+d}$ for all $j \geq i$. An equivalence class of rays is called an *end of X* . We observe: If $\{\wedge_i\}_{i \geq 0}$ is a ray and if $g \in SL(V)$, then $\{g\wedge_i\}_{i \geq 0}$ is a ray.

3.2. Let e_1, e_2 be a basis of V . For $i \in \mathbb{N}$ put $L_i = \mathcal{O}e_1 \oplus \pi^i \mathcal{O}e_2$. The lattices L_i represent vertices \wedge_i and by definition of d we have $d(\wedge_i, \wedge_{i+1}) = 1, i \geq 0$. Hence $\{\wedge_i\}_{i \geq 0}$ is a ray. We show that all rays occur in this way. So let $\{\wedge_i\}_{i \in \mathbb{N}}$ be a ray. We can choose lattices L_i representing \wedge_i with the following properties:

$$L_{i+1} \subset L_i, \quad L_{i+1} \not\subset \pi L_i, \quad L_i/L_{i+1} \xrightarrow{\sim} \mathcal{O}/\pi\mathcal{O}$$

Hence there is a system of natural maps of exact sequences of compact groups

$$\begin{array}{ccccccc} 0 & \longrightarrow & L_i & \longrightarrow & L_0 & \longrightarrow & \mathcal{O}/\pi^i \mathcal{O} & \longrightarrow 0 \\ & & \uparrow & & \uparrow & & \uparrow \\ 0 & \longrightarrow & L_{i+1} & \longrightarrow & L_0 & \longrightarrow & \mathcal{O}/\pi^{i+1} \mathcal{O} & \longrightarrow 0 \end{array}$$

Since $\mathcal{O} = \varprojlim_i \mathcal{O}/\pi^i \mathcal{O}$ and $\varprojlim_i L_i = \bigcap_i L_i \cap V$ and since $\varprojlim -$ is exact on the category of compact groups we find an exact sequence

$$0 \longrightarrow \bigcap_i L_i \longrightarrow L_0 \xrightarrow{f} \mathcal{O} \longrightarrow 0.$$

Since L_0 is free of rank 2 we find an $e_1 \in \bigcap_i L_i$ and an e_2 such that $f(e_2) = \pi$ with $\bigcap_i L_i = \mathcal{O}e_1$. Then $L_0 = \mathcal{O}e_1 \oplus \mathcal{O}e_2$. We observe that e_1 is unique up to \mathcal{O}^* and that $L_j \cap K e_1 = \mathcal{O}e_1$ for j sufficiently large. Since $L_0/L_j \xrightarrow{\sim} \mathcal{O}/\pi^j \mathcal{O}$ we get that $e_1, \pi^j e_2$ is a basis of L_j for all j .

We note that $K e_1$ depends only on almost all j and that $K e_1$ does not depend on the lattices chosen to represent the ray $\{\wedge_i\}_{i \geq 0}$. Hence we have a natural map which associates to the end represented by $\{\wedge_i\}_{i \geq 0}$ the Borel subgroup $B \subset SL(V)$ such that

$$B = \{A \in SL(V) \mid g(K e_1) = K e_1\}.$$

3.3. Proposition.

- i) Let \wedge_0 be a vertex of T . Then G_{\wedge_0} acts transitively on the set of rays with origin \wedge_0 .
- ii) There is a natural bijection between the ends of T with the set of Borel subgroups of $SL(V)$.

Proof. Let $\{\wedge_i\}_{i \geq 0}$ be a ray and represent $\wedge = \wedge_0$ by a lattice $L = L_0$. By 3.4 we find a basis e_1, e_2 of L_0 such that the ray $\{\wedge_i\}_{i \geq 0}$ is represented by a sequence of lattices as in 3.2. Since $G_L = G_{\wedge}$ is transitive on the set of basis of L the first claim follows.

By 3.2 we have a well defined map $\{\text{ends of } T\} \longrightarrow \{\text{Borel subgroups of } SL(V)\}$. If conversely a Borel subgroup $B \subset SL(V)$ is given we have a corresponding line $K e_1 \subset V$ which is stabilized by B . Choose some $e_2 \in V$ such that e_1, e_2 is a basis of V and put $L_0 := \mathcal{O}e_1 \oplus \mathcal{O}e_2$. Define $L_n := \pi^n L_0 + L_0 \cap D = \mathcal{O}e_1 \oplus \pi^n \mathcal{O}e_2$. Then $\bigcap_i L_i = L_0 \cap K e_1$ determines B . Let $\wedge_i \in X$ be represented by L_i . Then $\{\wedge_i\}_{i \geq 0}$ is a ray which determines B . Instead of e_1 we can choose $e'_1 = \alpha e_1, \alpha \in K^*$ and instead of e_2 we can take $e'_2 = \beta e_1 + \gamma e_2$ with $\gamma \in K^*, \beta \in K$. Then there is a $b \in GL(V)$ with $be_1 = e'_1, be_2 = e'_2$ and we construct a corresponding sequence of lattices $L'_n = bL_n$. By computation then $b\wedge_i = \wedge_{i+d}, d = v(\gamma) - v(\alpha)$, for all sufficiently large i . Hence B determines a well defined end of T and our claim holds.

3.4. An apartment A of T is a subcomplex of T such that the set of vertices of A can be labelled by $\wedge_i, i \in \mathbb{Z}$ with $d(\wedge_i, \wedge_{i+1}) = 1$ for all $i \in \mathbb{Z}$. A 1-simplex (\wedge_i, \wedge_{i+1}) is called a *chamber* of A .

The labelling of the vertices of A is uniquely determined by the choice of two vertices of A which have distance 1 and by the choice of their names \wedge_0 and \wedge_1 . We write an apartment A as $A = \{\wedge_i\}_{i \in \mathbb{Z}}$. Let $g \in SL(V)$ (or $g \in GL(V)$) and let A be an apartment. Then gA is an apartment.

Let $A = \{\Lambda_i\}_{i \in \mathbb{Z}}$ be an apartment. Then A defines two different rays $\{\Lambda_i\}_{i \leq 0}$ and $\{\Lambda_i\}_{i \geq 0}$ and hence two different ends of \mathcal{T} . Of course, the set of the two ends does not depend on the labelling of A . Let $\{B_1, B_2\}; B_i \in SL(V)$, be the ends determined by A . Then B_i is the stabilizer of a 1 dim subspace V_i of V and $V_1 \oplus V_2 = V$. If $V_i = K\mathbf{e}_i, i = 1, 2$ then in matrix notation with respect to the basis e_1, e_2 the group B_1 is $\left\{ \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \in SL_2(K) \right\}$ and B_2 is $\left\{ \begin{pmatrix} a & 0 \\ c & d \end{pmatrix} \in SL_2(K) \right\}$ and $B_1 \cap B_2 \cong T = \left\{ \begin{pmatrix} t & 0 \\ 0 & t^{-1} \end{pmatrix} \mid t \in K^* \right\}$. Hence A determines a well defined split torus T of $SL(V)$.

Conversely let $T \subset SL_2(V)$ be a split torus, i.e. there is a basis of V such that T has diagonal form with respect to this basis. Then there are exactly two Borel subgroups $\{B_1, B_2\}$ of $SL(V)$ such that $T = B_1 \cap B_2$. By 3.4 the B_i defines two different ends. Let $\{\Lambda_i\}_{i \geq 0}$ represent B_1 and $\{\Gamma_i\}_{i \geq 0}$ represent B_2 . Then for sufficiently large n we have $\Lambda_i \neq \Gamma_i$ for all $i \geq n$. The vertices $\Lambda_i, \Gamma_j, i, j \geq n$ together with the vertices of the unique geodesic from Λ_n to Γ_n define an apartment. By the uniqueness of geodesics this is independent on the choice of n . Hence we have shown:

3.5. Proposition. *There is a natural bijection between the set of K -split tori of $SL(V)$ with the set of apartments of \mathcal{T} .*

The typical example of an apartment A is given by a sequence $(L_i), i \in \mathbb{Z}$, of lattices as follows: Let $\{e_1, e_2\}$ be a basis of V . Put $L_i = \mathcal{O}e_1 \oplus \pi^i \mathcal{O}e_2, i \in \mathbb{Z}$ and let L_i represent the vertex Λ_i . Then $A = \{\Lambda_i\}_{i \in \mathbb{Z}}$ is an apartment. Since split tori or sets of basis $\{e_1, e_2\}$ are $SL(V)$ -conjugate, Prop. 3.6 implies that all apartments are of the form $gA, g \in SL(V)$.

