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Abstract

We study a system of differential equations that models the popula-
tion dynamics of an STR vector transmitted disease with two pathogen
strains. This model arose from our study of the population dynam-
ics of dengue fever. The dengue virus presents four =erotypes each
induces host immunity but only certain degree of cross-immunity to
heterologous serotypes. Our model has been constructed to study both
the epidemiological trends of the disease and conditions that permit
coexistence in competing strains. Dengue is in the Americas an epi-
demic disease and our model reproduces this kind of dynamics. We
consider two viral strains and temporary cross-immunity. Our analysis
shows the existence of an unstable endemic state (‘saddle’ point) that
produces a long transient behavior where both dengue serotypes co-
circulate. Conditions for asymptotic stability of equilibria are discussed
supported by numerical simulations. We argue that the existence of
competitive exclusion in this system is product of the interplay be-
tween the host superinfection process and frequency-dependent (vector
to host) contact rates.



1 Introduction

Dengue fever is a viral disease endemic in many areas of the world that is
invading and recolonizing regions where either it was absent or it had been
eradicated. The dengue virus has 4 different serotypes. We censtruct and
analyze a mathematical model for its transmission dynamics. The model
i3 a system of differential equations that incorporates variable population
size in both host and mosquito populations, two co-circulating strains and
frequency dependent biting rates. The model constitutes a framework to
discuss conditions for coexistence or competitive exclusion of closely related
pathogen strains.

In the next section we give a basic background on the disease summariz-
ing its epidemiological importance as well as the main features incorporated
into our model. Then we proceed with the model formulation and discuss
previous work on the principle of competitive exclusion. This section is fol-
lowed by model analysis in absence of disease induced mortality (negligible
virulence}. Then we discuss the computational results for the case of non-
negligible virulence and, finally, in the last section, we compare our findings
with other models on superinfection, variable population size and frequency
dependent infection rates.

1.1 Dengue fever

We start with a brief summary of the epidemiology of dengue. We follow
references (23], [22] as well as others that are indicated where appropriate.

In developing countries population growth is an important factor that
contributes to the increase in the incidence of communicable diseases which
affect mainly the urban poor, with infants and children among the groups
particularly at risk {23], [22}. Urbanization and population growth increase
the demand on basic essential services such as housing, water supply, etc.,
and at the same time induce conditions that increase the transmission po-
tential of some vector-borne diseases [23]. Inadequacies in water supplies
require large-scale water storage which are ideal breeding habitats for Aedes
spp mosquitoes, the vectors of dengue fever, dengue hemorrhagic fever and
dengue shock syndrome as well as yellow fever. Changes in food habits lead
to increase use of tinned food and more use of disposable containers that pro-
vide breeding sites to vectors of this type. In summary population growth,
urbanization and poverty enhance presence and transmission of infectious
diseases. :



Unfortunately not only dengue has increased its incidence in urban cen-
ters of the developing world but also yellow fever, wmalaria and Chagas dis-
ease have been benefited. The destruction of city water supplies, temporary
housing for refugees, high fertility and rural to urban migration and the
steady deterioration of urban environments have led to sustained growth in
density and area occupied by Aedes aegypti and Aedes albopictus, two of
the main vectors of dengue virus.

Other important problems of the dengue virus in the Americas and else-
where are the public health consequences of global warming [25]. Of concern
is the potential spread of dengue through the vector Aedes albopictus, re-
cently introduced to the American continent [24].

Dengue causes a spectrum of ilinesses in humans ranging from clinically
inapparent to severe and fatal hemorrhagic disease [8]. Classical dengue
fever is generally observed in older children and aduits and is character-
ized by sudden onset of fever, frontal headache, nausea, vomiting and other
symptoms. The acute illness last for 3 to 7 days is usually benign. The hem-
orrhagic form of dengue and its associated dengue shock syndrome (DHF-
DSS) is most commonly observed in children under the age of 15 years but
it can also occur in adults [8]. It is characterized by acute onset of fever
and a variety of symptoms that last 2 to 7 days. This form of dengue can
terminate in death of the patient.

Dengue is produced by viruses of the genus Togaviridae, subgenus Fla-
vivirus. Four distinct dengue viruses have been distinguished, denoted by
types 1, 2, 3 and 4. Dengue viruses can infect only a restricted number
of vertebrates but it is an essentially human disease [10]. Infection by any
dengue virus strain produces long lasting immunity but only temporary
cross-immunity to other serotypes. Three of the vectors are Aedes aegypts
Linnaeus, Aedes albopictus Skuse, and Aedes scutellaris Walk. Aedes ae-
gyptt mosquitoes acquire infection from infected individuals 6 to 18 h before
onset of fever and then for the duration of the fever. A minimum extrinsic
incubation period of 8 to 14 days is required after an infective blood meal
before the mosquito becomes infectious. The infection in the vector is for
life. Dengue virus is transmitted in two cycles: urban and sylvan although,
as mentioned before, it is predominantly a human virus [10].

