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Abstract

Heterogeneous mixing fundamentally changes the dynamics of infectious diseases, and
ways to incorporate it into models represent a fundamental challenge.
Phenomenological approaches are deficient in their lack of attention to underlying
processes; individual-based models, on the other hand, may obscure the essential
interactions in a sea of detail. The challenge then is to find ways to bridge these levels
of description, starting from individual-based models and deriving macroscopic

descriptions from them that retain essential detail, and filter out the rest.

In this paper, we describe attempts to achieve this transformation for a class of models
where non-random mixing arises from the spatial localization of interactions. In
general, we find that the epidemic threshold is larger due to spatial localization than for
a homogeneous mixing population. We develop an improved estimate of the dynamics
by use of moment equations, and a simple estimate of the threshold in terms of a
“dyad heuristic.” For more general models in which local infection is not described by

mass action, we investigate the connection with related partial differential equations.

Index entries: Epidemics; Spatial Models; Interacting Particle Systems; Cellular

Automata; Heterogeneous Mixing; Scaling



Introduction

In recent years, the linkages between ecology and epidemiology have been made more
explicit (Anderson & May 1991) through introduction of variable population sizes,
interacting strains, and other ecological features into epidemiological models (see for
example Castillo-Chavez et al. 1989b). The evolution of disease dynamics, the coevolution
of hosts and parasites, and the beginnings of a community theory (see e.g. Levin et al. 1990)

all have received attention,

One of the most important links between these disciplines is the way to represent
heterogeneous mixing, acknowledged to be important in a wide range of diseases (e.g.,
Hethcote & Yorke 1984). One approach (Hethcote & Yorke, 1984; Liu et al. 1987; May &
Anderson 1989; Anderson & May 1991) is to substitute phenomenological nonlinear terms
representing aggregated 1‘behawior; a complementary approach (e.g., Hethcote & Yorke 1984;
Schenzle 1985; Castillo-Chavez et al. 1989a) is to break the population into classes of
individuals each with its own dynamics and connections to other classes. Rarely, however,
are these two approaches united. One goal of research in this area must be to relate
dynamics on different scales by representing aggregate behavior in terms of that of

individual or local groupings, such as families.



The Problem of Closure

To illustrate this point, consider the familiar § — I — R system

% = r(S+I+R)—-p3SI—uS

- BSI — M — ul (1)
dt

dR

— = M —uR,

with or without the common assumption r = u (note that without this assumption, the
population grows or decays exponentially). Here, S refers to the number of susceptible

individuals in the population; I, the number of infectious; and R, the number of recovered or

removed.

System (1) represents what physicists would call mean field dynamics. That is, these are the
equations that arise in the limit as N -+ oo of a homogeneously mixing population of N
individuals. Each infected individual is considered equally likely to infect each susceptible
individual. Imagine instead that (1) represents the local dynamics within some
subpopulation, and that many such subpopulations are linked together, through conservative

dispersal (no loss), into a single “metapopulation.” Write

S = <S5>+s
I = <I>+4 (2)
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R = <R>+4+r

Here < S >, < I > and < R > represent the average values of S,/ and R for the entire
metapopulation, where S, 1, and R are the numbers of each type within a subpopulation,
and s,1, and r are the deviations from the population means. Then, because

< §>=<1>=< 71 >= 0, system (1) leads to the system

%ﬁ = rM{<S>+<I>+<R>-pu<S>
~f<S><I>-B<si>

d<_d;T_>_ = f<S><I>+0<si>-A<I>—p<I> (3)

% = A<I>—-pu<R>,

in which < si > is the metapopulation average of si. Except for the terms < si >, the
system looks identical to the mean field equations. Note that the parameters have been

assumed to be identical for all subpopulations. Furthermore the assumption that dispersal is

conservative assures that there is no net contribution to the terms for the means.

System (3} represents a second-order correction to the mean field dynamics. The difficulty is
that the system is not closed: One must either assume some form for < si > in terms of the
means {in the mean field approximation, one simply sets < si >= 0}, or write equations for
d < st > /dt that will involve higher order correlations. At some point, the system must be
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closed if one is to succeed in analyzing it by standard methods; compare, for example Adler

& Brunet (1991). We illustrate approaches to such closure in the succeeding sections.