3.6. We denote the apartment A associated to a split torus $T \subset SL(V)$ by $A(T)$. Then the normalizer $N(T)$ of $T = T(K)$ in $SL(V)$ acts on $A(T)$ by affine maps. Let $\mu : N(T)(K) \rightarrow \text{Aff}(A(T))$ be the corresponding map. To make the action explicit we represent $A = \{\Lambda_i\}_{i \in \mathbb{Z}}$ by a sequence of lattices $L_i = e_1 \mathcal{O} \oplus \pi^i \mathcal{O}e_2, i \in \mathbb{Z}$, where e_1, e_2 is an \mathcal{O} -basis of L_0 which is unique up to units and order of the basis. Then

$t = \begin{pmatrix} t & 0 \\ 0 & t^{-1} \end{pmatrix} \in SL_2(K)$ maps Λ_i to $\Lambda_i + 2v(t)$ and $w = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ maps Λ_i to Λ_{-i} . Hence the image W of N in $\text{Aut}(A)$ is generated by a reflection s_0 at Λ_0 and a translation $t : \Lambda_i \rightarrow \Lambda_{i+2}$. Since $(\Lambda_{-1}, \Lambda_0, \Lambda_1)$ is a fundamental domain for the occurring translations and s_0 acts, we see that (Λ_0, Λ_1) is a fundamental domain for W . Moreover W is generated by the reflections s_0 at Λ_0 and s_1 and Λ_1 . Thus the structure of $A(T)$ as a simplicial complex can be described with the affine action of W on $\mathbb{R} \xrightarrow{\sim} A(T)$. On \mathbb{R} we view W as group generated by the reflections at all $i \in \mathbb{Z} \subset \mathbb{R}$.

3.7. Let $A_0 \subset \mathcal{T}$ be an apartment. We have a natural surjection $f : G \times A_0 \rightarrow \mathcal{T}$ sending $(g, b) \in G \times A_0$ to gb . We give $G \times A_0$ the simplicial structure and topology of a disjoint sum. Then f is continuous, surjective, simplicial and G -equivariant and induces an equivalence

$$G \times A_0 / (\sim) \xrightarrow{\sim} \mathcal{T}.$$

We describe the equivalence relation. To $b \in A$ be associate $P_b \subset G(K)$, such that P_b is the subgroup fixing b . Then $(g, x) \sim (h, y)$ if there is an $n \in N$ such that $y = \nu(n)x$ and $g^{-1}hn \in P_x$. Then $g^{-1}hP_yh^{-1}g = P_x$. The action of $N(T)(K)$ via μ here is necessary to get rid of the unnatural labelling which reflects the various ways to identify A_0 with (\mathbb{R}, Z) . We get with this definition of the equivalence using 3.6 and 3.3:

3.8. Proposition. *We have a natural identification*

$$G \times A_0 / (\sim) \xrightarrow{\sim} \mathcal{T}.$$

This description of \mathcal{T} will be generalized in the following chapters. For this we first generalize A to a simplicial tessellation of an euclidean vectorspace which results from the action of a Coxeter group W and then we introduce generalisations of the groups P_b which will define the equivalence relation. The building \mathcal{T} will be defined by the left side of 3.8.

§4. Coxeter Groups and Coxeter Complexes

We recall some essential definitions and results on Coxeter groups. For proofs we refer to [B, Chap. IV, V].

4.1. Let $(E, \langle \cdot, \cdot \rangle)$ be a finite dimensional euclidean l -dimensional \mathbb{R} -vectorspace with positive definite scalarproduct $\langle \cdot, \cdot \rangle$. Let $\text{Iso}(E)$ be the group of isometrical maps $f : E \rightarrow E$. We view E as a subgroup of $\text{Iso}(E)$ where $v \in E$ corresponds to the translation $w \mapsto w + v$. Let $O(E)$ be the group of linear maps $f : E \rightarrow E$ which preserve $\langle \cdot, \cdot \rangle$. Then we have a natural action of $O(E)$ on E and on the translations in $\text{Iso}(E)$. We get a semidirect product decomposition

$$E \rtimes O(E) \xrightarrow{\sim} \text{Iso}(E)$$

A (affine) hyperplane $H \subset E$ is an affine subspace of dimension $l-1$, i.e. $H = h + W$ where $W \subset E$ is a linear subspace of dimension $l-1$ and $h \in H$. We choose $0 \neq \alpha \in W^\perp$. Then $H = \{v \in E / \langle v, \alpha \rangle - \langle v, h \rangle = 0\}$. We define the *reflection* s_H with respect to H by $s_H(v) = v - (\langle v, \alpha \rangle - \langle v, h \rangle) \frac{2\alpha}{\langle \alpha, \alpha \rangle}$. Then $s_H^2 = \text{Id}$ and s_H fixes exactly H . Moreover s_H does not depend on the choice of $\alpha \in W^\perp$ and the choice of h .

We have an affine map $a : E \rightarrow \mathbb{R}$ with $a(v) = \langle \alpha, v \rangle - \langle h, v \rangle$. If conversely $a : E \rightarrow \mathbb{R}$ is a non constant affine map we can write $a(v) = L(v) - r$ where $L : V \rightarrow \mathbb{R}$ is linear $L \neq 0$ and $a(0) = -r \in \mathbb{R}$. Now $L(v) = \langle v, \alpha \rangle$ for some $0 \neq \alpha \in E$ and we introduce $s_a(v) := v - a(v) \frac{2\alpha}{\langle \alpha, \alpha \rangle}$, $v \in V$, a reflection at the hyperplane $H_a = \{v \in E / a(v) = 0\}$. We write $a = (\alpha, r)$ and note that s_a is independent of the choice of α .

4.2. Let $\mathcal{H} := \{H_i\}_{i \in I}$ be a family of (affine) hyperplanes of E . The family is said to be *locally finite* if every $v \in E$ has a neighbourhood \mathcal{U} in E such that $|\{i \in I | H_i \cap \mathcal{U} \neq \emptyset\}|$ is finite. A subgroup $W \subset \text{Iso}(E)$ is called a *Coxeter group* if it is generated by the reflections s_H contained in W such that the set of hyperplanes $\mathcal{H} = \{H / s_H \in W\}$ is a locally finite family.

We have a natural homomorphism $p : \text{Iso}(E) \rightarrow O(E)$ sending an affine isometry to its linear part. Let $p(W) = {}^v W$ be the image (= vectorial part of W in $O(E)$). Then reflections at parallel hyperplanes have identical image in ${}^v W$ and ${}^v W$ is generated by these images, which are reflections at hyperplanes through $0 \in E$.

4.3. A Coxeter group W is called *essential* if $E^v W = \{v \in E / u(v) = v \text{ for all } u \in {}^v W\} = \{0\}$ and it is called *irreducible* if the representation of ${}^v W$ on E is irreducible. The investigation of Coxeter groups can be reduced to the study of essential and irreducible Coxeter groups, see [B: Chap. V, § 3, no 8].

4.4. Let W be an essential and irreducible Coxeter group. Denote by \mathcal{H} the set of hyperplanes such that $s_H \in W$. The connected components of $E \setminus \bigcup_{H \in \mathcal{H}} H$ are called *chambers* of W . Let C be one chamber with topological closure \overline{C} . Then the following hold:

- if $|W| = \infty$ then \overline{C} is a ℓ -dimensional simplex bounded by $\ell + 1$ hyperplanes
- if $|W| < \infty$ then C is a cone bounded by ℓ hyperplanes
- W acts simply transitively on the set of chambers
- W is generated by the set S of reflections at the bounding hyperplanes (= *walls*) of C
- ${}^v W \subset O(E)$ is a finite reflection group.
- If $x \in \overline{C}$ then $W_x = \{w \in W / w(x) = x\}$ is generated by the $s_H \in W$ with $s_H(x) = x$.
- there exist points $x \in E$ such that W_x maps isomorphically to ${}^v W$. These points are called *special points*.

4.5. We continue to assume that W is essential and irreducible. Replacing W by a conjugate subgroup of $\text{Iso}(E)$ we can assume that $W_x = {}^v W$. Hence we can view ${}^v W$ as a subgroup of W . We recall that a lattice L in E is a subgroup (of E) generated by ℓ linear independent vectors. Then we have

— If $|W| = \infty$ then there is a lattice $L \subset E$ such that $W = L \rtimes {}^v W$

— If $|W| < \infty$ then $W = W_0 \tilde{\longrightarrow} {}^v W$.