There are no effective programs for vector control and, as a consequence,
the absolute numbers of dengue infection and dengue infection rates have
increased during the last 40 years {11]. Unfortunately, countries where pos-
itive results exist for vector eradication have been suffering from epidemic
outbreaks: the disease is coming back. Dengue viruses were introduced in



the Americas around 1960 and since, dengue has been reported in countries
where it was absent before as Cuba, México [19], the United States, most
Central America, Ecuador, Peri, Paraguay, Bolivia, Argentina and Brazil
f11].

Dengue transmission occurs throughcut the year in endemic tropical ar-
eas but there exists, however, a distinct cyclical pattern associated with the
rainy season (8]. In particular, in Thailand where the vector life cycle is
highly domiciliary, temperature and humidity conditions during the rainy
season favor survival of infected mosquitoes. In the Americas the situa-
tion is different since in these areas larvae develop in the outdoors. Here,
peak transimnission takes place in the days of highest rainfall and warmer
temperatures season (8.

In regions where mosquito and humans exists, an introduction of dengue
virus may produce an epidemic depending upon a) the strain of the virus
(influen.cing magnitude and duration of viremia), b) the susceptibility of the
human population, c) the density, behavior, and competence of the mosquito
vector population, and d) the introduction of the virus into an area where it
has contact with the local mosquito population [8]. Severity of dengue fever
has been' associated with secondary dengue infections although its causes
are far from being explained. Epidemiological studies in Thailand suggest
that an important risk factor for DHF-DSS is the presence of preexisting
dengue antibody at subneutralizing levels. Also, endemic DHF-DSS is found
in areas where Aedes aegypti densities are high and dengue virus of multi-
ple types are endemic. Moreover, DHF-DSS is associated with individuals
older than 1 year with a secondary type antibody response and with pri-
mary infections in newborn babies whose mother where immune to dengue
(8], [10]. These facts led to the formulation of the secondary infection or
immune enhancement hypothesis to explain it (8]. This hypothesis states
that only those persons experiencing a second infection with heterologous
dengue serotype present DHF-DSS. In particular it has been found that only
secondary dengue-2 disease is immunologically enhanced and that infection
with this virus serotype cause the majority of DSS cases [11]. Other factors
are also associated with DHF-DSS. These are sex (more frequent infections
in females), nutritional status (higher incidence in well-nourished babies of
middle and upper socioeconomic class), and the interval between first and
second infections.

To conclude this brief review of the epidemiology of dengue, we show in
Table 1 a summary of dengue epidemic in several countries of the world.



1.2 Superinfection and coexistence

In dengue certain sequences of infection appear to be more damaging to the
host than others. We model this process using a susceptibility coefficient
(cf. [12} and [4]). This coefficient allows us to explore varying degrees of
susceptibility to secondary infections and their effect on the asymptotic dy-
namics of the disease. Through model analysis we explore the consequences
of coupling two populations that differ in the infection pattern (SIR with
superinfection in the host, SI in the vector), and the effect of frequency-
dependent infection rates on the coexistence of closely related strains.

Most diseases are produced by an spectrum of closely related pathogens
rather than by single strains and dengue is clearly an example of this as-
sertion. In dengue an analogous phenomenon to superinfection (Nowak and
May [21}, May and Nowak [16]) occurs. One strain invades the host popu-
lation, produces a brief period of temporary immunity to other strains but
when the immunity is lost the host becomes susceptible to reinfection with
another strain. In dengue, before reinfection can occur, there is a period
where the host is resistant, in varying degrees, to all strains [8]. In dengue
fever we are thus confronted with a vector-transmitted disease, co-circulating
strains, certain degree of cross-immunity or even increased susceptibility to
infection, and a variable host population size. Under these conditions one
important theoretical problem that we address here is that of the coexis
tence of all strains or the eventual extinction of some of them. A similar
problem has been theoretically explored by several authors [12], [2], [13], [5].

There are numerous published results discussing the problem of coexdis-
tence in pathogen-host interactioms. Levin and Pimentel [12] constructed
a mathematical SI model where the population in the absence of disease
grows exponentially. Two strains with different virulences compete with
each other. The most virulent strain can ‘takeover’ hosts already infected
with the less virulent strain. With these assumptions a globally stabie equi-
librium is possible where both strains may coexist [3]. The stability of the
positive equilibrium is only guaranteed for certain range of values of superin-
fection. Outside this range one of the boundary equilibria is asymptotically
stable.

Bremermann and Thieme [2] postulate a competitive exclusion principle
in an SIR epidemic in a population with variable size. Several strains com-
pete for a single host population. The pathogens differ on their virulence.
In this model virulence is a strictly convex function of the transmission rate
implying that the evolution of virulence leads to a transmission rate that



maximizes the basic reproductive number of the pathogen {2].
Castillo-Chavez et al. {13] find, for a SIS two-sex model with variable
population size, that competitive exclusion is the norm: the strain with
the highest reproductive number persists in both host types. Mena-Lorca,
Velasco-Hernandez and Castillo-Chavez [17] studied the effect of variable
population, virulence and density-dependent population regulation. In this
model too, coexistence is feasible only in certain window of parameter space.