The Basic Contact Process

The model of the preceding section is deterministic, but the methods can be applied equally
to stochastic processes. In particular, for spatial stochastic processes, ensemble averages may

be taken over the set of all realizations of the process, as well as over space.

The challenge of closure then can be illustrated effectively with another, even simpler model
of epidemic spread: the contact process. This model has been studied by mathematicians for
more than twenty years. For references and more information see Durrett & Levin (1994a).
Imagine a grid of cells, each either susceptible or infected. The only rules are that infected
individuals (sites) recover at a rate § (the interoccurrence times ¢, are independent and have
an exponential distribution with mean 1/6; i.e., P(t; > t) = e~®), and that an infected
individual can infect any of its 4 nearest neighbors at rate . Then the fraction of infected

sites p(1) satisfies the equation

dp(1
dt

——r

= —ép.(1) + 4Ap(01), (4)

where p,(01) is the probability that an ordered pair of adjacent sites will be in the
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configuration (susceptible-infected). Here, to simplify the description, we have assumed that
P(&(z) = 0,6(x + z) = 1) is the same for z = (1,0), (0,1), (—1,0), and (0, ~1). Due to the
symmetries of the model, if this is true in the initial distribution at time ¢ = 0 it will be true
at all times ¢ > 0. For small values of A/8, the infection will die out; but for A/§ greater
than a critical value (= .41), invasion will take place from low densities to an equilibrium

configuration characterized by clustering of infectives (see figure 1). (insert figure 1).

As in the previous example, (4) does not represent a closed system. The simplest

(mean-field) assumption, that adjacent sites are independent, yields the approximation

p:(01) = p(0)pe(1) = [1 — p(1)]pe(1), (5)
and hence
P~ p1) + Dp(O]L - (D) ()

Pe(L){(4h — 6) — 4Ap(1))

Since this is the familiar logistic equation, it is clear that (6) has a globally stable

disease-free equilibrium at u.(1) = 0 if



| 3=
IA

| -

(7)

and a globally stable endemic equilibrium u,(1) = 1 — §/4 provided

| >
V

W | —

(&)

The problem with this approximation is that it ignores the clustering that is characteristic of

the contact process. Hence, the threshold at 1/4 is less than the true threshold (= .41) seen

in the contact process, since in the latter case clustering of infected individuals causes a

higher fraction of the potentially infectious contacts to be wasted than if the sites were

independent. An improvement on the mean field dynamics is possible by introduction of the

second equation

d
EP:(OI) = =(A+8)p(01) + 8pe(11)
( 1
—2Ap. — Ap:(101) (9)
01
1
+2Ap, + Ape(001)
\ 00

where for example p,(101) is the probability that three successive sites are in the



configuration infected-susceptible-infected. This equation is derived in a straightforward

manner by considering the ways in which 01 pair can be created or destroyed, and the rates

at which the corresponding transitions occur.

Taking a clue from the physics literature and applications in biology (see for example

Dickman 1986, 1988; Matsuda et al. 1987a,b, 1992; Harada & Iwasa 1994; Sato et al. 1994;

Harada et al. 1995), we make the approximation

and similarly

The symmetry p,(10) = p,(01) and the identities

p:(001) 2:(00)

001) = p,(01) ———= =~ p,(01) —— 10
pe(001) = p(01) 0D p:(01) 20) (10)
01 1 01

= pe = p:(101) 2=19:(10)M—) (11)
01 2:(0)
p(l) = pu(l) - p01)
p{00) = p:(0) ~ p,(01) (12)
p(l) = 1-p(0)
with the changes of variable « = p,(1) and v = p,(01) then transform (9) to the pair
—bu + 4Av (13)

Se

e

—(A+8) v+ 8(u—v) = 30(2v + u—1)/(1 — u),
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where superdots denote time derivatives.