The cones corresponding to W_0 intersect with a sphere S^{l-1} of radius 1 with center 0 and give a tessellation of this sphere. Hence a finite Coxeter group $W = W_0$ is called *spherical*. If $|W| = \infty$ then W is called *euclidean*. The closed chambers of W give a tessellation of E consisting of congruent closed l -dimensional simplices.

The sphere S^{l-1} resp. E together with the simplicial structure coming from the simplicial structure of the closed chambers is called the *Coxeter complex* of W .

4.6. The Coxeter groups W can be classified, see [B. Ch. VI, §4, Thm. 1, Ch. VI, §2 Prop. 8]. We describe the result for $|W| = \infty$.

Let R be an irreducible and reduced root system in the vectorspace $V = E^* = \text{Hom}_R(E, \mathbb{R})$. Let R^\vee be the dual root system in E and denote by s_α the reflection in E given by $s_\alpha(x) = x - \alpha(x)\alpha^\vee, \alpha \in R$. The group generated by these reflections is denoted by ${}^v W$. If identify V and E with the help of a ${}^v W$ -invariant euclidean scalarproduct \langle , \rangle on E , then $\alpha^\vee = \frac{2\alpha}{\langle \alpha, \alpha \rangle}$ for $\alpha \in R$.

The reflection at the (affine) hyperplane $H_{\alpha, k} = \{x \in E / \alpha(x) = k\}$ is denoted by $s_{\alpha, k}$. We have $s_{\alpha, k}(x) = x - (\alpha(x) - k)\alpha^\vee = t(k\alpha^\vee) \circ s_\alpha$, where $t(k\alpha^\vee)$ denotes the translation by $k\alpha^\vee$. In particular $s_{\alpha, 0} = s_\alpha$. We write $a = (\alpha, -k)$, $s_a = s_{\alpha, k}$, and view a as affine map $a(x) = \alpha(x) - k$. Then $R_{\text{aff}} := \{a : E \rightarrow \mathbb{Z} \text{ affine} / a = (\alpha, k), \alpha \in R, k \in \mathbb{Z}\}$ is called the set of *affine roots* of R . The group generated by the s_a , $a \in R_{\text{aff}}$ is denoted by W and is called the *affine Weyl group* of R . Of course ${}^v W \subset W$ and ${}^v W$ acts on the lattice Λ in E generated by the $\alpha^\vee \in R^\vee$. Hence $\Lambda \rtimes {}^v W$ is defined and one has $W = \Lambda \rtimes {}^v W$, see [B: Chap. VI §2]. The classification mentioned above says that every essential irreducible euclidean Coxeter group C is isomorphic to exactly one such W given by an irreducible and reduced root system R . Moreover the isomorphism comes from a isomorphism of the underlying affine spaces.

4.7. We can describe a chamber of the tessellation of E given by W as follows: Let $\alpha_1, \dots, \alpha_l$ be a basis of R and denote by $\check{\alpha} = \sum_{i=1}^l n_i \alpha_i$ the largest (positive) root,

$n_i \geq 1, n_i \in \mathbb{Z}$. Then $C = \{x \in E / \alpha_i(x) > 0, \check{\alpha}(x) < 1\}$ is a chamber for W . Let $w_1, \dots, w_l \in E$ be such that $\langle \alpha_i, w_i \rangle = \delta_{ij}$. The w_i then are a basis of the weights P^\vee for the root system R^\vee in E . Then the hyperplanes spanned by the w_i are the walls of a Weyl chamber in E for ${}^v W$ and \overline{C} has another wall given by the affine hyperplane $\{x \in E / \check{\alpha}(x) = 1\}$. Hence \overline{C} has vertices $\{0, \frac{w_1}{n_1}, \dots, \frac{w_l}{n_l}\}$ and W is generated by the $l+1$ reflections at the hyperplanes bounding \overline{C} . Since $x \in V$ is special if for every α_i there is a k such that $x \in H_{\alpha_i, k}$ we see that $\frac{w_i}{n_i}$ is special iff $n_i = 1$.

4.8. The affine Weyl groups we need later are constructed from a non reduced root system R . Bruhat and Tits have defined a finer notion of equivalence in this situation and give a classification of the arising Weyl groups (as abstract groups these are the old ones) together with the lattice of translations given by the root system R . In general the arising lattice of translations now is not proportional to the lattice of translations given by the reduced root system of R . The classification is given in terms of extended Dynkin diagrams where the direction of double or threefold arrows can be reversed and where some vertices may get in addition a $*$ indicating the simple roots whose double is also a root. For all this see [Br-T 3: 1.4.5].

§5. Construction of compact and open subgroups

Let G/K be a semi simple group defined over K . Then by definition there is a $n \in \mathbb{N}$ and a finite set of polynomials with coefficients in K in variables $X_{ij}, i, j \in \{1, \dots, n\}$, such that $G(K) \subset GL_n(K)$ is the set of common zeros of the polynomials. Since $GL_n(\mathcal{O})$ is an open and compact subgroup of $GL_n(K)$ we get an open and compact subgroup $\Gamma := G(K) \cap GL_n(\mathcal{O})$ of $G(K)$. If Γ_1 and Γ_2 are open and compact subgroups then $\Gamma_1 \cap \Gamma_2$ is open and compact and of finite index in Γ_1 and Γ_2 . This implies that every open and compact subgroup of $G(K)$ is conjugate in $GL_n(K)$ to a subgroup of $GL_n(\mathcal{O})$.

There are many different possibilities to view G as a subgroup of some GL_n . For the adjoint group G_{ad} of G with K -Lie algebra \mathfrak{g} we have the natural embedding

$$\text{Ad} : G_{\text{ad}}(K) \hookrightarrow GL(\mathfrak{g}).$$

Composing with the natural map $G \rightarrow G_{\text{ad}}$ we get a homomorphism with finite kernel

$$G(K) \rightarrow GL(\mathfrak{g})$$

and all open compact subgroups Γ of $G(K)$ occur as stabilizers of lattices $L \subset \mathfrak{g}$. Here L is a finitely generated \mathcal{O} submodule of \mathfrak{g} such that $L \cdot K = \mathfrak{g}$.

The “good” compact open subgroups should possess an \mathcal{O} -Liealgebra L and should occur as stabilizers under the adjoint action of L . Hence we are motivated to construct \mathcal{O} -Lie algebras L such that $L \otimes_{\mathcal{O}} K = \mathfrak{g}$. We explain this for K -split groups and start with the example $SL_n(K)$.

5.1. In $SL_n(K)$ we consider the maximal split torus $T = \{t = \begin{pmatrix} t_1 & & 0 \\ & \ddots & \\ 0 & & t_n \end{pmatrix} / t_i \in K^*, \prod_{i=1}^n t_i = 1\}$. We define $\varepsilon_i(t) = t_i =: t^{\varepsilon_i}$. We identify the \mathbb{R} -vector space spanned by the ε_i with \mathbb{R}^n . Let $V \subset \mathbb{R}^n$ be the subspace $V := \{(x_1, \dots, x_n) \in \mathbb{R}^n \mid \sum x_i = 0\}$. It has a basis $\varepsilon_i - \varepsilon_{i+1}, i = 1, \dots, n-1$, and V is identified with $X^*(T) \otimes_{\mathbb{Z}} \mathbb{R}$ where $X^*(T)$ denotes the group of characters of T . The roots $\varepsilon_i - \varepsilon_j =: \alpha_{ij}, i \neq j; i, j \in \{1, \dots, n\}$ are in V and $t \in T$ acts on $u_{ij} = 1 + e_{ij}x$ by $tu_{ij}t^{-1} = 1 + \alpha_{ij}(t)x\varepsilon_{ij}$. Here $x \in K$ and e_{ij} is the $n \times n$ matrix with all coefficients zero except the coefficient in i -th column and j -th row and this coefficient is 1. The elements of the normalizer $N(T)$ of T in $SL_n(K)$ have exactly one non zero entry in each row and column. The vectorial Weyl group ${}^w W = N(T)/T$ acts as group of permutations of the $(\varepsilon_1, \dots, \varepsilon_n)$.