2 A mathematical model for dengue with two
strains

Previous models for dengue fever are reported in [26] and [20]. The former
is a cost-effectiveness model for the management of dengue. It addresses
sociological-epidemiological issues that we do not consider here. The sec-
ond model follows the same basic methodology that we adopt. This model
[20] incorporates an incubation or latent period for both mosquitoes and
humans. Both total populations of hosts and vectors are considered con-
stant. The model predicts an asymptotically stable endemic state if the
basic reproductive number is greater than one.

In the model that we analyze here, we consider variable population sizes
of both hosts and vector populations, we do not incorporate the exposed
compartment, but include instead the existence of a second co-circulating
strain that can produce secondary infections in those individuals either sus-
ceptible or already recovered from a primary infection with a different strain.

2.1 Model équations

Consider a human population settled in a region where a mosquito popula-
tion of the genus Aedes is present and carrier of the dengue virus.
Model equations then stand as follows (' = d/dt):

S(t) = h—(Bi+By)S—uS,
Ii(t) B\S — 09Bs 1 — ulj,

Ié(t) = ByS—o1B1l; ~ uls, (1)
Yit) = o1Bilh—(e1 +u+1)Y,

Y;(t) = o2Bafy —(ez 4 u +7)Y;

R(t) = r(i+Y)~uR



M'(t) = g-(A1+A)M ~6M,
Vilt) = AM -5V, 2)
2(8) =AM -8V

N=5S+hLh+L+Y1+Y2+Rand T = M + V; + V; are the host and
vector total population sizes respectively (see Table 2 for other parameter
definitions and values). Primary infections in human hosts are produced by
either of the two strains at rates

B; = B;V;/{c+ wyN)

for i = 1,2 (in vector to host transmission). Primary infections in vectors
are produced at rates

A= a.—(I; -+ K)/(c +w,,N).

These function forms describe frequency-dependent disease transmission.
Both are special cases of the Holling type II functional response [6] and
are also generalizations the contact rates of the Ross-Macdonald model for
Malaria [1} and for Chagas disease [27)].

We assume that once a mosquito is infected it never recovers and it
cannot be reinfected with a different strain of virus. Secondary infections,
therefore, may take place only in the host. Two cases can occur: either
previously [; individuals are infected by strain 2, through contact with in-
fected mosquitoes V3, becoming Y5 hosts, or previously I individuals are
infected with strain 1, through contact with ¥} mosquitoes, to become Y; in-
fected hosts, at rates c1 By1l; and o283y, respectively. Here, o; is a positive
real number that may mimic either cross-immunity (¢; < 1) or increased
susceptibility {o; > 1) by immune enhancement. This type of dynamics is
analogous to superinfection (cf. {21]). In dengue, the immunity developed
after infection is a factor that does not appear in superinfection models. In
dengue, either of the primary infected populations can be reinfected with
the other strain. General results on the effects of cross-immunity in SIS
and SI models respectively [21], [17], indicate that for certain values of o co-
existence of competing strains is possible. As we will show, the existence of
cross-immunity together with the induction of specific permanent immunity,
and frequency dependent contact rates, prevent coexistence. The generic
outcome of our model is competitive exclusion although, in some cases, in a
very long time scale.



To summarize, if 0; < 1, primary infections confer partial immunity to
strain 4; if ¢; = 1 secondary infections with strain i take place as if they
were primary infections, and if o; > 1 primary infections increase suscep-
tibility to strain 4. Once an individual has suffered from both infections it
gets immunity to both strains at a rate r independent of the sequence of
infections.

Since the equation for the total vector population is

T =q— 6T,

we have that as t — oo, T(t) — g¢/8. This allows us to substitute M =
q/6 — V1 — V3 making the equation for M in (2) redundant.

2.2 Basic reproductive number

VLet
Q={(S,I1,IQ,H,E,R,W,%) : S+II+I2 +Y1+Y2+RS’1/U=

Vi+Va < ¢/6}

be the set bounded by the total host and vector population in the absence of
disease. We can immediately identify three equilibrium solutions to (1—2),
the disease-free equilibrium Ej = (5*,0,0,0,0,0,0,0) and the two (bound-
ary) equilibria

B} =(51,11,0,0,0,0,V7,0),

where only strain 1 survives, and
EE = (32.: 0: IE: 0? Oa 0: Os V;)

where only strain 2 survives.

The basic reproduction number is defined as the number of secondary
infections that a single infectious individual produces in a population where
all hosts are susceptible. It provides an invasion criterion for the initial
spread of the virus in a susceptible population '

To find the basic reproductive number for our model we equate (1-2) to
zero and rewrite it as

S = hi(u+B +Bz),
I = B,'S/(U'FO‘;BJ'), i#7,14,7=12,
Y, = a,-B;IJ-/(u-i-ej +71), 1#£ ], i, = 1,2,

8
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il

r(Y1 + 12)/u,
Vi = qA/(6+ A1+ Ap),
Vi = qAz/(6+ Ay + Ag).