To find the equilibria for the system in (13}, one notes that the first equation implies

u = (4A/6)v and then inserts this into the second to get a quadratic equation. Solving that
equation one finds that there is an equilibrium u = (12X — 46) /(12X — 6) with u,v > 0 if and
only if A/é6 > 1/3, closer by half to the correct threshold of 0.41. The equilibrium w is
ider_ltica.l in form to that of the mean field model, but with the birth rate A diminished by

6/12; to a first approximation, the effect of spatial localization is to reduce the growth rate.

The location of the threshold is only one way to compare the various approximations with
the true dynamics. In figure 2 we have set the birth rate A = 1 and varied the death rate §
to compare the equilibrium density of infected sites in the contact process as determined by
simulation (diamonds), with the predictions of mean field theory (circles) and our second
order approximation (pluses). Figure 3 performs the same comparisons for the probability of
a 01 pair, i.e., the probability a site z will be vacant but its right neighbor z + (1,0) will be
occupied. In each case, the second order approximation is not very accurate in the range

0.5-0.75 but represents a considerable improvement over mean-field theory. Place figure 2

and 3 here.

It is important to note that (13) is a dynamic approximation, describing system dynamics
during the transient stages. Comparison of results in terms of equilibrium behavior is one
convenient measure of the success of the approach, but (13) may yield improvement as well

in the description of transient dynamics. Nonetheless, it must be recognized that moment
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equations are likely to be less effective in dealing with the initial stages of invasion, when the

invading population is limited to a small area of space.

The Generalized Contact Process

Consider now a more general contact process with neighborhood set A”. Here A represents
the neighbors of the origin (0,0), i.e., the set of sites it can infect, and the neighbors of a
general site x are z + N = {z + y : y € N'}. Because we want the relationship that z is a

neighbor of ¥ to be symmetric, we will assume that if z € A then —z € N.

The dynamics for the more general model are, except for the choice of neighborhood,
identical to the nearest neighbor case: infected individuals recover at a rate &, while an
infected individual can infect any of its neighbors at rate A. The new level of generality
forces us to adopt different notation, but otherwise the mean field reasoning is the same.

The reader who is not interested in the details can skip ahead to (24).

Let £&(z) = 1 denote that z is infected at time t, and &(x) = 0 denote that it is susceptible.

The analogue of (4) in the current situation is

GPEW =) = —5PEE) = DAY Pl =06+ =1)  (4)
zeN

If we were to assume that neighboring sites were independent and write u(t) = P(&(z) = 1)
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then we would arrive at a close relative of equation (6), the mean field approximation

% = —du+ Nhu(l —u) (15)

where N is the number of points in . Repeating the previous argument we see that the
disease free equilibrium is globally stable if N\ < 6 and that a globally stable endemic
equilibrium 1 — §/N A exists if NA > 6. Since R = NA/6 is the expected number of contacts
made by an infected individual in its lifetime, this is the familiar threshold result of epidemic

theory. 1t, however, again underestimates the true threshold of the contact process.

Turning to the second order approximation, we find that the analogue of (9) is

%P(&(z) =0&(z+2)=1)=—(A+ ) P(xr) = 0,&(x+2)=1)

+HOP () = 1.&(x + 2) = 1)

=AY PlE(z) = 0,6z +2) = L,E(z +w) = 1) (16)
wEz

+A 20 Pl&(z) = 0,6z +2) = 0,&(x + 2 + w) = 1)
w20

Here 2z € A is a fixed neighbor and the sums are over all w € A7 with the indicated

properties.

If we enumerate the points in the neighborhood A = {z1,-.., 2.}, and let
vi(t) = P(&(x) = 0,&(z + 2) = 1) then we can approximate

P(gt(ﬂ'l) = 0,&;(1‘*{- Z") = I,E;(.'L"f-Zj) = 1)

w PUE(z) = 0,6z + 2) = 1) P(&(x) = 0,6(z + 2;) = 1)
P&z} =0)

(17)
= v;/(1 — u)
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Note that since correlations will depend on distance it is no longer reasonable to expect that

v; = v for all 3.