Let L be a lattice in K^n , i.e. L is a finitely generated \mathcal{O} -submodule with $K \cdot L = K^n$. By the elementary divisor theorem there is a basis v_1, \dots, v_n of K^n such that $L = \mathcal{O}v_1 + \dots + \mathcal{O}v_n$ and the stabilizer G_L of L in $SL_n(K)$ can be identified with $SL_n(\mathcal{O})$. In particular $GL_n(K)$ acts transitively on the set of lattices. As in 2.5 (proof) we see that the stabilizer of L in $SL_n(K)$ is a maximal compact subgroup of $SL_n(K)$. Lattices L_1, L_2 are called *equivalent* if $xL_1 = L_2$ for some $x \in K^*$. Apparently equivalent lattices have the same stabilizers.

We consider the lattices $L = \pi^{r_1}\mathcal{O} \oplus \dots \oplus \pi^{r_n}\mathcal{O}, r_i \in \mathbb{Z}$ in K^n . The corresponding lattice classes are uniquely determined by $L_0 = \mathcal{O} \oplus \dots \oplus \mathcal{O}$ and $(r_1 + t, \dots, r_n + t) \text{mod } t, t \in \mathbb{Z}$.

The stabilizer of the lattice L in $SL_n(K)$ is $tSL_n(\mathcal{O})t^{-1}$ where $t = \begin{pmatrix} \pi^{r_1} & & 0 \\ & \ddots & \\ 0 & & \pi^{r_n} \end{pmatrix} \in GL_n(K)$.

Apparently $tSL_n(\mathcal{O})t^{-1}$ contains $T(\mathcal{O}) = \left\{ \begin{pmatrix} t_1 & & 0 \\ & \ddots & \\ 0 & & t_n \end{pmatrix} \in SL_n(K) / t_i \in \mathcal{O}^* \right\}$

and the groups $U_{i,j,k} = \{1 + e_{ij}x / x \in \pi^k \mathcal{O}\}$, where $\nu(x) \geq k = r_i - r_j$ (recall: $\nu: K \rightarrow \mathbb{Z}$ is the valuation of K). These subgroups generate $tSL_n(\mathcal{O})t^{-1}$ which of course only depends on the class of the lattice.

We put $E = V^* = \text{Hom}_{\mathbb{R}}(V, \mathbb{R})$ and view V^* as quotient of $(\mathbb{R}^n)^*$. Here the standard basis of $(\mathbb{R}^n)^*$ is denoted by e_1, \dots, e_n and e_1, \dots, e_n is the dual basis of the standard basis $\varepsilon_1, \dots, \varepsilon_n$ of \mathbb{R}^n . We have an action of the affine Weyl group W attached to the set of affine roots $\alpha_{i,j,k} = \alpha_{ij} + k, k \in \mathbb{Z}$ on E , see §4. Let $A(T)$ be the arising Coxeter complex. Recall, that the chamber C given by the set of positive roots, $\alpha_1, \dots, \alpha_{n-1}$ has vertices $(0, w_1, \dots, w_{n-1})$. Here we use $R = R^\vee$ and the fact that $\alpha_1 + \dots + \alpha_{n-1} = \check{\alpha}$ is the largest root. The w_j have been computed in [B: Chap. V Planche I]. One has $w_j = e_1 + \dots + e_j - \frac{j}{n} \sum_{i=1}^n e_i$ i.e. in coordinates $w_j = \left(\underbrace{1 - \frac{j}{n}, \dots, 1 - \frac{j}{n}}_j, -\frac{j}{n}, \dots, -\frac{j}{n} \right)$ and $\langle w_j, \alpha_i \rangle = \delta_{ij}$. The reflection s_{α_i} acts on $x = (x_1, \dots, x_n) \in E$ as $s_{\alpha_i}(x) = (x_1, \dots, x_{i-1}, x_{i+1}, x_i, x_{i+2}, \dots, x_n), i = 1, n-1$. The reflection at the wall $H_{\check{\alpha},1} = \{e \in E / \langle \check{\alpha}, e \rangle = 1\}$ is given by $s(x_1, \dots, x_n) = (x_n + 1, x_2, \dots, x_{n-1}, x_1 - 1)$.

To the class of lattices represented by $\pi^{r_1}\mathcal{O} \oplus \dots \oplus \pi^{r_n}\mathcal{O} = L$ we attach the well defined vertex $v(L) = -(r_1 - \frac{r}{n}, \dots, r_n - \frac{r}{n}) \in E$ where $r = \sum_{i=1}^n r_i$. Note that $v(L)$ determines the class of L . If $t \in T(K)$, $t = \begin{pmatrix} t_1 & & 0 \\ & \ddots & \\ 0 & & t_n \end{pmatrix}, \prod_{i=1}^n t_i = 1$ then tL is the lattice $\pi^{r_1+v(t_1)}\mathcal{O} \oplus \dots \oplus \pi^{r_n+v(t_n)}\mathcal{O}$ and $\sum_{i=1}^n v(t_i) = 0$. Hence to $t(L)$ corresponds the point $-(r_1 + v(t_1) - \frac{r}{n}, \dots, r_n + v(t_n) - \frac{r}{n})$. The coroots $\alpha^\vee \in R^\vee (= R)$ span the lattice $\{(u_1, \dots, u_n) \in \mathbb{Z}^n / \sum_{i=1}^n u_i = 0\}$ in E . Hence $v(tL) = v(L) + q$ where $q \in \mathbb{Z}(R^\vee)$ is in the

lattice spanned by the coroots. We observe that $v(\underbrace{\pi^{-1}\mathcal{O} \oplus \dots \oplus \pi^{-1}\mathcal{O}}_j \oplus \mathcal{O} \oplus \mathcal{O} \oplus \dots \oplus \mathcal{O}) = w_j$. In obvious matrix block notation the stabilizer of the lattice corresponding to w_j is

$$P_j = \left\{ \begin{pmatrix} \mathcal{O} & \mathcal{P}^{-1} \\ \mathcal{P} & \mathcal{O} \end{pmatrix} \in SL_n(K) \right\},$$

where in the upper left corner \mathcal{O} stands for a $j \times j$ -matrix with coefficients in \mathcal{O} and the vertex 0 corresponds to $SL_n(\mathcal{O})$. From this and with the action of $T(K)$ we see that v establishes a bijection between the classes of lattices $\pi^r \mathcal{O} \oplus \dots \oplus \pi^r \mathcal{O}$ with the set of vertices of the Coxeter complex given by T and by the action of the affine Weyl group W of R .

We note that the chamber C viewed as a simplex can be represented by the flag of lattices $L_0 = \pi \mathcal{O} \oplus \dots \oplus \pi \mathcal{O} \subset L_1 = \mathcal{O} \oplus \pi \mathcal{O} \oplus \pi \mathcal{O} \dots \oplus \pi \mathcal{O} \subset \dots \subset L_j = \mathcal{O} \oplus \dots \oplus \mathcal{O} \oplus \pi \mathcal{O} \oplus \dots \oplus \pi \mathcal{O} \subset L_{n-1} = \mathcal{O} \oplus \dots \oplus \pi \mathcal{O}$. Here the L_i correspond to the vertices of C .

5.2. Let \mathfrak{g} be a simple split K -Lie algebra. Then there is a Cartan subalgebra \mathfrak{h} , a reduced irreducible system of roots $R \subset \mathfrak{h}^* = \text{Hom}_{\mathbb{R}}(\mathfrak{h}, \mathbb{R})$ and root spaces $\mathfrak{g}_\alpha = \{x \in \mathfrak{g}/[H]X = \alpha(H)X\}$ of dimension 1 such that $\mathfrak{g} = \mathfrak{h} \oplus \bigoplus_{\alpha \in R} \mathfrak{g}_\alpha$. Put $l = \dim \mathfrak{h}$. Choose R^+ a system of positive roots with basis $\alpha_1, \dots, \alpha_l$. A *Chevalley basis* of $(\mathfrak{g}, \mathfrak{h})$ is a basis $H_{\alpha_1}, \dots, H_{\alpha_l}$ of \mathfrak{h} and vectors $0 \neq X_\alpha \in \mathfrak{g}_\alpha$ such that the following hold.

- 1) $[H_\alpha, X_\alpha] = \langle \alpha_i, \alpha^\vee \rangle X_\alpha$
- 2) $[X_\alpha, X_{-\alpha}] = -H_\alpha$ and $[X_\alpha, X_{-\alpha}]$ is a \mathbb{Z} -linear combination of the H_{α_i} .
- 3) If $\alpha, \beta \in R$ and $\alpha + \beta \in R$, then $[X_\alpha, X_\beta] = \pm(r+1)X_{\alpha+\beta}$ when $\beta - r\alpha, \dots, \beta, \dots, \beta + q\alpha, r, q \in \mathbb{N}$ is the α -string through β .