Let K = (Bi, B2, A1, Ap)' (1 denotes transpose). Substituting the above
expressions into the definition of B; and A; we obtain a system of four non-
linear algebraic equations in terms of B; and A;. We denote this system by
®(K). The solutions of K = ®(K) give, by construction, all the equilib-
rium points of (1-2). This equation also allows an easy computation of the
next generation operator [7] and the associated basic reproduction number.
By construction, the next-generation operator is simply the Jacobian of @
evaluated at the disease-free equilibrium (given by By = By = A; = 4; = 0):

3
0 O wHam 0
D®(0) = 0 0 0 wI{c+hip fu)
Ezicrhwv?ui 0 0 0
0 8 {e+hwy fu) 0 0

The basic reproduction number is therefore

Ro = max{v/R;, VRy}

with
_ aifihq/bu
= W8{e + uonu)(c + huf )
This formula is a generalization of the Ross-Macdonald basic reproductive
number to the case of multiple strains, frequency-dependent contact rates
and variable population size in both host and vector.

It follows then that if Rg > 1, then the disease is able to invade the host
population. Otherwise, if Rg < 1 the virus eventually disappears from the
host population (local result).

Ry

3 Equilibrium points

We are interested in the conditions that guarantee the permanence of dengue
as an endemic disease. There are, in our model, boundary equilibria (where
only one strain is present}, and the coexistence equilibrium. In the following
section we analyze the former. Its existence is determined by the relative



magnitude of the basic reproductive number of each strain. After that, we
present the numerical results that characterize the stability properties of the
coexistence equilibrium.

3.1 Boundary equilibria

Whenever R; < 1 then B;, A; both vanish. Therefore, R; > 1, R; <1,
1# j, 1,7 = 1,2, implies the existence of E} which is also a unique endemic
equilibrium (where only one strain is present). Under these conditions the
asymptotic dynamics of system (1-2} is completely contained ir an invariant
manifold §; C  defined as

Q= {(8,L,Vi): 0< S+ L < hfu, 0<V; < q/6).

For V; = I; = Y; = R = 0 (within ;) our model is described by the
equations

S'(t) = h—B;S-uS,
L) = B;S —ul, (3)
ol
Vit = —El -V = 5V,
(0) = /e~ V) - 5%,

with the total host population size (in ;) satisfying the equation
N ’(t) =h —uN.

In (3) the unique (non-trivial) equilibrium point is the projection of E;
onto the subspace {};. Moreover, virulence (extra mortality induced by the
virus) plays no role in this asymptotic system.

Since N(t} — h/u ast — o0, (3) can be reduced further to the equations

BiV;

o) = It — I — ul:
i) c+u,,h/u.(h/" L) — ul;,
v’ = &4 VN AU
; (1) c+wuh/u(Q/6 Vi) - 6V,

that are equivalent to the Ross Macdonald malaria model (Aron and May
[1]). Therefore, whenever R; > 1, this limiting system is globally asymptot-
ically stable in ; [18].

10



3.1.1 Boundary equilibria when virulence is negligible

To obtain precise results on the existence and stability properties of equilib-
rium points we assume that dengue does not produce significant mortality
(e; = 0). The assumption is not justifiable in all regions where dengue is
endemic but it is a useful first approximation.

In the absence of virulence, the host population is asymptotically con-
stant and therefore we can reduce the dimension of our model equations by
one. We drop the equation for S. et wy =w, =w, N = h/uand T = q/§
and take e; = 0.

To facilitate the analysis and interpretation of our results we compute
the Jacobian matrix of (1-2) by reordering it as indicated in (4) below.

Consider the boundary equilibrium

Bl = L VE B YL RY) (4)
where

1/2‘ =I§2}E‘=Y’;=R’=0

and
Ve = M(Rl - 1) _ ‘!16(R1 —_ ]_)
' b1(6 + a1 N)’ ' ay (T +u)’

with

PO

c+wﬁ’ e c+wl\“f'
With this new order the Jacobian has the form

. G G
J(El) =( 01 Gz ) ]

where i
G = ( ~6-all a(f-W) )
bi(V —I7) -u—hV} /'’

~5 - 0 ad-v) o

bo(N = I} —u—a by Vy 0 0 0

Gy = 0 alblVf —(u+'r) 0 0-

oo If 0 0 ~(u+r) 0
0 0 T ™ -t

11



The eigenvalues of J(E]) are given by the eigenvalues of G1 and G4. When
Ry > 1, Gy has two eigenvalues with negative real parts. Eigenvalues of G,
are given by —u, —(u + r) and by the roots of the polynomial

N+ AN LB+ C=0
where
A = 2u+ohVf +r+54,

Hy JV'

B = (u+r) (u + 0’161171 ) + 5(1& + Ulblvlt) - uéR— — 0Oy a.gbg-l—

C = §u+abV')(u+r) -(u+r)u5§~-(u+alblﬁ‘)aga2b27-1—.
1 1

In the above we have used the equivalencies

NT uw _ §+aN vy
) = L@ -,
Ry' 0Vf SRy -1) i )= ay

(N-ONT~-V;) =

~ Our threshold parameters are given in terms of bounds for the superin-

fection coefficients o) and o3. Thus, they set bounds for the level of induced

resistance or increased susceptibility that each strain produces in the host.
Let

) 6+0.1N
o] = ma.x{ ( R; 1)5(31 )}
. _ b(u+r) _ u L)
% = flo)= anbo I} (T ~ V7') (t u+ 016 V' Rl)' ®

Then the following hold
Lemma 1:

1. 01 > o] tmplies 03 > 0;
2. 01> 0f and 03 < oy tmplies A>0,B>0,C >0 and AB > C;
3. 01 < of or o3 > o} itmply C < 0.

