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Notes on Bruhat—Tits-Buildings

Jiirgen Rohlfs

Introduction

These notes are the basis of a course of five lectures al the School on Algebraic Groups &

Arithmetic Groups in Trieste 1996, They conlain

- a detailed introduction Lo the theory for Si, over a local field in §1to§3
— a description of alline Weyl groups in §4

the construction of lattices for §L, and for split groups in §5 and the connection

of the arising open and compact groups with a Coxeter complex

the general definition of the building T associated to a sem;| simple group G over

alocal field in §6

= the description of further propertics of the building in §7

The notes are preliminary in many respects, In particular they are too short, since many
resulls come without a camplete proof. On the other hand, the notes are too long, since
it will be unlikely that all the material mentioned in the notes can be explained in five

hours. 1hope that in spite of these shortcomings the general cutline of the theory becomes

visible.

Notation: We dencte by [ a locally compact commutative field with discrete valuation
v and finite residue field, e v : K* — % isa surjective hemomorphism such that
vlr+y) > inf(o(r),v(y)) forall z,y € K, where v{0)i=co. Let O :={z € K/v(z) > 0}
be the ring of integers in K and P = {2 € K/v(z) > 1} be the maximal ideal of ©. Then
thereisa m € P such that P = 7 and O/P =: kisa finite field. The ring O is a principal
ideal domain and z0 = 730 The units of © are O = {z € Ofu(z})=0}.By G we

denote a serni simple connected algebraic group defined over K. We often write ¢ = G(K).

§1. The tree T associated to Si, over a local field

We construct for SL(K), K a local field, a tree T . Here we follow essentially Serre,
see [S]. The properties of 7 and the methods 1o construet T will later motivate the

constructior: of a building 7 which is associated to a semi simple group ¢ defined over i

1.1, Let V be a K-vectorspace of dimension 2. We denote by GL(V) resp. SL(V}

the group of K'-linear isomorphisms of V resp. the group SL{(V)={g¢ GL(V)/detg =
1}.

Alattice Lin V isa finitely generated O submodule of V such that K- L = V. Since
O is a principal ideal domain there exists a basis e, ey of V such that I — e, + Oey.
We call €),e; a basis of [,

If z € k" and if L is a latlice in V' then zL also is a lattice in V. Lattices
Ly and L; of L are called equivalent if therc is an z € K* such that Ly=zl,. It

V=K x K wehave examples Ly = Q@O and Ly =0 P of inequivalent lattices.

1.2, Let Ly,L; be latlices. Then there js an n € IV such that »°L, ¢ L, . By the
elementary divisor theorem there is a basis e;,€, of L, such that 7" Ly = 7Oe) + 700,
We define the distance d(L1,L3) of L, and I, by d(L1,L3) = [a — bl € IV . Apparently
d{L, L) does not depend on the choice of 7* and by the elementary divisor theorem
d{Ly, L) does not depend on the choice of e1, € . Since now a2 e, 7%""e, is a basis
of L; we have an m > 0 such that 7Ly € Ly . We see that diL, L) = d{la, Ly} .
Moreover by computation d(zLy,yLy) = d(L,, Ly) for all L,y € K*. Let A, resp. A,
be the equivalence class of lattices determined by L, resp. Ly . Then we can define
A, Ay = d(L1, Ly} as the distance of classes of lattices.

We note that AL, A) =0 iff A = Az Let d{A,A7) =1 and represent A
by L;. Then there is a unique representing lattice L, of Ay such that Lycly L ¢
Ly and L, /Ly is generated by one element. Then L/l = 0/F0.

1.3. We denote by 7 the topological realisation of the simplicial complex whose vertices

{= O-simplices) are the classes of lattices and where a I-simplex is a pair of vertices



(Ao, A1) with d{Ag,Ay) = 1. We call T the busiding associated fo SL(V).

1.4. We recall the definition of the topological realisation. Let £ be the set of classes of
lattices. Then T is the set of maps f:£— Ry such that

i) supp f ={A € Lff(A)#£0} is asimplex

i Y fay=1.

AEL

In particular if supp f = A then f{A) =1 and if supp f = {Ao, A1) then f(A;) =
t, flAe) =1 -t 0 <t < 1. Weview f asapoint ¢ on the line connecting Ay and A;.
We define a topology on 7" which after identifying AgU (Ao, A YU A, with [0,1] induces
the ordinary topology on [0,1].

1.5. Let Ay, Ar be vertices. A path ¢ in T from Ag to A is a sequence Ag, Ay, ..., Ajr, Al
of vertices in 7 such that d(A;, Ar) =1, i =0,...,{— | . We denote by ¢ = (Ag, Ay, )
also the simpliclal realisation of ¢. I[ Ag = A; then ¢ is called a closed path. If A # A
for all i # j then ¢ is called a simple path. A closed path ¢ = (Aoy ..y At} is called simple
it (Ag,..., Ar=y) is a simple path and > 3. In particular we consider {Aa,s A1, Ag) mot as
a simple closed path.

Let € = (Ag, ..., Aj) be a path with Ag # A;. Then there is a subset { = {ng,...,ne} C
{0,1,...,{} such that ny =0, n, = I and such that {(AngsAnyseoy Any) is a simple path.
To see this we choose £ > 0 minimal such that there is a J > 1 with A; = A; and replace
e by (Ao, .., Ay Ajs1, . Ad) and so on,

The complex T is called connected if it is pathwise connected and T is called a

tree if it is connected and if it contains no closed simple paths.

1.6. Proposition. — T is q lree.

Proof. We show that 7 is pathwise connected. For this let A # A be vertices of
T represented by lattices L' C L such that L/L' ~ O/z"O . Hence the preimages of
#10/x"0, j <n in L define a sequence of latiices

L'anCLn_lc...CngL

and LifLiyy ~ OfnQ . Then L; represents a vertex A; and (Ag, Ar,...,An) is a path
form Ag=A to A'. Hence T is connected.

Let (Aqg,...,As) be a simple path. I[ we can show thal then Ay # A, it follows
that 7 is a tree. Now d(Ag, An) = 1 implies Ag # A, . To prove that d{Ap,An) = n we

represent (Ao, ..., A.) by a sequence of lattices

Ln C Lnul C ... C LD

with L;fLiy; = O/r @ . If we can show that L, ¢ wLg then by 1.2 we get d{Ag,An) = n.
We assume inductively that L._y ¢ 7Ly, Then nl,_; and L, are contained in L,y .
Their images in the 2-dimensional k-vectorspace Ln_j/xL._1 are non zero and cannot
coincide for otherwise 7L, s+ nl,_ 1 =L, +xb,., and wl,_y = L,, 1e: Ajoe = A,
and (Ag,-.., Az} would be not simple, Hence Loy = Lo+ 7leq and since wlny CT7lo

an inclusion I, C wLy would imply L., C wlg which contradicts our assumption.