We note that $\langle \alpha, \beta^\vee \rangle = n(\alpha, \beta) \in \{0, -1, -2, -3\}$. Since the H_{α_i} and X_α span a \mathbb{Z} -Lie subalgebra $\mathfrak{g}_{\mathbb{Z}}$ we can construct a lattice $\mathfrak{g}_0 = \mathfrak{g}_{\mathbb{Z}} \otimes_{\mathbb{Z}} \mathcal{O}$ of \mathfrak{g} .

5.3. Let G_{ad} be the adjoint connected algebraic group acting as automorphisms of the Lie-algebra \mathfrak{g} . Over an algebraic closure \overline{K} of K the group $G_{ad}(\overline{K})$ is generated by the

elements $\exp ad X_\alpha t$, $\alpha \in R$, $t \in \overline{K}$. Since the X_α come from a Chevalley basis of \mathfrak{g} the *adjoint Chevalley group* G_{ad} is defined over \mathbb{Z} .

Let $Aut_0(\mathfrak{g}, \mathfrak{h})$ be the subgroup of G_{ad} leaving \mathfrak{h} invariant. Let T_{ad} denote the split torus in G_{ad} corresponding to \mathfrak{h} . Then there is an exact sequence

$$1 \longrightarrow T_{ad} \longrightarrow Aut_0(\mathfrak{g}, \mathfrak{h}) \longrightarrow {}^v W \longrightarrow 1,$$

where $T_{ad} = T_{ad}(K) = \text{Hom}_{\mathbb{Z}}(\mathbb{Z}(R), K^*)$, see [B : Ch. V III, §5 n° 2]. Here ${}^v W$ is the vectorial Weyl group of the root system R and $Aut_0(\mathfrak{g}, \mathfrak{h}) = N(T)(K)$ is the normalizer of T_{ad} in G_{ad} . It is known (see loc. cit. n° 3) that $G_{ad}(K)$ is simply transitive on the set of Chevalley basises for \mathfrak{g} . Therefore T_{ad} is simply transitive on Chevalley basises for $(\mathfrak{g}, \mathfrak{h})$ with some choice of a basis $\alpha_1, \dots, \alpha_l$ of R .

5.4. Let Λ be a lattice in $V = \mathbb{R}(R)$ such that

$$\mathbb{Z}(R) \subset \Lambda \subset \mathbb{Z}(P)$$

where $\mathbb{Z}(P)$ is the lattice spanned by the weights P and put $T(\overline{K}) = \text{Hom}_{\mathbb{Z}}(\Lambda, \overline{K}^*)$. Then T is a torus, defined over K with group of characters $X^*(T) = \Lambda$. For T there exists a group G/K with maximal split torus T such that G covers G_{ad} , i.e. over \overline{K} there is an exact sequence

$$1 \longrightarrow \mu \longrightarrow G \longrightarrow G_{ad} \longrightarrow 1,$$

with $\mu(\overline{K}) = \text{Hom}_{\mathbb{Z}}(\Lambda/\mathbb{Z}(R), \overline{K}^*)$. If $\Lambda = \mathbb{Z}(P)$ the group G is called the simply connected covering of G_{ad} or the *simply connected Chevalley group of type* R . The name “simply connected” is motivated by the fact that $G(\mathbb{C})$ viewed as topological space with the topology given by the usual one of \mathbb{C} is simply connected. For all this, see [D-G].

We have $T(K) = \text{Hom}_{\mathbb{Z}}(\Lambda, K^*) = \text{Hom}_{\mathbb{Z}}(\Lambda, \mathbb{Z}) \otimes_{\mathbb{Z}} K^*$ with $X_*(T) = \text{Hom}_{\mathbb{Z}}(\Lambda, \mathbb{Z})$, the group of cocharacters of G . If $\Lambda = \mathbb{Z}(P)$ we get $\text{Hom}_{\mathbb{Z}}(\Lambda, \mathbb{Z}) = \mathbb{Z}(R^\vee)$ by the definition of the weights P .

5.5. We assume now that G is a simply connected split Chevalley group with split maximal torus T , $X_*(T) = \mathbb{Z}(R^\vee)$, $X^*(T) = \mathbb{Z}(P)$ and vectorial Weyl group ${}^v W$. We put $E = X_*(T) \otimes \mathbb{R}$, $V = X^*(T) \otimes \mathbb{R}$ chose a ${}^v W$ -invariant metric on V and E^* and consider the action of the affine Weyl group $\mathbb{Z}(R^\vee) \times {}^v W =: W$ on E . According to §4 we then have the notion of a Coxeter complex $A(T)$ with a chamber C determined by a choice of a system of positive roots $\alpha_1, \dots, \alpha_\ell$. The chamber has vertices $(0, \frac{w_1}{n_1}, \dots, \frac{w_\ell}{n_\ell})$, see §4.

As explained the end of §3.7 we want to attach open and compact subgroups P_i to the $\ell + 1$ vertices of C . We describe these as stabilizers in $G(K)$ of \mathcal{O} -lattices in \mathfrak{g} . We fix a Chevalley basis $\{H_\alpha, X_\alpha\}_{i=1, \dots, \ell}, \alpha \in R$, and denote the \mathcal{O} -Liealgebra spanned by the basis by \mathfrak{g}_0 . Let P_0 be the stabilizer in $G(K)$ of \mathfrak{g}_0 with respect to the adjoint action.

Let $\check{\alpha} = \sum_{j=1}^\ell n_j \alpha_j$ be the largest positive root. The $\alpha \in R$ is written uniquely $\alpha = \sum_{j=1}^\ell m_j \alpha_j$, $m_j \in \mathbb{Z}$ $|m_j| \leq n_j$. We define for $j \in \{1, \dots, \ell\}$ and $\alpha \in R$ an integer

$$n(j, \alpha) = \begin{cases} -1 & m_j = n_j \\ 0 & 0 \leq m_j < n_j \\ 1 & m_j < 0 \end{cases}$$

and consider the \mathcal{O} -span of the basis $\{H_\alpha, \pi^{n(j, \alpha)} X_\alpha\}_{i=1, \dots, \ell, \alpha \in R}$, and see that this is an \mathcal{O} -Lie algebra. Let $P_i \subset G(K)$ be the stabilizer of this \mathcal{O} -lattice. We note that for $G = SL_{\ell+1}$ we have $\check{\alpha} = \alpha_1 + \dots + \alpha_\ell$. Hence since $n_j = 1$ for all j and we get exactly the groups P_i of §5.1.

Let U_α be the root group for $\alpha \in R$ of G . Then U_α is isomorphic to the root group for $\alpha \in R$ in G_{ad} since μ does not meet U_α . The choice of $X_\alpha \in \mathfrak{g}_\alpha$ determines an isomorphism $U_\alpha = U_\alpha(U) \xrightarrow{\xi_\alpha} K$. Hence there is a filtration $U_{\alpha, k}$ of U_α with $U_{\alpha, k} = \{x \in U_\alpha(K) / v(\xi_\alpha(x)) \geq k\}$. We view (α, k) as affine map $a : A(T) \rightarrow \mathbb{R}$ with $a(b) = \alpha(b) + k$. If $\alpha = \sum_{j=1}^\ell m_j \alpha_j$, then $a\left(\frac{w_1}{n_1}\right) = \frac{m_1}{n_1}$ and $a\left(\frac{w_1}{n_1}\right) \geq 0$ iff $k \geq n(j, \alpha)$. Hence P_j is the subgroup of $G(K)$ generated by $T(\mathcal{O})$ and all the U_α with $a\left(\frac{w_1}{n_1}\right) \geq 0$. More generally we attach to $b \in A(T)$ the group P_b generated by $T(\mathcal{O})$ and all U_α with $a(b) \geq 0$.