Using P(€(z) = 0,&(x + 2} = 0) = {1 ~ P(&(x) = 1)} ~ P(&(z) = 0,&(z +2) = 1) and

reasoning as in (17) we have

(1 —Uu- U.')‘UJ'

P(Et(:c) =0,§g(x+z.-):0,£¢(m+z,-+z,-): 1);-"-3 T—u

(18)

Combining (14) with (16)—(18) and the observation P(&(z) = 1,&(z + ) = 1) = u — v; we

have

du

-c—i't— = —(SU‘i‘AZi:Ui (19)
%‘i = —'(/\+5)U5+6(H—U,') (20)

--/\Z: Uiv‘; +/\ Z (l—u——v,-)vj

P jntmggo LT U

From (19) it follows that in equilibriumn we must have

fu=A Z U4 (21)

In the nearest neighbor case we used symmetry to conclude that all the v; are equal and
reduce the system to two equations in two unknowns. That device is not available here so we
instead note that if u is small, which will be true when /6 is close to the critical value, then

1l —u=1and v; < u so vv; and uv; are much smaller than ». Thus

d‘Ui
dt

M-(A 20+ su+ X Yy (22)

Jizitz;#0
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Setting the last quantity to 0, summing over i, and noting that the condition z + z; #0

excludes each of the v; exactly once we have

Combining (21) and (23) now, we have 0 = {—(A + 26) + NA + (N — 1)A} T, v for the

threshold. Thus, there is a non-trivial equilibrium if and only if

M6 > /(N =1) (24)

generalizing the result already achieved for N = 4. Note that (22) represents the linearization
of the equation (20) around 0, which is why a threshold condition on A /u emerges. When
A/6 is large enough, the original system (19), (20) has a nontrivial equilibrium and the
linearized system grows exponentially. Thus the critical value A/8, i.e., the threshold for

survival, is characterized by the existence of a zero eigenvalue for the linearized system.

The reader should note that the second order approximation in (24) is always larger than
the mean field approximation of the critical value A/§ = 1/N. On the other hand, it can be
shown, using the methods described on pages 36-37 of Griffeath (1978), that the

approximation in {24) always underestimates the true critical value. Thus, it is a step in the

right direction,
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The Dyad Heuristic

While the use of moment equations as described above is not new, we provide here a novel
and simple viewpoint from which the threshold results can be derived very simply and more
generally. To set the stage, we observe that the mean field answer can be deri.ved by noting
that a single infected in isolation recovers at rate § but gives rise to a new infection at rate

NA. So the infection is doomed to extinction when NA < 6, and if no infections were lost

onto already infected sites it would prosper when N > 6.

The reasoning in the previous paragraph leads to the mean field critical value, but ignores
clustering. Clustering means that any invasion will typically find that an occupied site is
more likely to have a neighbor occupied than would a randomly chosen site. Thus, it is
natural to ask what happens beyond the first successful “infection” event; that is, will a pair
of adjacent occupied sites successfully spread? Thus assume we have two infected sites that
are neighbors. New infections arising from these occur at rate 2(N — 1)\ while recovery
occurs at rate 28. The infection rate is larger‘tha,n the recovery rate when A/§ > 1/(N — 1),

the condition in (24).

The last calcuation, which we term the “dyad heuristic,” can not only often easily reproduce
the result of second order approximations as above, but can also be used in a variety of more
complicated situations (see example Altmann 1995, who considers the full dynamics of all

dyads}, including those where we do not know how to perform the second order

15



approximation. As an example of the latter consider the nonlinear voter model. In this
system each lattice point can be in state 1 or 2. The name comes from thinking of the states
as representing two opinions but one could equally well think of two competing species or,

more relevant to this paper, susceptible and infected individuals.

In the nonlinear voter model, time is discrete: n =0,1,2,.... To compute the state of a site
z at time n + 1 we look at the state of z and its four nearest neighbors at time n and count
the number of 1's we see. If that number is k£ then the site will be 1 with probability p, and
2 with probability 1 — pg, with the choices for different sites being decided by independent

random events. This allows consideration of a range of nonlinear local infection dynamics.