The proofs of 1 and 3 are straightforward. To show 2, let o7 > o] and
oy < 73. It is easy to see that o7 < o3 implies C' > 0. Note that

5(u+ 015 V7) > ub=2,

12



Hence
B(u+o15, V) 2 (u+8)(ut016:1 V)6 - (ut 101 Vi )o = 2a000 13 (T - V) > C,

but C' > 0, therefore B > 0. To show that AB > C we note that oy < F(e1),
thus obtaining

u+r Ry

T -V < -
U2a2b2I1 (T Vl ) = 6("‘ -f-T') u +O’1b1V1' Ry

It follows then that

AB 2 (2u+o sV +r+6). ((u + ) v+ V) + 6) + 8(u + o1y V)

Rs u+r Ry
—ub—=—§ uf————————
u5R1 (u+71)+ u+0'1blv1‘ RI)

' Ry
> (u+r) (6(11. + o1 V') — u&R—l)
Since R
C<é(u+oiWVHu+r)—(u +'r)u6R—2,
1

it follows that
AB > C.

Using the Routh-Hurwitz criteria we have the following result:

Coroilary

The boundary equilibrium E} is locally asymptotically stable if o1 > of,
and og < 05. Otherwise it i3 unstable.

Lemma 1 and the corollary say that whenever the superinfection co-
efficient of the first strain is above threshold there are values of the sec-
ond superinfection coefficient that give asymptotic stability of the boundary
equilibrium E7. Since it is only required that o} > 0 and o3 > 0, the asymp-
totic stability of E} is guaranteed in principle either when the first strain
induces resistance or when it increases susceptibility to the second strain.

Using the definition of f given in (5) we have

Lemma 2:

13



1. If Ry < Ry, then o} =0, f(of) = f(0) > 0, f'{oy) > 0.
2. If Ry > Ry, then o] >0, f(of) =0, f(0) <0 and f'{oy) > 0.

Define D1 = limg,—eo f(01). Then the region of stability of E{ given by
Lemma 2 is shown in Figures 1 and 2 for both cases (f(0) > 0 and f(0) < 0).

Using the symmetry between the two dengue strains, we can perform a
similar analysis for the other boundary equilibrium E; (where the second
strain wins). In this case we have V;' > 0 and I$ > 0, and we can define

. Ri .\ S+alV
oy = ma.x{O, (R2 1) 6(Ry — 1)}"
. 8(u+r) v B
= = A 1 - o) 6
oy g(o2) alblIg(T—Vi')( u+ gaby V' Rz) (©)

Without loss of generality assume R; > Ry > 1. Then we can draw a
bifurcation diagram in parameter space (0, o3). See Figure 3.

Putting together the three lemmas and the corollary above, we summa-
rize our results in the following lemma about the local stability properties
of both boundary equilibria (where we use the definition of g given in (6)):

Lemma 3:

1. Ef is locally asymptotically stable if o3 < f(o1) for every oy > 0,
and unstable if a9 > f(oy).

2. Ej is locally asymptotically stable if ap > g7 %(01) for every o1 > 0,
and unstable if o2 < g7 (o).

3. B} and Ej are locally asymptotically stable if g~ (01) < o3 < f(oy).

Note that it is possible to have threshold values of o} and o} such that
both Ey and Ej are locally asymptotically stable. This conclusion indicates,
at the very least, that there are situations where the asymptotic dynamics
of our model depends on the initial conditions.

3.1.2 Boundary equilibria and virulence

When ¢; > 0, we can no longer claim that the total host population is
asymptotically constant and one has to work with the full system (1-2).

14



In this section we provide a rough sketch of the stability properties of the
boundary equilibria for this case.

The local stability analysis of E (equilibrium with only strain i present)
can be determined by computing D®(E;). The eigenvalues of this matrix
around this equilibrium are

)\i = Ri-lu and i = Rj‘l/)(a'g, o.jv-Ri)a 1 7& js

where 1 is a multiplicative perturbation of R; that depends on the basic
reproductive number of strain i as well as on the superinfection indices oy
and o3. This perturbation has the general form

¢ "nbt(du )+¢J(UJ!'RI)! 2#3!

where
i = ct g, = SoBi=1)
Puten(Ri—-1) 7 cilej+r+u)

with ¢1, c2, c3 and ¢4 positive constants. In particular v satisfies 8¢ /80; <
0, and 8v;/80; > 0 and 8;/8e; < 0.

Note that the stability of the equilibrium point E! is favored (i tends
to reduce its magnitude) when the virulence (extra host mortality induced
by the virus) of strain j is large.