We note that $T(K)$ acts by conjugation on the P_b . If P_b comes from a lattice with basis $\{\mathcal{O}H_\alpha, \mathcal{O}\pi^{r_\alpha} X_\alpha\}, i = 1, \dots, \ell, \alpha \in R$ then $t P_b t^{-1}$ comes from the lattice $(\mathcal{O}H_\alpha, \mathcal{O}\pi^{r_\alpha+v(\alpha(t))} X_\alpha)$. Let b determine the root groups $U_{\alpha, k}, a = \alpha + k$. Then $t P_b t^{-1}$ determines root groups $U_{\alpha, k+v(\alpha(t))} = \{x \in U_\alpha / a(x) - v(\alpha(t)) \geq k\}$. We therefore define a map $\mu : T(K) \rightarrow \{\text{translations of } A(T)\}$ as follows. First we map $t \in T(K) = \text{Hom}(\mathbb{Z}(R), K^*)$ to $v(t) \in \text{Hom}_{\mathbb{Z}}(\mathbb{Z}(R), \mathbb{Z})$ by composing with $-v : K^* \rightarrow \mathbb{Z}$. We note that $\text{Hom}_{\mathbb{Z}}(\mathbb{Z}(P), \mathbb{Z}) = \mathbb{Z}[R^\vee]$ canonically. Hence $v(t) \in \mathbb{Z}(R^\vee)$ and $\mu(t)$ is defined as translation on $A(T) = E = \mathbb{Z}(R^\vee) \otimes_{\mathbb{Z}} \mathbb{R}$ given by $x \mapsto x + v(t)$. With this notation $t P_b t^{-1} = P_{b+v(t)}$.

The map $\mu : T(K) \rightarrow \text{Aff}(E)$ can be extended to a homomorphism $\nu : N(T)(K) \rightarrow A(E)$ such that the linear part of $\mu(n)$, $n \in N(T)(K)$ acts as prescribed by the action of $\bar{n} \in {}^v W$ on E . We get $n P_b n^{-1} = P_{\nu(n)b}$. We note that if b is an interior point of a simplex of $A(T)$ with vertices b_1, \dots, b_r , then $P_b = \bigcap_{i=1}^r P_{b_i}$.

Summarizing we have attached to every simplex of $A(T)$ a compact subgroup of $G(K)$ and the attachment is compatible with the action of $N(T)(K)$ on both sides. The description of the groups depends on a fixed choice of a Chevalley lattice \mathfrak{g}_0 in \mathfrak{g} with stabilizer P_0 corresponding to $0 \in A(T)$ given by the point zero in E . The same situation already occurred for SL_2 : the apartments where described with respect to a choice of 0.

§6. Construction of Buildings

Let G/K be an semi simple connected algebraic group over a local field K with maximal K -split torus S . We construct at first a Coxeter complex $A(S)$ and then describe how the complexes are glued together to obtain the Bruhat-Tits building of $G(K)$. For simplicity we assume that G is almost simple.

6.1. We let $X^*(S)$ be the group of K -rational characters of S and put $E := \text{Hom}_{\mathbb{Z}}(X^*(S), \mathbb{R})$. For $s \in S = \text{Hom}_{\mathbb{Z}}(X^*(S), K^*) = X_*(S) \otimes_{\mathbb{Z}} K^*$ we define $\mu(s) \in E$ by $\chi(\mu(s)) = -v(\chi(s))$ where $v : K \rightarrow \mathbb{Z}$ is the discrete valuation of K and where

$x \in X^*(S)$. The group $X^*(Z)$ of K -rational characters of the centralizer Z of S in G is of finite index in $X^*(S)$. Hence μ extends to a homomorphism denoted by $\mu : Z(K) \rightarrow E$. Let $N(S)$ be the normalizer of S in G . We write $N(K) = N(S)(K)$. Then $N(K)/Z(K) = {}^v W$ is the (vectorial) Weyl group generated by reflections at the K -roots of S . These K -roots form a root system R (not necessarily reduced) and the roots generate $X^*(S) \otimes \mathbb{R}$. Since ${}^v W$ acts on $X^*(S)$ we get a linear action of $w \in {}^v W$ on E written $v \mapsto w \cdot v$. There is a natural extension of μ to a homomorphism $\nu : N(S)(K) \rightarrow \text{Aff}(E)$ into the group of affine bijections such that

- a) if $s \in Z(K)$ then $\nu(s)v = v + \mu(s)$
- b) if $n \in N(K)$ represents $w \in {}^v W$ then the linear part of $\nu(n)$ is the map $v \mapsto w \cdot v$.

To see this we introduce $Z_c = \ker \mu$ and observe that $N(K)/Z_c$ is a group extension of ${}^v W$ by $\Lambda := \mu(Z(K))$ which is a lattice with $X_*(S) \subset \mu(Z(K)) \subset \text{Hom}_{\mathbb{Z}}(X^*(Z), \mathbb{Z})$. Thus $N(K)/Z_c$ represents a class in $H^2({}^v W, \Lambda)$ which gets trivial in $H^2({}^v W, \Lambda \otimes_{\mathbb{Z}} \mathbb{R})$ and we have a map $N(S)(K)/Z_c \rightarrow \Lambda \otimes_{\mathbb{Z}} \mathbb{R} \rtimes {}^v W$. The semi direct product acts by affine maps on $\Lambda \otimes_{\mathbb{Z}} \mathbb{R} = E$. Hence we get a map $\nu : N(S)(K) \rightarrow \text{Aff}(E)$ with properties a) and b). Since ${}^v W$ acts irreducibly on E the map ν is unique.

6.2. Let $R \subset X^*(S)$ be the system of K -roots of (G, S) . Any $\alpha \in R$ defines a reflection s_{α} on E and a root group $U_{\alpha} \subset G$ which is connected and unipotent (of dimension 1 if G is split, but not in general) We abbreviate $U_{\alpha} = U_{\alpha}(K)$.

If $x \in U_{\alpha} \setminus \{1\}$ there is a unique element $m_{\alpha}(x) \in U_{-\alpha}xU_{-\alpha} \cap N(K)$ whose image in ${}^v W$ is s_{α} see [B - T]. Then $\nu(m_{\alpha}(x))$ is the affine reflection s_x on E with

$$s_x(v) = v - (\langle \alpha, v \rangle - \varphi_{\alpha}(x))\alpha^{\vee}$$

where $\varphi_{\alpha}(x) \in \mathbb{R}$ and $\alpha^{\vee} \in E$ is the coroot of α . By the uniqueness of $m_{\alpha}(x)$ one gets $m_{\alpha}(x^{-1}) = m_{\alpha}(x)^{-1}$ and $m_{\alpha}(nxn^{-1}) = n m_{\alpha}(x)n^{-1}$ if $n \in N(K)$ represents $w \in {}^v W$. Consequently $t := \varphi_{\alpha}(nxn^{-1}) - \varphi_{\alpha}(x)$ is independent of x . If we choose $n = m_{\alpha}(u)$, $u \in U_{\alpha}$, then we get $\varphi_{\alpha}(m_{\alpha}(u)xm_{\alpha}(u)^{-1}) - \varphi_{\alpha}(x) = 2\varphi_{\alpha}(u)$. We put $\varphi_{\alpha}(1) = \infty$.

Example: If $G = SL_n(K)$ and $\alpha = \varphi_i - \varphi_j$ then $U_{\alpha} = \{1 + te_{ij}/t \in K\}$. We get $\varphi_{\alpha}(t) = v(t)$.

We introduce $U_{\alpha,r} = \{x \in U_{\alpha}(K) / \varphi_{\alpha}(x) \geq r\}$, $r \in \mathbb{R}$.

6.3. Proposition. *We use the above notation. Then*

- (i) $U_{\alpha,r}$ is a subgroup of $U_{\alpha}(K)$.
- (ii) If $\alpha, \beta \in R$ and $\alpha \notin -R^*\beta$ then the commutator $[U_{\alpha,r}, U_{\beta,s}]$ is contained in the subgroup generated by $U_{p\alpha+q\beta, p+r+qs}$, where p, q are integers ≥ 1 .

The proof in the general case is difficult, see [Br-T 4]. For simply connected split groups the proof follows from what we have observed in §5 and standard properties of Chevalley groups, see [Br-T 3: 6.1.3 b)].