We note two consequences:

1.8 Corollary.

1) Two different vertices A, A" of T are joined by a unigue stmple path.
2) =T is contractible,
Olten the unique simple path joining A and A’ is called the connecting geodesic. The

contraction of T to some vertex Ag is given by shrinking of the unique geodesics from

Ay to points different from Ag.

Let A be a vertex of 7 represented by a lattice L. Then a verlex A with

d(A,A") =1 can be represented by a unique lattice L' C L such that L' ¢ #L and

LiL >~ O/aO =k . Then oL C L' and L'/xl is a 1-dimensional &k subvectorspace of
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LinL =k k. The number ¢ of such subspaces is equal to the number of points of the

projective line P (k) over k. Hence ¢ = [k| + 1. We have shown:

1.8. Proposition. If A is a vertez then
H#INET/NEA AN A)=1) = k| +1.

For k=2Z/2Z we get the lollowing picture of T containing all points of distance < 4

from the middle vertex.

The chambers here have decreasing size with respect to the distance to the middle vertex.

§2. Group actions on the tree T

2.1. If L CVisulattice and g € GL{V) then g(L) is a lattice. Moreover for z € K* we
have g(zL) = 2¢{1). lence g acts on the classes of lattices and induces a permutation

of the vertices of 7.

Since G'L(V) acts transitively on the set of basis of ¥V it follows that GL(V) acts
transitively on the vertices of 7. Moreover if G(L) denotes the stabilizer of alattice L we

sce that G(L) is isomarphic to GLa(O). In particular the stabilizer of a lattice is compact.

Let A, A; be vertices of T and d{A1,Aq) = n. We can choose representing lattices L,

5

Wi!,h L]_ C L;, L] g: TFLQ, Lz/].-] = O,/?r"o. HGHCE d(gl‘\l,g/\g) = d(/\l,AQ] .

I3
Example: Let L = O¢; @ Pe; . Then Gl{L) = {( a ; ) € GLy(K)fa, de ), c € P,
e

10 I 0
) GL{) ( ) 1t Ap € X is represented by
™ 0 x7!

€10 + e;0 and if [ represents Ar then d(Ag, A1) =1 and the element of GL{V)

b€ 710, ad - be € O*) =

. 10
corresponding to (O ) maps to Ag to A .

T

2.2. Proposition. If A is a verler of T and g ¢ GL{V) then

d(A,gA) = v(det g) mod 2.

Proof. Let L he a lattice which represents A Then there is a 7" such that L, :=
#"g{L) C L. By the elementary divisor theorem we find a basis v, vy of L and a,b e IV
s.t. wuy, 7buy is a basis of 7"g(L}. Anather basis of 77gL is 7 g(v1), 7"g(v2) . Hence
hereisan A€ GL(L{) st. 79w, = Ax"g(v,),7 = 1,2. With respect to the basis Ty, Ty

of L; we get an equation

E=Ag(7r

n—g

0
) where A€ GLy(O).
0 ant

Hence w(detg) = a+ b mod 2 and a+ b= fa — bl mod 2.

2.3. Corollary. If g ¢ SLV) = {g ¢ GL(V)/ det(g) = 1} and if AET then
d(A,gA) = 0 mod 2.

In particular if d{Ag, A1) = 1. then glha} £ A forall ge SLy{V).

in the following we work only with SLs(V) := &. We denote the stabilizer of a

lattice £ by Gy, and let G, := {9eGio(ly=2L, 2 ¢ K} be the stabilizer of the class
A of lattices represented by 1.



2.4. Lemma. — Gy = G,.

Proof. Of course G C Go. If g € Gy then gL = z[ for some z € K*. Then
e7lg € GL{L) ie v(det(z7lg)) = 0 and v(z) = 0. Therefore xL = L and g Gy .

2.5. Proposition. Let H be a closed subgroup of G = SL(V). Then the following are

equivalent

i) H 1is compacl

it) H CGa for some vertez A of T.

The mazimal compact subgroups of G are the stabilizers Ga for A avertex of T,

Proof. Since a stabilizer G, is compact the last claim follows from {i). Apparently i)
follows from ii) since G's is compact. Let L be a lattice. Then G € GL(V) is a open
and compact subgroup. Hence #/ NGy is apen in / and since H is compact then

[H:HNGL] < oo, Hence Leentiing, 94 = I is a laltice which is H-stable. We choose
A 1o be the class represented by I, .

Let o = (Ag, A1) bea L-simplex of T,i.e. Ag and Ay are vertices and d{Ag, Ay) = 1.
If g€ G=5L,(V) and g(Ag,Ay) = (Ao, A1) then ghAg = Ao and g(A;) = Aq, see 2.3.
For the stabilizer G, of ¢ in G weget Gy = Gag M Ga, , see 2.3,

Example: A = O, ® Ocy, A| = Oe; @ Pe, . With respect to e;, ez we identify GL(V)
with GLy(K). Then Py = Ga, = GLy{O) and P, := Ga, = {( “ Z) € GLy(K)/a,d €
[

b

QO,ce P,be P} Hence Grgny, = {( ¢
c d

) € GLy(K)/a,b,d€c O, ce 'P} = FKNA.

The stabilizers of simplices of T are called parahoric subgroups. The stabilizers of

1-dimensional simplices of 7 are called [wahors subgroups. Apparently SL(V) acts on
the set of parahoric subgroups.

2.6. Proposition. There are twe SL(V)-conjugecy classes of marimal parahoric sub-

groups of SL(V). All fwahori-subgroups of SL(V) are SL(V)-conjugate.

Proof. The vertices of 7" correspond bijectively to the maximal parahoric subgroups of
SL(V), (see 2.5), and they consist of one GL{V) orbit. Fixalattice L representing a vertex
A.Then GL(A):={g € GL(V)/gA = A} = GL(L) - K* and SL(V\GL{V)/GL(L)K"

corresponds to the SL(V)-orbits of vertices, From the exact scquences
1 — SLV)/{+I} — GLIV)/K* 2% KKk — 1
1 —  SLKL) - GLL) — o 1

we see that there are two such orbits and the first claim holds. We may choose £ and

Py {rom the example as represtatives of the orbits.

The Fwahori subgroups correspond bijectively to the 1-simplices of T. If (Ag, A1), (Lo, T'1)

are two l-sirnplices there is a ¢ € GL(V) with g{Ag) = Ty or g(Ag) = Ty . Say
9{Ao) =Ty. Then #Tg,gA1) = 1. If the lattice Ly represents [y then there is a surjec-
tion Gr, —— P(O/P), sec 1.8. llence there is a h € SL{L) such that A{I%) =y and
hlg{A1)) =Ty . Therefore hg € SL{V) maps (Ag,Ay) to (I'g,Ty) and the stabilizers of

these simplices are conjugate,

Let P be the complex whose simplices are the parahoric subgroups of SL(V) and
where a pair (P, ') of different parahoric subgroups is a 1-simplex tf PN P’ is an lwahori

subgroup. Then we have shown.