Moreover, in the limiting case were o; = o; = 0 (no superinfection
occurring), ¥ = Ry!. Therefore, the condition R; <1 < R; makes & a
local contraction around Ef. Thus, the local asymptotic stability of E} in
2 follows.

However, if 0 < o; < ¢}, E} may cease to be an attractor under ® (with
the condition R; < 1 < R; holding). In this case E} is still a giobal attractor
in {; and (locally) a saddle point in Q.

It is important to mention that whenever R; > 1 and R; > 1 simultane-
ously, both equilibria E} and E; exists. Their stability properties depend
on the magnitude of y; and p; rupectwely (i and A; are always less than
one whenever R; > 1 and R; > 1). Fore; > 0 numencal s:mula.tmns give
essentially the same result as for the case ¢; = 0.

3.2 Characterization of the interior endemic equilibrium

In this section we present results from numerical simulations that provide
strong evidence for the existence of an interior endemic equilibrium, that
is, an equilibrium point with positive densities of both infected host types.
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In these simulations we explored the interdependence of three key parame-
ters: the basic reproductive number, the superinfection coefficients and the
disease-induced death rate for each strain.

Variable population size can have a very dramatic effect on the result
of a competitive interaction [17]. In particular it can ‘reduce’ the area of
parameter space on which coexistence is possible (compared with the equiv-
alent model with constant total population size). The following results were
found through the numerical simulation of model (1-2) when e; > 0:

1. Whenever R; > 1 for ¢ = 1,2 there exists an equilibrium point in
the interior of 2. This point has a local unstable and a local stable
manifold of positive dimension (see Figure 5).

2. If R; > 1 > R; then the boundary equilibrium E; and the interior
endemic equilibrium do not exist and the boundary equilibrium E?is
globally asymptotically stable (Figure 4).

3. When R; > R; > 1, the superinfection coefficients oy and o may
change the asymptotic behavior of the system, rendering strain j as
the winner over strain i (which would be the winner if o} = o3 = 1,
see Figure 6).

4. When R; > R; > 1 and both boundary equilibria are locally asymp-
totically stable, there exists a separatrix that cuts Q into two disjoint
basins of attraction (one for each boundary equilibrium, see Figure 5).

Model simulations show that in the host population there is no long-term
persistence of both strains. However, the unusual nature of the endemic
equilibrium (a ‘saddle’ point) produces a relatively prolonged (years of du-
ration) quasi-steady state when both R; are greater than one. Given the
inherent time-scale of the disease (months), this quasi-steady state would
look as an stable endemic equilibrium (see Figures 5 and 6). Under these
conditions there are two possibilities depending on how many of the bound-
ary equilibria are locally stable. If only one of them is locally asymptotically
stable our computer simulations indicate that this equilibrium is also glob-
ally asymptotically stable. Thus the competitive exclusion of one of the
strains occurs.

Our computer simulations also indicate that even though the initial out-
break of primary infection is driven by the strain with the highest repro-
ductive number, it is precisely this strain the one that can be competitively
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excluded. This occurs if the primary infection enhances (increases suscepti-
bility to) secondary infections (see Figure 6). Therefore, the strain with the
smallest reproductive number may end up persisting in the host.

The second possibility occurs when both boundary equilibria exist and
both are locally asymptotically stable. In this case the outcome of the
interaction—competitive exclusion of one strain—, depends on the initial
conditions (Figure 5).

4 Discussion

The incorporation of full vector-host dynamics in a multip!: strain epidemi-
ological system has been partially analyzed in this work. Conditions for
existence and stability properties of the interior endemic equilibrium point
are somewhat unusual. Although existence of the endemic equilibrium is
still a function of the basic reproduction numbers of each strain (both basic
reproduction numbers must be greater than one), the endemic equilibrium is
always unstable with stable and unstable manifolds of non-zero dimension.
To illustrate this point numerical simulations were carried out based on the
numbers reported in [15] for the basic reproductive number of the 1990-91
epidemic in Brazil. Ry had an average value of 2.03. Previous work in Mex-
ico reported an average reproduction number of 1.33 with a maximum of
2.41 (cited in [15]). The parameter values that we have chosen give basic
reproduction numbers for both strains of about 2.

The existence of an interior endemic equilibrium point with this char-
acterization produces a potentially unpredictable long-term behavior (see
Figure 5). New infection waves after the primary epidemic burst will settle
to a transient, apparently stable, low level of endemicity where strains co-
circulate. However, as time passes, the prevalence of one of the strains will
eventually and steadily increase while the other strain disappears. Which of
the strains will be the winner depends on the initial conditions preexisting
when the new strain arrived and on the level of susceptibility induced by
the primary infection (Figures 4 and 5). Of course, if during the transient
phase, a new wave of infection appears, it will not be possible to predict
which strain will become endemic. In general, as Figure 3 shows, the region
where both boundary equilibria are locally asymptotically stable is large
and, according to our model, most dengue epidemics fall into this situation.