6.4. For $\alpha \in R$ and $2\alpha \notin R$ put $U_{2\alpha} = \{1\}$ and for $2\alpha \in R$ write $U_{2\alpha} = U_{2\alpha}(K)$. Then we have a filtration $U_{\alpha,r}U_{2\alpha}$ of U_{α} , $\alpha \in R$, $r \in \mathbb{R}$. Let J_{α} be the discrete set of $r \in \mathbb{R}$ such that the filtration jumps i.e.

$$U_{\alpha,r} \not\subset \bigcup_{s > r} U_{\alpha,s}U_{2\alpha}.$$

Then (α, r) is called an *affine root*. We view (α, r) as affine map $a : E \rightarrow \mathbb{R}$ given by $a(v) = \langle \alpha, v \rangle - r$. The corresponding reflection s_a then is given by

$$s_a(v) = v - a(v)\alpha^{\vee}.$$

We write $U_a = U_{\alpha,r}$. The group generated by the s_a for affine roots $a = (\alpha, r)$ in the space of affine bijections of E is denoted by W and is called the *affine Weyl group*. This is the affine Weyl group of some root system (see §4) which can differ from R . We note that for $n \in N(S)(K)$ we get $nU_a n^{-1} = U_{\nu(n)a}$. For simply connected split groups we get as set of affine root R_{aff} as described in §5 and W is the affine Weyl group attached to R . In general

W is different from $\nu(N(S)(K)) =: \hat{W}$. If G is simply connected then $W = \nu(N(S)(K))$.

6.5. Let $A = A(S)$. The affine Weyl group acts as Coxeter group on A and A together with the arising Coxeter complex is called an *apartment* of G . For $b \in A$ let P_b be the group generated by $H := Z(K)_c$ and all U_a where $a(b) \geq 0$. Then P_b is an open and compact subgroup of $G(K)$. Let $N := \nu^{-1}(W) \subset N(S)(K)$. Then $N/H \xrightarrow{\sim} W$.

We consider the equivalence relation on $G(K) \times A$ given by:

$(g, x) \sim (h, y)$ if there is an $n \in N$ such that $y = \nu(n)x$ and $g^{-1}hn \in P_x$. For a proof that this is an equivalence relation, see [B-T 3: 7.4.1].

6.6. Definition: We denote by \mathcal{T} the quotient of $G \times A$ by the above equivalence relation. $\mathcal{T} = BT(G, K)$ is called the *Bruhat-Tits building* of G over the local field K .

6.7. We observe the following, see [Br-T 3: 7.4]

- The action of $G(K)$ is compatible with the equivalence relation and defines an action of $G(K)$ on \mathcal{T} .
- The natural map $A \times \mathcal{T} \rightarrow \mathcal{T}$ is injective. We identify A with its image in \mathcal{T} . Then $\mathcal{T} = \bigcup_{g \in G(K)} gA$. The sets gA are called apartments of \mathcal{T} .
- The natural simplicial structure of A given by W induces a simplicial structure on \mathcal{T} .
- The group N is the stabilizer of A in G and H is the subgroup of G fixing A .
- If A' and A'' are apartments there is an element $g \in G(K)$ such that $g(A') = A''$ and such that g fixes $A' \cap A''$ pointwise. Moreover $A' \cap A''$ is the union of closed facets of A' (and of A'').

6.8. On an apartment A we can choose a W -invariant positive scalar product which can be normalized by the Killing form or by the prescription of the length of short roots. The corresponding distance d extends to a map $d : \mathcal{T} \times \mathcal{T} \rightarrow \mathbb{R}$. Here one uses the last

observation of 6.7, see [Br-T 3: 7.4.8]. One has the following result [Br-T 3: 7.4.20]:

6.9. Proposition.

- i) $d : \mathcal{T} \times \mathcal{T} \rightarrow \mathbb{R}$ is $G(K)$ invariant and gives \mathcal{T} the structure of a locally compact metric space.
- ii) If $x, y \in \mathcal{T}$ then there is an apartment A containing x and y . The “geodesic” $[x, y] = \{tx + (1-t)y : t \in [0, 1]\}$ is contained in every apartment containing x and y . In particular if $g \in G(K)$ fixes x and y then g fixes all of $[x, y]$.
- iii) The map $[0, 1] \times \mathcal{T} \times \mathcal{T} \rightarrow \mathcal{T}$ with $(t, x, y) \mapsto tx + (1-t)y$ is continuous. In particular \mathcal{T} is contractible.

6.10. Remark. If G is semi simple then \mathcal{T} is constructed by the same procedure where an apartment A is replaced by a product of apartments A_i which are given by the simple factors of the root system for G . Then \mathcal{T} is a poly-simplicial complex. If G is reductive the apartment A has an additional factor $X_*(S_1) \otimes \mathbb{R}$ where S_1 is the maximal central split torus of G .

§7. Some properties of buildings

There is a combinatorial approach to buildings starting with a Tits system (G, B, N, S) . This will be explained now.

The root groups U_α together with the affine map φ_α of §6 give rise to a Tits system and the building associated to this system is the building constructed in §6.

7.1. A *Tits system* is a quadruple (G, B, N, S) where G is a group, B and N are subgroups and S is a subset of $N/B \cap N$ such that the following hold:

- i) $B \cup N$ generates G and $B \cap N$ is a normal subgroup of N

ii) S generates $W := N/B \cap N$ and S consists of elements of order 2

iii) for all $s \in S$ and $w \in W$ one has

$$sBw \subset BwB \cup BswB$$

iv) for all $s \in S$ one has $sBs \neq B$.

A Tits system (G, B, N, S) is called *affine* if W is a euclidean Coxeter group.

Example: $G = SL_2(\mathbb{Q}_p)$, $B = \left\{ \begin{pmatrix} \mathcal{O} & \mathcal{O} \\ \mathcal{P} & \mathcal{O} \end{pmatrix} \in SL_2(\mathcal{O}) \right\}$, $N = \left\{ \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix} \in G \right\} \cup \left\{ \begin{pmatrix} 0 & b \\ c & 0 \end{pmatrix} \in G \right\}$, $H = \left\{ \begin{pmatrix} \mathcal{O} & 0 \\ 0 & \mathcal{O} \end{pmatrix} \in G \right\}$, $N = s_1H \cup s_2H$ with $s_1 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, $s_2 = \begin{pmatrix} 0 & p \\ -p^{-1} & 0 \end{pmatrix}$. Here W is the infinite dihedral group.

7.2. Let (G, B, N, S) be a Tits system. If X is a subset of W let W_X be the subgroup of W generated by X . Put $B_X := \bigcup_{w \in W_X} BwB$. Then B_X is called a *parahoric subgroup* of G of type X . The map $X \mapsto B_X$ gives a bijection between the subsets of S with the set of subgroups of G containing B . The groups B_X are self normalizing in G . A subgroup of G which is conjugate to some B_X is called a *parahoric subgroup of type X* .

7.3. Let (G, B, N, S) be an irreducible Tits system which means that W is an irreducible Coxeter group where $\ell + 1 = |S| < \infty$. We denote by $\Delta = \Delta(G, B, N, S)$ the simplicial complex whose simplices correspond bijectively to the set of parabolic subgroups $\sigma \longleftrightarrow P_\sigma$ where $\dim \sigma = |\text{type}(P_\sigma)| - 1$ and $\sigma \supset \tau \longleftrightarrow P_\sigma \subset P_\tau$. We identify Δ with its topological realisation. Let C the simplex corresponding to the minimal parabolic subgroup B with closure \overline{C} . Then $\bigcup_{w \in W} w\overline{C} = A$ is called an apartment of Δ . The group G acts on Δ . Since N acts on A and $H := B \cap N$ fixes A pointwise we get an action of $W = N/N \cap B$ on A . If the apartment A together with the W -action is an euclidean Coxeter complex then Δ is called an *affine building*.

7.4. Let $G = G(K)$ be an almost simple connected group over a local field K and denote by R_{aff} the affine root system with Weyl group $W = N/H$, $N \subset N(S)(K)$, associated to G as is §6. Let $B = P_C$ be the subgroup of $G(K)$ generated by Z_e and the U_a with $a(C) \geq 0$, $a \in R_{aff}$. Let $S \in W$ be the set of affine reflections at the walls of C .

7.5. Proposition. Let G be simply connected. Then $(G(K), B, N(K), S)$ is a Tits system. The associated building coincides with the building constructed in §6.

For $SL_n = G$ there is an elementary proof in [Br]. A direct proof of the first claim in 7.5 without the theory of buildings was given by Iijikata [Iij]. For split groups see also [I-M]. The general case is handled in [Br-T 3: Thm. 6.5], [R 1: Thm. 10.18]. There the results are extended to non simply connected groups.

If G is simply connected the subgroups of the form BW_XB and their conjugates are called *parahoric subgroups*. The group B and its conjugates are called *Iwahori subgroups*.

For $SL_n(K)$ we have open and compact subgroups $P_{v_i} = P_i$ corresponding to the vertices v_0, \dots, v_{n-1} of a chamber C , and the P_i are stabilizers of lattices L_i in K^n . Since $GL_n(K)$ acts transitively on lattices in K^n and since a maximal compact subgroup of $SL_n(K)$ is a stabilizer of some lattice we see that the P_i are maximal compact subgroups.