2.7. Proposition. -~ 7T is the fopological realisation of P .



§3. Chambers and apartments of the tree T

3.1. A ray or half apartment in T is a subcomplex of X such that its vertices can be
labelled Ag, Ay, .., A, 0 <i < oo, and diAi, Aigy) = 1. We denote a ray by {Ai}iyo and
call Ay the oregin of the ray. Two rays {Aikizo, {Tj)sz0 are called equivalent if there
are integers i,d € Z such that A= Diyg Jorall 7> 4. An equivalence class of rays is
called an end of X. We observe; If {A:dizoisarayandif g € SL(V), then {gAi}ize is atay.

3.2, Let ey e; be a basis of V. For ; €N put L, = Qg o 7' O¢s . The lattices
Li tepresent verlices Ay and by definition of d we have d{Ai Aip1} =1, 4 > 0. Hence
{Ailiza is a ray. We show that al| rays occur in this way. So let {A}iey be a ray. We

can choose lattices [, representing A; with the following properties:

LignCLy L@ rl; LilLipy =5 020
Hence there is a system of natural maps of exact sequences of compact groups

O o L — L, — O/’ — ¢

[ I I

U — L — Ly — O/t L

Since O = Ll Ofr @ and limi; = ﬂ L;V and since lim— is exact on the category of

i 1 1
compact groups we find an exact sequence
0— ML — L o—sg,

Since Ly is free of rank 2 we find an e1 € { L and an e, such that flea) = 7 with
m Li = Oe, . Then Lo = Qe @ Oe, . We observe that e; is unique up to O" and that

1_:.J N fe =0 for j sulliciently large. Since LofL, =5 O/1i0 we get that e, xle,
is a basis of Lj forall 5.

We note that e, depends only on almost all 7 and that Ke; does not depend
on the lattices chossen to represent the ray {A;};»0. Hence we have a natural map which

associates to the end represented by {Ai}i>0 the Borel subgroup B C SL(V) such that

9

B={A€SLV)g(ier) = Key} |

3.3. Propositon.

i) Let Ay be a verter of T. Then G, acts transtlively on the set of rays with origin
Ma.

it) There is a natural bijection between the ends of T with the setl of Borel subgroups
of SL(V}.

Proof. Let {Aidiso Ve aray and represent A= Ag by a lattice [ = L, By 3.4 we find
a basis €5,e; of Ly such that the ray {Ai}iso is represented by a sequence of lattices as
in 3.2. Since Gy = Ga is transitive on the set of basis of L the first clajm follows.

By 3.2 we have a well defind map {cnds of T} — {Borel subgroups of SL{V)}. If
conversely a Borel subgroup B ¢ SL{V} is given we have a corresponding line Ke, C V
which is stabilized by B . Choose some €2 € V such that €;,e; is a basis of V and put
Ly = Ocy @ Oey . Define Ly=arlg+L,nD = Qe & n™Fey . Then ﬂ Li=LynKe,
determines B, Let A; € X be represented by L;. Then {Aidizo is aray V’vhich determines
B . Instead of e, we can chovse €} = qe;, o € K* and instead of e; we can take
€ = Bei 4+ vey with YEN®, € K. Then thereisa b GL(V) with be, = e}, bey = ¢
and we construct a corresponding sequence of lattices Ly = bl . By computation then

bAi = Ajya, d = viy) —uv(a), for all sufficiently large i. Hence B determines a well defined
end of T and our claim holds.

3.4. An apartment A of T isa subcomplex of 7 such that the set of vertices of A
can be labelled by A;, i € Z with dlAiAip)=1forall ie Z. A I-simplex (A;, Ajyy)
is called a chamber of 4.

The labelling of the vertices of 4 js uniguely determined by the choice of two vertices
of A which have distance 1 and by the choice of their names Ao and A . We write an

apartment A as A = {A};cz . Let gESLV) (or g€ GL(V)) and let A be an
apartment. Then gd is an apartment.



Let A= {A}icz be an apartment. Then A defines two different rays {A;}ico and
{Ai}izo and hence two different ends of 7, Of course, the set of the two ends does not de-
pend on the labelling of A. Let {By, B;}; B; € SL(V), be the ends determined by A. Then
B, is the stabilizer of a | dim subspace Vi of V and VieVe=V. IV, = Ke;,i=1,2 then

a b
in matrix notation with respect to the basis ey, e; the group B, is 0 4 ) € SL;(K)}

t
and B, is a0 € SLy{K)}y and BN B, 2T = 0
c d g ¢!

A determines a well defined split torus T of SL(V)

te K‘} . Hence

Conversely let T € SLy(V) be a split torus, i.e. there is a basis of V such that T
has diagonal form with respect to this basis. Then there are exactly two Borel subgroups
{Bi, Bz} of SL{V) such that T =B, N B,. By 3.4 the B, defines two different ends.
Let {Ai}izo represent B, and {Ti}i»o represent B;. Then for sufficiently large n we
have A; # Iy for all i > n. The vertices Ay 15, 4,7 = n together with the vertices of
the unique geodesic from A, to T, define an apartment. By the uniqueness of geodesics

this in independent on the choice of n . [lence we have shown:

3.5. Proposition. There is a natural bijection between the set of K-split tori of SL(V)
with the set of apartments of T .

The typical example of an appartment A is given by a sequence (L), i € Z, of lattices
as follows: Let {er.e2} be a basis of V. Put Li =0, @71'0¢;,i € Z and let Li
represent the vertex A; . Then A = {Ailicz is an apartment. Since split toti or sets of

basis {e1ez} are SL{V)}-conjugate, Prop. 3.6 implies that all apartments are of the form
gA g€ SL(V).

3.6. We denote the apartment A associated to a split tarus T C SL(V) by A(T).
Then the normalizer N(T) of T = T(K) in SL(V) acts on A(T) by affine maps.
Let w: N(T)K) — Af(A(T}) be the corresponding map. To make the action explicit
we represent. A = {A}iez by a sequence of lattices I; = e 0@ n'0ey, i € Z , where

e1,€2 is an O-basis of L, which is unique up to units and order of the basis,. Then

0 ¢t 10
to A_;. Hence the image W of N in Aut(A) is generated by a reflection 3o at Ay

t -1
t = (t 0 ) € SLy(I) maps Ay to A+ 20(t) and w = ( ) maps Ay

and a translation t: A; — Aiq. Since (A_1,Ag,A;) is & fundamental domain for the
occurring translations and sy acts, we see that (Ag,A() is a fundamental domain for
W . Moreover W is generated by the reflections s5 at Ag and s, and A;. Thus the
structure of A{T} as a simplical complex can be described with the affine action of W .
on R -+ A(T). On IR we view W as group generated by the reflections at alli € Z ¢ R.

3.7. Let Ag € T be an apartment. We have a natural surjeclion f: G x Ay — 7T
sending (g,b) € G x Ag to gb. We give G x Ay the simplicial structure and topology of a
disioint sum. Then f is continuous, surjective, simplicial and G-equivariant and induces

an equivalence

G x Aof(~) == T .