As shown in Figure 3, the existence of two locally asymptotically stable
boundary equilibria, and therefore the existence of an (unstable) interior
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endemic equilibrium is guaranteed for a biologically feasible range of val-
ues of the superinfection indices ¢; and o7. This range covers cases when
both primary infections induce resistance to secondary infections or when
susceptibility is enhanced.

It appears that for feasible values of o; (e.g. o; € (0.1,2)) and whenever
R; > R;, the interior equilibrium exists unless ¢; is either very small or very
large. In Figure 3 we illustrate the case when R > R; (see Figure 3 legend
for parameter values used). We conclude that the presence of superinfection
forces the existence of the interior equilibrium. However, it appears that
superinfection cannot induce stability in this state. In the case of Figure 3,
the endemic interior equilibrium would cease to exist for a value of o9 &~ 0.001
but then only the boundary equilibrium E7 would be asymptotically stable.

Gupta, Swinton and Andersoa [9] show in a model for malaria that co-
existence is a likely outcome when cross-immunity is taken into account. Al-
though malaria is a parasitic, not a viral disease, the mathematical structure
of the model allows some comparisons with ours since both deal with a vector
transmitted disease. Gupta et al. generalize directly the Ross-Macdonald
model for malaria studied by Aron and May [1] introducing cross-immunity
and two infected host subtypes: those that are infected and infectious, and
those that are infected but uninfectious. Thus, essentially there is a reduc-
tion in the net number of infected individuals that can transmit the disease.
However all infected individuals can hold the parasite. In particular, the
rate at which parasites become ineffective to transmission, i.e., the hosts
becomes infected but not infectious, is exponential, guaranteeing the pres-
ence of positive densities (however small) of each type of infected hosts for
all time. Thus, the Gupta et al. model effectively creates a refuge for each
parasite strain. Moreover, the total host population is considered constant.
The assumption of constant host population size is achieved by defining the
recruitment rate in such a way as to balance the output from all system
compartments. This factor alone when associated with cross-immunity is
enough to enhance coexistence in models for directly transmitted diseases
[21], {16]. In the case of our general model all infected individuals are in-
fectious; thus there are no refuges. Also, by definition, we take virulence as
extra mortality induced by the disease. This prevents the existence of a con-
stant population size for the host. We do not define the recruitment rate for
the total population so as to balance disease mortality losses (and therefore
achieve a constant size in the host population). This would be equivalent, in
our case, to require that the extra-mortality rate is compensated exactly by
the cure rate of the disease and, therefore, population variability would be

18



independent of disease dynamics. However, even in this case (no virulence)
our model predicts competitive exclusion of one of the strains.

The main reason that explains why in our model coexistence is an im-
probable outcome resides, we believe, in the coupling of two populations,
each with a different pattern of disease progression.

The structure of the equations that describe the transmission dynamics
in the host population is that of an SIR model with superinfection and
variable population size. In a directly transmitted disease with this structure
and no virulence one would expect analogous results to those of Nowak and
May [21]: coexistence of both strains as a rule. Our model also incorporates
an SI model without superinfection in the vector popr'ation. In a dirertly
transmitted disease this structure would predict competitive exclusion of the
strain with lower basic reproductive number [2].

When we couple both of these types of epidemics into one, our host-
vector model (1-2), the outcome is competitive exclusion of one of the strains
if at least one of the basic reproductive numbers is greater than one. In a
sense, the vector dynamics dominates the dynamics of the coupled system.
The reason for this is that the vector-host relationship is asymmetric. The
vector chooses the host. In this case we have modeled the contact rates
according to a generalization of the Ross-Macdonald model: the contact
rate is frequency dependent [6] (depends on the ratios of vector numbers
to host numbers for both types of strains). Thus, what our results show is
that coexistence promoted by superinfection in the host population is
‘broken’ by frequency dependent dynamics in the biting (contact) rates,
thus resulting in the competitive exclugion of one strain even when an
interior steady-state exists.

Other models that incorporate cross-immunity and muitiple strains have
been studied (12], [14], {17]. We compare our results with the original one
that introduced this idea of competition of multiple strains in epidemic mod-
els, namely the Levin and Pimentel paper {12|. In summary, the conclusions
of [12] are that in a variable host population system coexistence is possible
in a bounded region of parameter space. Outside this region, depending on
the relative magnitudes of parameter values one of the two strains wins and
competitively excludes the other. This model was originally designed for
the theoretical study of myxomatosis as a control factor of an exponentially
growing population. The fact that virulence is the growth regulatory factor
in this model determines the existence of a coexistence region in parameter
space. In the dengue model that we analyze here, the disease is not the
unique factor that regulates growth. Permanent immunity is also explicitly
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introduced into the model. Even in the case when virulence is negligible
competitive exclusion is the rule. The existence of frequency-dependent
contact rates closes the window of coexistence.