Let $[L]$ be a lattice class represented by the lattice L . If $g \in GL_n(K)$ we can attach to $[gL]$ the well defined number $v(\det g) \bmod n$. Hence to L_i as above we attach the number $i \bmod n$. We see that the P_i represent all $SL_n(K)$ -conjugacy classes of maximal compact subgroups of $SL_n(K)$. This generalizes as follows:

7.6. Proposition. Let G/K be simply connected and almost simple with K -rank l . Then there are $l+1$ $G(K)$ -conjugacy classes of maximal compact subgroups of $G(K)$. If C is a chamber in \mathcal{T} with vertices v_0, \dots, v_l then the P_{v_i} are representatives of all the conjugacy classes.

If G is not simply connected then $G(K)$ acts on the simply connected covering G_{sc} and by transport of structure also on the building \mathcal{T} for G_{sc} . The maximal compact

subgroups of $G(K)$ then occur as normalizers of certain parahoric subgroups for $G_{sc}(K)$. Note that in general the action of G_{ad} on $T = T(G_{sc})$ is not simplicial.

7.8. The group $G(K)$ admits several decompositions some of which can be viewed as analogs of well known decompositions in the theory of real Lie groups see [He]. To formulate the decompositions we introduce some notation. For this we use the notions which have been introduced in §6.

We choose a special vertex $v = 0$ in $E = \text{Hom}(X^*(S), \mathbb{R})$ and a chamber C with $v \in \overline{C}$. We then have ${}^v W = W_0 \subset W$ and ${}^v W$ is the vectorial Weyl group of a vectorial root system ${}^v R$ with set of positive ${}^v R^+$ roots (given by the choice of C). Let $U = U(K)$ be the subgroup of $G(K)$ generated by the U_α , $\alpha \in {}^v R^+$. Let $\tilde{C} = \mathbb{R}_+^* C$ be the cone in E generated by C . Put $Y = \nu(Z(K)) \subset E$ and $Y_+ = Y \cap \tilde{C}$ and $Z(K)_+ = \nu^{-1}(Y_+)$. Let $B \subset G(K)$ be the group fixing C pointwise and let $G(K)^0$ be the subgroup of $G(K)$ fixing $0 = v$. Note that in the simply connected case B is an Iwahori subgroup and $G(K)^0$ is a special maximal subgroup. Then the following hold:

7.9. Proposition. Let $G, B, G(K)^0, Y, Y_+$ be as above. Then one has

- (i) *Bruhat decomposition:* — $G(K) = BN(K)B$ and the map $bnB \mapsto \nu(n)$ establishes a bijection $B \backslash G(K)/B \xrightarrow{\sim} \hat{W}$
- (ii) *Iwasawa decomposition:* — $G(K) = G(K)^0 \cdot Z(K)U(K)$ and the map $G(K)^0 ZU(K) \mapsto \nu(Z)$ establishes a bijection $G(K)^0 \backslash G(K)/U(K) \xrightarrow{\sim} Y$
- (iii) *Cartan decomposition:* — $G(K) = G(K)^0 Z(K)_+ G(K)^0$ and the map $KzK \mapsto \nu(z)$ establishes a bijection

$$G(K)^0 \backslash G(K)/G(K)^0 \xrightarrow{\sim} Y_+.$$

For proofs and generalisations of these results see [Br-T 3: §4]. Now that (i) follows for simply connected group from 7.5.

7.10. If we compare what has been explained for the building T of G — say G simply connected — with the theory for SL_2 we see that the following still is missing:

- the description of the simplicial structure of a neighbourhood (= link) of a facet F of a chamber C in T
- a generalization of the notion “ends”

For the first point, see [Br] and [R 1]. The description of the links requires (as in the SL_2 -case) the notion of certain group-schemes over \mathcal{O} and their reduction mod \mathcal{P} , see [Br-T 4]. The second point is dealt with in [T 1] and for the connection with affine buildings, see [R 1: §9] and [B-S].

7.11. We have not touched any application of the theory of buildings. For this the reader should consult the survey articles [T 2], [R 2], [R-S] and further literature mentioned there. In particular the theory of buildings, leads to a new proof of the classification of semi simple groups over p -adic fields, which was achieved first by Kneser using a case by case analysis, see [K], [Br-T 2], [T 3].

References

- [B-T] Borel, A. and Tits, J.: *Groupes réductifs*, Publ. Math. I.H.E.S. **27** (1965), 55 – 150.
- [B] Bourbaki, N.: *Groupes et algèbres de Lie*, Chap. IV, V, VI, Hermann, Paris 1968.
- [B-S] Borel, A. and Serre, J.P.: Cohomologie d’immeubles et de groupes S -arithmétiques, Topology **15** (1976), 211 – 232.
- [Br] Brown, K. S.: *Buildings*, Springer-Verlag, (1989)
- [Br-T 1] Bruhat, F. and Tits, J.: (a) BN-paires de type affine et données radicielles, C.R. Acad. Sci Paris **263** (1966), 598 – 601; (b) Groupes simples résiduellement

- déployés sur un corps local, *ibid.*, 766 – 768; (c) *Groupes algébriques simples sur un corps local*, *ibid.*, 822 – 825; (d) *Groupes algébriques simples sur un corps local: cohomologie galoisienne, décompositions d’Iwasawa et de Cartan*, *ibid.*, 867 – 869.
- [Br–T 2] Bruhat, F. and Tits, J.: *Groupes algébriques simples sur un corps local*, Proc. Conf. on Local Fields (Driebergen, 1966), Springer, New York, 1967, pp. 23 – 26.
- [Br–T 3] Bruhat, F. and Tits, J.: *Groupes réductifs sur un corps local. I, Données radicielles valuées*, *Publ. Math. I.H.E.S.* **41** (1972), 5 – 251.
- [Br–T 4] Bruhat, F. and Tits, J.: *Groupes réductifs sur un corps local II, Schémas en groupes. Existence d’une donnée radicielle valuée*, *Publ. Math. I.H.E.S.* **60** (1984), 5 – 184.
- [D–G] Demazure M. and Grothendieck, A.: *Schémas en groupes. III, Sémin. Géom. Alg. 1962/64*, Lecture Notes in Math., vol. 153, Springer, New York, 1970.
- [Hi] Hijikata, H.: *On the structure of semi-simple algebraic groups over valuation fields. I*, *Japan. J. Math.* **1** (1975), 225 – 300.
- [He] Helgason, S.: *Differential Geometry, Lie Groups, and Symmetric Spaces*: Academic press (1978).
- [I–M] Iwahori N. and Matsumoto H.: *On some Bruhat decomposition and the structure of the Hecke ring of \mathfrak{p} -adic Chevalley groups*, *Publ. Math. I.H.E.S.* **25** (1965), 5 – 48.
- [K] Kneser, M.: *Galois-Kohomologie halbeinfacher algebraischer Gruppen über \mathfrak{p} -adischen Körpern*, *Math. Z.* **88**(1965), 40 – 47; **89** (1965), 250 – 272.
- [R–S] Rohlfs, J.: and Springer, T.A.: *Applications of Buildings*; in *Handbook of Incidence Geometry*, North Holland (1995), 1085 – 1114.
- [R 1] Ronan, M.: *Lectures on Buildings*, Academic Press (1989)
- [R 2] Ronan, M.: *Buildings: Main Ideas and Applications I*, *Bull. London Math. Soc.* **24** (1992), 1 – 51, II *ibid.* 97 – 126.
- [S] Serre, J.-P.: *Trees*, Springer Verlag (1980)
- [T 1] Tits, J.: *Buildings of spherical type and finite BN-pairs*, Lecture Notes in Math., vol. 386, Springer, New York, 1974
- [T 2] Tits, J.: *On buildings and their applications*, Proc. Internat. Congr. Math. (Vancouver, 1974), vol. 1, *Canad. Math. Congr.*, 1975, pp. 209 – 220.
- [T 3] Tits, J.: *Reductive groups over local fields*, Proc. Symp. Pure Math. vol. **33**, Amer. Math. Soc (1979), 26 – 69.

Jürgen Rohlfs
 Mathematisch-Geographische Fakultät
 Katholische Universität Eichstätt
85071 Eichstätt
 Germany

e-mail: juergen.rohlfs@ku-eichstaett.de