We describe the equivalence relation. To b € A be associate P, € (R}, such that
Fy is the subgroup fixing b. Then (g,x) ~ (h,y} if there is an n € N such that
y =v(n)r and g 'hn € P.. Then g~ 'hPkh~'¢g = P, . The action of N{THK) via
4 here is necessary to get rid of the unnatural labelling which reflects the various ways

to identify Ay with {IR, Z}. We get with this definition of the quivalence using 3.6 and 3.3

3.8. Proposition. We have a nalural identificalion

G % Agf{~) =T .

This description of T will be generalized in the following chapters. For this we first
generalize A to a simplical lessellation of an euclidean vectorspace which results from the
action of a Coxeter group W and then we introduce generalisations of the groups P
which will define the equivalence relation. The building T will be defined by the left side
of 3.8



§4. Coxeter Groups and Coxeter Complexes

We recall some essential definitions and resulls on Coxeter groups. For proofs we refer to
(B3, Chap. IV, V).

4.1. Let (E,{, }) be a finite dimensional euclidean I-dimensional IR-vectorspace
with positive definite scalarproduct {, . Let Iso(E) be the group of isometrical maps
fiE — E. Weview E asa subgroup of Iso(£) where v € E corresponds to the
translation w r— w4 v. Let () be the group of linear maps f: £ — E which
preserve (). Then we have a natural action of O(L) on E and on the translations in

fso(E) . We get o semidirect product decomposition
E x O(E) 55 1so(E)

A (affine) hyperplane H C F is an alline subspace of dimension { —1,1e. H=h+ W
where W C I is a lincar subspace of dimension =1 and A € I1. We choose 0 £ a € W+,
Then I = {v & Lf(v,a) — (v, h) = U} . We define the reflection sy with respect lo H
by su(v) = v - ({v,a} — (v, h))(—j%) - Then sf; = Id and sy fixes exactly # . Moreover

sy does not depend on the choice of & € W2 and the choice of A,

We have an affine map a : £ — B with a(v) = {a,u} — {h,v) . If conversely
@: ' —- [ is a non constant affine map we can write a{v) = L(v)~r where L: V -— R
is lincar L 20 and a{0) = —r € . Now L{v) = (v, 0} for some 0 #£ o € E and we intro-
duce s,(0) =0 —a[u)('ﬁ—.‘ v &V, arellection at the hyperplane H, = {v € Efa(v) =0}.

)

We write @ = (o, r) and note that s, is independent of the choice of « .

4.2. Let H = {#;}ic; be afamily of {alline) hyperpianes of E. The family is said to be
locally finite il every v € E has a neighbourhood ¢ in E such that i € IJH, Nt # 3Y
is finite. A subgroup W C [s0(E) is called a Coreter group if it is generated by the
reflections sy contained in W osuch that the set of hyperplanes H = {Hisy e W} isa
locally finite family.
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We have a natural homomorphism p: 1s0(E) — O(E) sending an affine isometry
to its linear part. Let p(W) = *W be the image (= vectorial part of W in O(E)). Then
reflections at parallel hyperplanes have identical image in *W and *W is generated by

these images, which are reflections at hyperplanes through 0 € K.

4.3. A Coxeter group W is called essentialif £ W = {ve Efu(v) =v forallu e "W} =
{0} and it is called irreducible of the representation of *W on £ s irreducible. The
investigation of Coxeter groups can be reduced to the study of essential and irreducible

Coxeter groups, see [B: Chap. V, § 3, no g

4.4. Let W be an essential and irreducible Coxeter group. Denote by 7 the set of

hyperplanes such that sy € W . The connected components of £\ U H  are called
HeH
chambersof W, Let (' be one chamber with topological closure €. Then the following

hold:

— if [Wl =00 then & isa £-dimensional simplex bounded by £+ | hyperplanes
- il W] < oo then (¢ is a cone bounded by £ hyperplanes
— W acts simply transitive on the set of chambers

— W is generated by the set S of reflections at the bounding hyperplanes (= walls)
of

— "W C O(E) is a finite reflection group.

—If 2 £ C then W, = {w € Wiw(z) = 1) is generated by the sy € W with
sulz)==z.

— there exist points & € E such that W, maps isomorphically to *W . These points
are called special poinis.

4.5. We continue to assume thai W is essential and irreducible. Replacing W by a
conjugate subgroup of Is0(£) we can assume that W, = *W . Hence we can view *W
as a subgroup of W. We recall that a lattice I in £ is a subgroup (of E) generated by
¢ linear independent vectors. Then we have

14



— If |Wj=co then thereis a lattice L C E such that W = Lx "W
— If [W] < oo then W =W, ='W,

The cones corresponding to Wy intersect with a sphere §! of radius 1 with center
0 and give a tessellation of this sphere. Hence a finite Coxeter group W = Wy is called
spherical. If {W| = co then W is called euclidean. The closed chambers of W give a
tessellation of E consisting of congruent closed £-dimensional simplices.

The sphere 5! resp. E together with the simplicial structure coming from the

simplicial structure of the closed chambers is called the Cozeter complex of W .

4.6. The Coxeter groups W can be classified, see [B. Ch. VI, §4, Thm. I, Ch. VI, §2
Prop. 8]. We describe the result for |W|= 0o .

Homp(E, 1) . Let 7Y be the dual root system in E and denote by s, the reflec-
tion in £ given by s,(z) = 2 — a(z)

Let R be an irreducible and reduced root system in the vectorspace V = E* =

a¥,a € R. The group generated by these reflections
is denoted by *W . If identily V and E with the help of a *W-invariant euclidean

scalarproduct (, ) on E | then a¥ = (;‘:) for ae R.

The reflection at the (affine) hyperplane Hax = {z € Ela(z) = k} is denoted
by Sax. We have sau(z) = x - (afz) - k)a¥ = t(ka") 0 s, , where t(ka¥) denotes the
translation by ka¥. In particular 800 = 8, Wewrite a = (a, —k), 84 = 8ok, and view ¢ as
alfine map a(z) = a(z)— k. Then Ry :={a: £ — Z affine Ja={(a,k),a € Rikc Z}
is called the set of affine reots of R. The group generated by the s,, a € R,z is denoted
by W and is called the affine Weyl group of K. Of course *W C W and "W acts
on the lattice A in E generated by the a¥ € BY . Hence A x *W is defined and one
bas W = A % “W, see [B: Chap. VI §2]. The classification mentioned above says that
every essential irreducible euclidean Coxeter group € is isomorphic to exactly one such
W given by an irreducible and reduced root system H. Moreover the isomorphism comes

from a isomorphism of the underlying affine spaces.