The model analyzed here does not incorporates the effects of age struc-
ture. Dengue in tropical Asia affects particularly children with ages between
5 and 15 years old, with a modal age of 5 years {26]. The same reference
indicates that in 1987 more than 600 000 cases of dengue were reported
in Southeast Asia with 24 000 deaths: 90% of both cases and deaths were
children. The risk of infection is obviously an age dependent factor. More-
over, the influence of physiological structure into the dynamics of dengue
may have an influence in the likelihood of coexistence of both strains. The
need for a model that incorporates age structure into the dengue population
dynamics is thus justified.
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Figure captions

s Table 1. Absolute numbers of dengue hemorrhagic fever cases and
deaths reported to the World Health Organization regional offices.
NR: not reported. (From Halstead,1992).

o Table 2. Parameter definitions and values used in the simulations
illuestrated in the figures.

o Figure 1. Graph on the parameter space (o1, 03) for case 1 of Lemma
1. In this case By < Ry, f(0) = 0. The shaded area corresponds to
parameters values that render ihe boundary equilibrium for strain 1
locally asymptotically stable.

e Figure 2. Graph on the parameter space (g1,032) for case 2 of Lemma
1. In this case By < Ry, f(0) = 0. The shaded area corresponds to
parameters values that render the boundary equilibrium for strain 1
locally asymptotically stable.

» Figure 3. Region of parameter space (1, 0;) where both boundary
equilibria are locally asymptotically stable. Fixed parameter values
are r = 0.71/day, u = 0.000039/day, 6§ = 0.71/day, h = 0.9775, a; =
0.002, o = 0.015, B = 0.001, B, = 0.001, ¢ = 10, T = 50000, ¥ =
25000. The corresponding basic reproduction numbers are B; = 2.4
and Ry = 2.08.

o Figure 4. Phase plot in the space (I3, I;) for values of the super-
infection indices outside the shaded area shown in Figure 3. The
graph was computed with the same parameter values shown in Fig-
ure 3 but with oy = §, o; = 0.05, and positive disease-induced death
rates e; = 0.0001/day, ez = 0.0005/day. These parameter values give

* g9 < g~ Y1) = 0.1. In this case strain 1 competitively excludes strain
2. The final outcome of the disease (which strains wins) is indepen-
dent of initial conditions. The black square indicates the boundary
equilibrium point. The unit of measurement of I; and I; is number of
cases.

o Figure 5. Phase plot in the space (I}, 1) for values of the superin-
fection indices outside the shaded area shown in Figure 3. The graph
was computed with the same parameter values shown in Figure 3
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but with o7 = 1, o7 = 4.2, and positive disease-induced death rates
e1 = 0.0001/day, ez = 0.0005/day. The presence of a saddle point
in the interior of the region and the existence of a separatrix may be
conjectured. Note that the final outcome of the disease (which strains
wins) depends on initial conditions. The black square indicates the
endemic equilibri um point. The unit of measurement of I1 and I3 is
number of cases.

Figure 6. Time plot of model (1-2) for a period of 5 years. The graph
shows the total numbers of infected individuals for each strain [; + ¥;
and I + Y. Parameter values are the same as for Figure 3 except for
the following: ay = 0.005, ag = 0.005, £, = 0.005, 3 = 0.007, o7 = 4,
o2 = 1.2. There are two curves, one for each strain. For about 3 years
both strains seem to increase and coexist. Only in the fourth year
strain 1 clearly wins over strain 2. Note that strain 2 increases faster
at the beginning of the epidemic but it is this strain the one that goes
extinct.
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gas s

Philippines | Viet Nam China Thailand | PDRLaos
Year Cases | Deaths] Cases | Deaths | Cases | Deaths| Cases |Deaths| Cases |Death
1981 123 8| 35323 408 NR NR 25,641 194 NR NR
1982 305 31 39,806 361 NR NR 22,250 169 | NR NR
1983 1,684 130] 149,519 | 1,798{ 85293 | 3,032| 30,022 231 NR NR
1984 2,545 89| 30498 368 NR NR 69,597 451 22 14
1985 NR NR 45,107 399 NR NR 80,076 5421 1,759 15
1986 687 30 46,266 511 NR NR 29,080 206 365 43
1987 859 27| 354,517 | 1,566 NR NR | 170,630 896 | 3,914 91
1988 2,922 68| 85,160 826 561,510 | 1,269] 26,926 189§ 1,212 27
1989 305 14 ] 40,205 289 | 37,996 907 { 69,204 280 NR NR
1990 588 27| 37,569 255] 38062 ! 2626 113,855 422 60 3
Totai 10,018 424 Y 863,970 6,781 212,861 | 7,824 637,261 | 3,570 7,332 193

Page 1




Symbol Parameter definition value

h host recruitment rate variable
ul host life expectancy 70 years
r-1 mean length of infectious period in host 14 days

o vector per capita infection rate (biting rate x vector infection probability) | (0, 0.05)
B; host per capita infection rate (biting rate x host infection probability) (0, 0.05)
q vector recruitment rate variable
5t vector life expectancy 14 days

c rescaling parameter (c;/c and 3;/c infection rates when N small) 1

wy saturation parameter (¢;/w; and 3;/w; give maximum infection rates) 0.5

& disease-induced per-capita death rate variable
o; susceptibility index to strain ¢ (0, 5)
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