4.7. We can describe a chamber of the tessellation of E given by W as follows: Let

@150 be a basis of R and dencle by & = i ey the largest (positive) root,

i5

ni>1,n € Z.Then C = {z¢ E/a‘(x) >0, é(z) < 1} is a chamber for W . Let
.y € E be such that {o,w;) = §;. The w; then are a basis of the weights PY
for the root system RY in E. Then the hyperplanes spanned by the w; are the walls of
a Weyl chamber in E for *W and € has ancther wall given by the affine hyperplane
{z € Efa(z) = 1}. Hence € has vertices {0, B, 2} and W is generated by the 1+1
reflections at the hyperplanes bounding C . Since z € V is special if for every «; there

isa k suchthat z € H,,, we see that ‘:—)l is special iff n; =1,

4.8, The affine Weyl groups we need later are constructed from a non reduced root sys-
tem R . Bruhat and Tits have defined a finer notion of equivalence in this sitzation and
give a classification of the arising Weyl groups {as abstract groups these are the old ones)
together with the lattice of translations given by the root system R . In general the aris-
ing lattice of translations now is not proportional to the lattice of translations given by
the reduced root system of R. The classification is given in terms of extended Dynkin
diagramms where the direction of double or threefold arrows can be reversed and where
some vertices may get in addition a + indicating the simple roots whose double is also a
toot. For all this see [Br-T 3: 1.4.5).

§5. Construction of compact and open subgroups

Let G/K be a semi simple group defined over K . Then by definition there is a
n € IV and a finite set of polynomials with coelficientsin K in variables X nje{l,..n},
such that G{I) C GLa{K) is the set of common zeros of the polynomials. Since GL, (O}
is an open and compact subgroup of GL,(K) we get an open and compact subgroup
['= GIE)NGL(O) of G(K). If T, and I'; are open and compact subgroups then
TyNT; is open and compact and of finite index in Iy and Ty . This implies that every

open and compact subgroup of G(K) is conjugate in GL,.(/} to a subgroup of GL.(O).

There are many different possibilities to view G as a subgroup of some GL., . For

the adjoint group G.; of G with K-Lie algebra g we have the natural cmbedding

Ad Gul(K)— GL(g) .
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Composing with the natural map G — (,y we get a homomeorphism with finite kernel
G(i) —» GL{g)

and all open compact subgroups I' of G(X'} occur as stabilizers of lattices L C g. Here
L is a finitely gencrated O submodule of g such that L- K =g.

The “good” compact open subgroups should posess an O-Liealgebra I and should
occur as stabilizers under the adjeint action of L. Hence we are motivated to construct
O-Lie algebras [ such that L @g K = p. We explain this for K-split groups and start
with the example SL,(K).

5.1, In SL.(#) we consider the maximal split torus T = {t = Jti €
Q tn
N TS = 1}, We deline e,(t) = ¢; =2 i . We identify the R-vector space spanned
by the e; with Bi" . Let V C #2° be the subspace V = {(z4,...,2,) € B Tz, = 0}. It
has a basis £, —¢,41,i = 1,..,n—1, and V isidentified with X"{T)®z I where X*(T)
denotes the group of characters of T The roots ¢, —g; = a;, 1 # §; 4,5 € {liy.ym}
arein V oand 1 €T actson uy = 1+ e,z by tu,i™! = 1+ a;;(t)ze;; . Here z € K
and e;, is the n x n matrix with all coefficients zero except the coeficient in i-th column
and j-th row and this coeflicient is 1. The elements of the normalizer N(T) of T in
LA (K) have exactly one non zero entry in each row and column. The vectorial Weyl

’

group "W = N{T'}/T" acts as group of permutations of the (g, ...,6,).

Let L be a lattice in A™, Le. L is a finitely generated (@ —submodule with
KL = K" . By the elementary divisor theorem there is a basis vy,...,v, of K" such
that L = Qv+ ... + Ov, and the stabilizer Gy of L in SL{K) can be identified with
S (0) . In particolar 7L (K) acts transitively on the set of lattices. As in 2.5 (proof)
we sce that the stabilizer of L in SL,(K) is a maximal compact subgroup of §L.(K).
Lattices Ly, Ly are called equivalent if 2Ly = Ly for some £ € K™, Apparently equivalent

lattices have the same stabilizers.

We consider the lattices L = 77 O0®...@1™O,r; € Z in K™. The corresponding lat-
tice classes are uniquely determined by Ly = @G ... O and (ri4t, o rattimod b, t € Z.

17

7 0
The stabilizer of the lattice L in SL,(K) is { 5L,(O)t™! where t = €
] T
1y 0
GL.(K). Apparently tSL.{¢)t~! contains T{O) = ESL.(K) ;e O
0 t,

and the groups U; ;x = {1 +eijzfz € W*O} ywhere v(z) 2 k=r;—r; (recall: v: K — Z
is the valuation of K ). These subgroups generate $$L,(E)t™" which of course only de-
pends on the class of the lattice.

We put E = V* = Homg(V, R) and view V" as quotient of (R*)* . Here the
standard basis of (J*)* is denoted by e,,...,e, and e, ....e,. is the dual basis of the
standard basis £),...,, of [R™. We have an action of the affine Weyl group W at-
tached to the set of affine roots a,, = o, + &, k€ Z on E, see 84, Let A(T)
be the arising Coxeter complex. Recall, that the chamber ¢ given by the set of pos-
itive roots, ay,..,o._; has verlices (0w, tny) . llere we use B = RY and the
fact that a; + .. + quey = & is the largest root. The w, have been computed in

[B: Chap. V Planche 1]. One has Wi = e+ ...+e; — L3 e ie in coordinates

J J ; )
w = |[1-=_..,1- o =% -i| and {w;,@) = &, . The reflection 85, acts on
_——"-_-—/
7
T =2y, 2.) € F as 5, (2) = {Z0, -y Zict, Tig 1, Tis Tz, o), £ = 1, n—1. The reflection

at the wall HC"J = {E € E/(&le) = 1}15 gi\’CIl by S(I],...,In) = ($n+l!I'21 ---!xﬂ—hmlhl}'

To the class of lattices represented by #"O @ ...& 7" = L we attach the well
defined vertex v{L) = —(r, — SeoTe— L) € E where » = % r; . Note that v(L)
i 0
determines the class of L. If ¢ € T(K), ¢ = s Il ti =1 then (L is the
0 tn
lattice x" MO G . @ [P O and Yoy v(t;) =0, Hence to (L) corresponds the
point —(ry +v(ty) = I,..,rn + v(fa) — Z). The coroots a¥ € R¥(= R) span the lattice
{(ur,-un) € ZM/ T8 wi = 0} in E. Hence v(tl) = v(L)+q where g € Z(RY) isin the



lattice spanned by the coroots, We observe {hat v(r 0@ .. @r! 0008..60)= wy.
\_'_'_H,’_'_’

1
In obvious matrix block notation the stabilizer of the lattice corresponding to w; is

P, = {( o 77 ) € SL,,(K)} ,
P 0

where in the upper left corner 7 stands for a J % j—matrix with coefficients in @ and the
vertex 0 corresponds to SL.(O). From this and with the action of T(K) we see that v
establishes a bijection between the classes of lattices T OF ... GO with the set of ver-
tices of the Coxeter complex given by T and by the action of the affine Weyl group W of R.

We note that the chamber ¢ viewed as a simplex can be represented by the
flag of lattices Lo = 70 @ B TO0 C L = 0@ a0 G0 C ... CL; =
00.804r060.. 0 C Lo =0@.. @70, Here the L; correspond to the vertices

n-1

i
of O,

5.2. Let g be a simple split K -Lie algebra. Then there is a Cartan subalgebra §, a

reduced irreducible system of roots B ¢ b* = Homp(h, R) and root spaces g, = {7 €

a/[{1X]) = o{H)X) of dimension 1 such that 0=h% [] ga- Put { = dimh. Choose

s + . aeR
ft* a system of positive roots with basis a0 A Chevalley basis of (g, ) is a basis

Hayyo I, of b oand vectors 0 # X, € go such that the following hold.
) [Ho Xo] = {oy, 0¥} X,
2} [Xa, Xa) = =1, and [Xo, X o) is 2 Z-linear combination of the H,, .

Nila,feRand a+f € R, then IXa, Xl = +(r4+1)X,45 when B-ra,.,B8,..,8+
9o, v g &€ IV is the a-string through 4.

We note that {0, 8Y) = n{a,8) ¢ {0,-1,-2,-3}. Since the I, and X, span a Z-Lie
subalgebra gz we can construct a lattice f=0z0z0 of g.

5.3. Let G.s be the adjoint connected algebraic group acting as automorphisms of the

Lie-algebra ¢. Over an algebraic closure T of & the group G.4(K) is generated by the
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elements ezpad X,t, 0 € R, t € K . Since the X, come from a Chevalley basis of g the
adjoint Chevealley group Gyq is defined over Z .

Let Autg(g,h) be the subgroup of G,y leaving b invariant. Let T.y denote the

split torus in (3,4 corresponding to h. Then there is an exact sequence

I — Tad — Aulgl{g,h) — "W — 1,

where Tuy = Toy(K) = Homy(Z(R),K*), see [B: Ch. V III, §5 n° 2]. Here *W is the
vectorial Weyl group of the oot system R and Aute{p, h) = N(7){K) is the normalizer
of Tyy in Guy. It is known (see loc. cit. n°. 3) that Guu(K) is simply transitive on the
set of Chevalley basises for g. Therefore T4 is simply transitive on Chevalley basises for

(3.h) with some choice of a basis a,,...,a of R.

5.4. Let A bealatticein V = R(H) such that
Z(R)C AC Z(P)

where Z(P) is the lattice spanned by the weights P and put T(K) = Homgz(A, K7).
Then T is a torus, defined over K with group of characters X (T)=~n.Tor T there
exists a group GfK with maximal split terus T such that & covers Gug, ie. over K

there is an exact sequence

l—p— 00— Gy—1.

with u(K} = Homg(AJZ(R),E) . If A = Z(P) the group G is called the simply
connected covering of G,y or the simply connected Chevalley group of type R. The name
“simply connected” is motivated by the fact that G{@) viewed as topological space with

the topology given by the usual one of @ is simply connected. For all this, see [D-GJ.

We have (K} = Homg(A, K*) = Homg(A, Z)@zK" with X.(T) = Homg(A, Z),
the group of cocharacters of G.If A = Z(P) we get Homg(A,Z) = Z(RY) by the
definition of the weights # .



5.5. We assume now that G is a simply connected split Chevalley group with split max-
imal torus 1", X.(T} = Z(RY),X*{T) = Z(F) and vectorial Weyl group *W . We put
E=XA(T)® IR, V = X*(T)® R chose a YW -invariant metric or. V and E* and
consider the action of the affine Weyl group Z(RY) »*W =: W on E. According to §4
we then have the notion of a Coxetler complex A{T) with a chamber € determined by a
choice of a systern of positive roots @, ...,a; . The chamber has vertices (0, o 5’1) s

1V ng

sce §4.

As explained the end of §3.7 we want to attach open and compact subgroups B
to the £41 vertices of . We describe these as stabilzers in G(K) of O-lattices in g.
We lix a Chevalley basis {{fo,, X, }iz1,6,a € R, and denote the O-Liealgebra spanned
by the basis by go. Let £y be the stabilizer in G{) of g, with respect to the adjoint action.

Let & = Ejzl n,é; be the largest positive root. The o € B is written uniquely

a=3'mua,, m € Z|m;| <n; . We define for i€ {l,..,£} and a € R an integer

-1 m; =mn,
n(j,a)=14¢ 0 D= my; <ny
! ni, < 0

and consider the (O-span of the basis {Hm,rr“()“’])(ﬂ,}i = 1l,..,{,a¢ € R, and see that
this is an O Lie algebra, Let F; ¢ G{K) be the stabilizer of this O-lattice. We note
that for ¢ = SLg we have & = ay + ... + as . Hence since ny =1 forall § and we get

cxactly the groups £ of §5.1.

Let U, bethe root group for @ € & of G . Then U, is isomorphic to the root
group for &« € R in 7y since u does not meet U/, . The choice of Xo € go deter-
mines an isomorphism U, = U,{{/) IR I’ . Hence there is a filtration Uagr of U, with
Vs = {z € Us(V)/v(&a(2)) > k} . We view (a,k) as affine map a : A(T) -— R with
alb) = alb)+£.1f 0 = T mjo, then o (2) = % and o (‘-”1) > 0iff k > n(j,a). Hence
£ is the subgroup of G(R} generated by T{C) and all the U/, with g (%’;L) 2 0. More
generally we attach te b € A(T) the group Py generated by T(Q) and all U, with a(b) > 0.
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We note that T(K) acts by conjugation on the P, . If Py comes from a lat-
tice with basis {OH,, Or™X,},i = 1,.,4, a € B then ¢ Pit™' comes from the
lattice (OH,,,Oxr+u=l) )Xy Let b determine the root groups U,x, a = a+ k.
Then t Pt! determines root groups Usksaty = {z € Unfafz) — v(alt)) > k).
We therefore define a map p : T(K) — {translations of A(T)} as follows. First
wemap t € T{) = Hom{Z(R}, L") to vit) € Homz(Z(R), Z} by compesing
with —v: K* — Z . We note that Homz(Z(P), Z) = Z[R¥] canonically. Hence
v(t) € Z{R) and p(t) is defined as translation on A(T) = E = Z(RY)@z R given by
2 +— x4 v(t). With this notation t Pt™' = P, .

The map u : T(k) — Af(E) can be extended to a homomorphism v :
N(TWK) — A(E) such that the linear part of w(n), n € N{T)(K} acts as prescribed
by the action of R € "W on £. Weget nfin~! = Funp« We note that if b is an interior

point of a simplex of A(T} with vertices by,....b, then b= ﬂ B, .
i=1

Summarizing we have attached to every simplex of A{T) = compact subgroup of
G(K) and the attachment is compatible with the action of N{T)(N'} on both sides. The
description of the groups depends on & fixed choice of a Chevalley laitice gy in g with
stabilizer Py corresponding to 0 € A(T) given by the point zero in E. The same situation

already occurred for SL, : the apartments where described with respect to a choice of 0,

§6. Construction of Buildings

Let GfK be an semi simple connected algebraic group over a local field § with maximal
K—split torus §. We construct at first a Coxeter complex A(S) and then describe how the
complexes are ghued together to obtain the Bruhat-Tits building of G{K}. For simplicity

we assume that G is almost simple,

6.1. We let X*(§) be the group of K-rational characters of S and put E :=
Homz(X*(5),R). For s € § = Homz({X*(5), K*) = X.(5) @z K* we define u(s) € E
by x(p(s)) = - v(x(s)) where v: K — Z is the discrete valuation of X and where

-2
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X € X*(5). The group X*(Z) of If-rational characters of the centralizer Z of §
in G is of finite index in X*(S) . Hence z extends to a homomorphism denoted by
p:Z(I) — E.Let N(S) be the normalizer of 5§ in . We write N(K) = N(8)(K).
Then N(K)/Z{K) =: "W is the (vectorial} Weyl group generated by reflections at the
K-roots of 5. These I{-roots from a root system R (not necessarily reduced) and the
roots generate X*(S)@ R. Since *W acts on X"(8) we get a linear action of w € *W
on F writlen v — w-v. There is a natural extension of # to a hemomorphism
v N{5)(K) — Af(E) into the group of affine bijections such that

a) if s € Z(K) then v(s)v =v+ u(s)

b) if n € N{K) represents w € *W then the linear part of v(n} is the map v — w.v.

To see this we introduce Z, = ker it and ohserve that N(K)/Z. is a group extension of "W
by A= Z(K)) which is a lattice with X.($) C u(Z(K)) ¢ Homz(X"(Z), Z) . Thus
N(K)/Z, represents a class in H**W,A) which gets trivial in HY{(*"W,A®z IR) and
we have a map N(SYK)/Z. — A®z R "W . The sem) direct product acts by affine
maps on A&z M = £ Hence we get a map v N(S){K) —s Afl(E) with properties
a} and b). Since *W acts irreducibly on £ the map » is unique,

6.2. Let 1 C X"(S) be the system of K-roots of {(Z,5). Any o € R defines a reflection

s« on E and a reot group U, C G which is connected and unipotent {of dimension 1 if
G is split, but not in general) We abbreviate Vs = UalK)

If x € Us\{1) there is a unique element ma(x) € U ozl_o N N(K) whose image

in "W is s, sce [B - T]. Then v(maiz)) is the afline reflection s, on £ with

s:(v) = v~ ({a, v) = a(z))0
where wo(z) € R and @ € E is the coroot of a . By the uniqueness of m,(z)
otie gets ma(z™!) = m,(z)"! and Mya(rzn™') = nm{zin~! if n € N(K) repre-
sents w € YW Consequently ¢ := Pua(nan™') — . (2} is independent of z . If we choose

n=mgalu),u € U,, then we get w-almiujem{u) ) —pa(z) = 2¢a(u). We put wa(l) = oc.
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Example: If = SL.{K) and o = ¢, — p; then U, = {1 + tey;ft € K} . We get
walt) = v(t).

We introduce U,, = {z € Us(K}/pa(z) 27}, re R.

6.3. Proposition. We use the above notation. Then

(i) Uar is a subgroup of U.(K).

() If o, € R and a @ —IR*A then the commutetor [Var, Us,] is contained in the

subgroup generated by Upayoppriqs where p,q are integers > 1,

The proof in the general case is diflicult, see [Br—T 4]. For simply connected split groups
the proof follows from what we have ohserved in §5 and standard properties of Chevalley
groups, see [Br-T 3: 6.1.3 b)].

6.4. For a € A and 2a ¢ R put Uy, = {1} and for 2a0 € R write Upe = Usa(K). Then
we have a filtration U, lo, of U,, o € R, r € IR. Let J, be the discrete set of r € R
such that the filtration jumps i.e.

Var Z |J Vasliaa .
T

Then (e,r) is called an affine rool. We view {a,7) as affne map o E — IR given by
2(v) = (a,v) — r. The corresponding reflection s, then is given by

so(v) = v - e(v)a"
We write U, = U, .. The group gencrated by the s, for affine roots a = (ar,r) in the space
of affine bijections of E is denoted by W and is called the affine Weyl group. This is the
affine Weyl group of some root sysiem (see §4) which can differ from R. We note that for

n € N(S)HI) we get nlun™" = Uyny . For simply connected split groups we get as set of
affine root R g as described in §5 and W is the affine Weyl group atlached to K. In general
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W is different from v(N(SYK)) = W. I G is simply connected then W = v(N(S)K)).

6.5. Let A = A(S). The afline Weyl group acts as Coxeler group on A and 4 to
gether with the arising Coxeter complex is called an apartment of G. For be A let Py
be the group generated by M = Z(K), and all U, where a{b) 2 0. Then P, is an
open and compact subgroup of G(K'}. Let N := v~ (W) € N($)(K). Then NIH W,

We consider the equivalence relation on G{K) x A given by:
{gyx) ~{h,y) i thereis an n € ¥ such that y = v(n)z and g~'hn € P; . For a proof

that this is an equivalence relation, see [B-T 3: 74.1.].

6.6. Definition: - We dencte by 7 the quotient of G x A4 by the above equivalence
relation. T = BT((, 1) is called the Bruhat-Tits building of G over the local field K.

6.7. We observe the following, see [Br-T 3: 7.4)

— Theaction of G{X) is compatible with the cquivalence relation and defines an actjon
of G(A'} on T.

-- The natural map 1 x A — 7 is injective. We identify A with its image in T .

Then T = Useciy 94 - The scts gA are called apartenents of T .

The natural simplicial structure of A given by W induces a simplical structure on

T.
-~ The group N is the stabilicerof A in G and H is the subgroup of G fixing A.

— [ A" and A" are apartments there is an element g € G(K) such that g(A"} = 4"
and such that ¢ fixes A'N A" pointwise. Moreover A'N A” is the enion of closed
facets of A" (and of A").

6.8. On an apartment A we can choose a “W —invariant positive scalar product which

can be normalized by the Killing form or by the prescription of the length of short roots.

The corresponding distance d extends to a map d: T xT — [R. Here one uses the last
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observation of 6.7, see [Br-T 3: 7.4.8]. One has the following result [Br-T 3: 7.4.20]:

6.9. Proposition.

Dd:TxT — R is GIK) invariant and gives T the structure of a locally compact

meiric space.

Wy If z,y €T then there is an apartment A containing z and y. The “geodesic”
[xv] = {tz+ (1 - t)y/t € [0,1)} is contained in every apertment conlaining r and
Y. In particuler if g € G{K) fizes z and y then g fires all of fx,y].

iit) The map 0,1 x T x T — T with (tz,9) = to 4+ (1~ )y is continuous. In

particulur T is contractible.

6.10. Remark. If G is semi simple then 7 is constructed by the same procedure where
an apartment A is replaced by a product of apartments A; which are given by the simple
factors of the root system for . Then T is a poly-simplicial complex. If 7 is reductive

the apartment A has an additional factor X.(51)® IR where S is the maximal central
split torus of 7.

§7. Some properties of buildings

There is a combinatorial approach to buildings starting with a Tits system {G,B,N,S).
This will be explained now.

The root groups {/, together with the affine map . of §6 give rise to a Tits system

and the building associated to this system is the building constructed in §6.

7.1. A Tits system is a quadruple (G,B,N,5) where @ is a group, B and N are
subgroups and § is a subset of N{BNN such that the fallowing hold:

i) BUN generates (7 and BN N is a normal subgroup of N
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ii} § generates W:= N/BNN and § consists of elements of order 2

iii) for all s € § and w & W one has

sBw C BwBU BswB

iv) forall s €5 one has sBs # B.

A Tits system (G, B, N, 5) is called affine if W is a euclidean Coxeter group.

o0 a 0
Example: G = SLy(@,), B = {('P o)eSLZ(O)},N - {(0 d)EG}U

1
¢ EG 5 H= o 0 e N:SII{USQH with &5 = 0 8z =
0 0 0 -10

¢
0 p : o
ool Here W is the infinite dihedral group.
-p

7.2, Let ((+, B, N,5) be a Tits systom. I[ X is a subset of W let Wx be the subgroup

of W generated by X . Put By := ) BwB.Then By iscalled a parahoric subgroup
weWy
of G of type X . The map X +— By givesa bijection between the subsets of § with

the set of subgroups of G containing B . The groups By are self normalizing in G .

A subgroup of G which is is conjugate to some By is called a parchoric subgroup of type X

7.3. Let (G, B, N, 5) be an irreducible Tits system which means that W js an irreducible
Coxeter group where £ 41 = |§] < 0o . We denote by A = A(G,B,N,8) the sim-
plical complex whose simplices carrespond bijectiveley to the set of parabolic subgroups
g+ P where dimo = [type(2) =1 and o 5 7 = Py C P, . We identify A with
its topological realisation. Let (7 the simplex corresponding to the minimal parabelic
-subgroup B with closure T. Then Uyew wC = A is called an apartment of A . The
group G actsen A Since N actson A and 4 = BAN fixes A pointwise we get an
action of W = N/N N B on A.If the apartment A together with the W-action is an
cuclidean Coxeter complex then A is called an affine building.
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7.4. Let G = G(I) be an almost simple connected group over a local field K and
denote by Hiyr the affine root system with Weyl group W = N/H, N ¢ N(S}K),
associated to & asis §6. Let B = Py be the subgroup of G{K) generated by Z, and
the U, with a{C) > 0,a € R.ss. Let § € W be the set of afline reflections at the walls of C.

7.5. Proposition. Let G be simply connected. Then (G{K), R, N(K),S) is ¢ Tils

system. The associated building coincides with the building constructed in § 6.

For §L, = & there is an elementary proof in [Br]. A direct proof of the first claim
in 7.5 without the theory of buildings was given by 1lijikata [Hli]. For split groups see also
(I-M]. The general case is handled in [Br-T 3: Thm. 6.5], [R 1: Thmn. 10.18). There the

results are extended to non simply connected groups.

If G is simply connected the subgroups of the form BWy B and their conjugates are

called parehoric subgroups. The group 5 and its conjugates are called Jwahor: subgroups.

For §L.(K) we have open and compact subgroups P, = P corresponding to the
vertices vy, ...,vn_; of a chamber €', and the P, are stabilizers of lattices L; in &™. Since
GLa(K) acts transitively on laltices in K" and since a maximal compact subgroup of
SLu(K) is a stabilizer of some lattice we see that the P, are maximal compact subgroups.

Let [L] be a lattice class represented by the lattice L. ¥ g € GL,(J{) we can ailach
to [gL] the well defined number o(detg} mod n . Hence to L; as above we attach the
number ¢ mod n. We see that the P; represent all §L,{K)-conjugacy classcs of maximal

compact subgroups of SL,(K). This generalizes as follows:

7.6. Proposition. Let G/K be simply connected and allmost simple wilh K-tank [,
Then there are [+ 1 G(I)- conjugacy classes of mazimal compact subgroups of G(K) .
If O is o chamber in T with vertices vg,...,v; then the P, are representatives of all the

conjugacy classes.

Il G is not simply conneeted then G{I) acts on the simply connected covering

G,. and by transport of structure also on the building 7 for G,.. The maximal compact
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subgroups of (A} then oceur as normalizers of certain parahoric subgroups for G, (K).

Note that in general the action of Gy on 7 = T(G,.) is not simplicial.

7.8. The group G(K} admits several decompositions some of which can be viewed as
analogs of well known decompositions in the theory of real Lie groups see [He]. To formu-
late the decompositions we introduce some notation. For this we use the notions which

have been introduced in §6.

We chouse a special vertex v =0 in I = Hom(X"(5}, R) and a chamber C with
v e C. We then have "W = W, © W and *W is the vectorial Weyl group of a vectorial
root system R with set of positive YR* roots (given by the choice of C). Let U = U(K)
be the subgroup of G(K} generated by the U,, a € *R*. Let € = IR C be the cone in
£ generated by . Put YV =v(Z(KNC L and ¥, =¥ N and Z(K)y = vV,
Let I3 C G(K) be the group fixing ' pointwise and let G(K)® be the subgroup of
) fixing 0= v. Note that in the simply connected case B is an Iwahori subgroup

and G(R)° is a special maximal subgroup. Then the [ollowing hold:

7.9. Proposition. Let & B, G(K)%, Y, Y, be as ahove. Then one has

(i) Bruhat decomposition: - G(K) = BN(K)B and the map bnB v+ v(n) establishes
a bijection NGB "5 W

(it} lwasewa decomposition: — G(K) = G(N)*Z(K)V(K) and the map G(K)ZU(K) +—

v(Z) establishes a bijection GUK)N\GUOJUK) =Y

(i} Cartan decomposition: — G(K} = G(K)°Z{K),G(K)® and the map KzK — v(z)
establishes u bijection

GIK)\GIK)]GK)P = Y, .

For proofs and generalisations of there results see [Br-T 3: §4]. Now that (i) follows for

simply connected group from 7.5.
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7.10. If we compare what has been explained for the building T of G — say G simply

connected — with the theory for SL, we sce that the following still is missing:

— the description of the simplicial structure of a neighbourhood {= link) of a facett F
of a chamber & in T

— a generalization of the notion “ends”
For the first point, see [Br] and [R 1], The description of the links requires (as in the
SLy-case) the notion of certain group-schemes over () and their reduction mod P,

sec [Br-T 4]. The second point is dealt with in [T 1] and for the connection with affine
buildings, see [R 1: §9) and [B-5].

7.11. We have not touched any application of the theory of buildings. For this the reader
should consult the survey articles [T 2], iR 2}, [R 8] and further literature mentioned
there. In particular the theory of buildings, leads to a new proof of the classification of
semi simple groups over p-adic fields, which was achieved first by Kneser using a case by

case analysis, sce K], [Br-T 2], [T 3].
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