To have a model that is symmetric under interchange of 1’s and 2’s we suppose
Ps-k = 1 — pg for k = 0, 1,2. We also suppose that all 1's and all 2's are absorbing states, i.e.
ps = 1 and po = 0. This leaves our model with two parameters: p; and p;. Our task is to

determine as a function of p; and p; whether the two types coexist or one will competitively

exclude the other.

Following traditional reasoning we expect coexistence if 1’s can invade 2’s: i.e., if when their
initial density is small it will tend to increase. The first order or mean field approximation is
te note that a single 1 will on the average have 5p; offspring in the first generation, so
coexistence will oceur if p; > 0.2. The second order, or dyad approximation, is to note that
a pair of adjacent 1's will have an average of 2p; + 6p, offspring in the next generation so

coexistence oceurs if 2p; + 6p; > 2. Unpublished results of simulations performed separately
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by J. Molofsky and D. Griffeath indicate that this approximation is remarkably close to the
behavior of the spatial model, although there are differences that would only become

apparent in a higher order approximation.

Spatially Structured Populations

The model of the preceding section assumes that each site is either infected or not. That
means either that sites and individuals are identical, or that sites represent subpopulations
that are either disease free or fully infected. A more general formulation identifies each site
by a number of susceptible individuals S and a number of infected 7. This approach has
been used for a wide variety of applications in biology, in which it is shown that spatial
localization can again fundamentally change the qualitiative dynamics (see for example

Hassell e¢ al. 1991). In particular, let the state of the system at time ¢ be

(S, 1) : 22 - {0,1,...} (25)

where 7 is the set of all integers, S, = S,(x) is the number of susceptible individuals at time
t and I; = I;(x) is the number of infected individuals at time ¢ in a square of side 1 centered

at the point. For purposes of illustration, no recovereds are considered, but the approach can

be extended easily to include these.
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The model we describe is termed an interacting particle system. We have considered this
system earlier as a spatial version of Maynard Smith’s evolutionary game. See Durrett and
Levin (1994a) which has references to earlier work on these models. Let the state of the

system change (in continuous time) according to the following rules:

Infection: On an interaction neighborhood N, susceptibles become infected at rate

ft(:c)

S Er o)

(26)

where the superbars indicate that averages are computed over the neighborhood A

and F; is the proportion of neighbors that are infected.

Births: Occur at rate o per susceptible individual, and remain in the cell of the parent;

infected individuals do not give birth.

Deaths: Occur at rate p + K(S; + I;), where superhats indicate density dependence

operating over a neighborhood N5.

Migration: Occurs at rate -y to any cell on a neighborhood A; more general movement,

kernels are easily accommodated.

Note that infection is determined by the proportion of contacts that are infectious.

In the limit when all neighborhoods in question are the whole grid, one obtains the

mean-field dynamics

18



ds I

- = S[a—ﬁm*(ﬂ*f((s"*f))], (27)
dl )

@ = !psr-wrae D).

A variety of behaviors are possible for (27). If @ > p, a disease free equilibrium,
S = (o — u)/K, exists and is stable in the absence of the disease; but if # > « it is unstable
to invasion by the disease. To see this note that

d 1dS  §dI
8D =15 -G =-8s/I (28)

Thus S/I = e*=#%S,/[; and hence, if & < 3, S and hence I must both tend asymptotically

to 0.

Surprisingly, perhaps, spatial localization makes a huge difference in the dynamics. That is,
the interacting particle version of (27) need not go extinct. For generic initial conditions, the
system on the infinite lattice will persist indefinitely. Because it is a stochastic system, it
will ultimately go extinct on any finite lattice; but even for moderate size systems the time
required is the computer equivalent of millions of years. The explanation for persistence is
simple. In the spatial model, severe epidemics decimate the population but leave isolated
susceptibles to rebuild the population before the next epidemic wave. For more on this, see

Durrett & Levin (1994a).

Adding diffusion terms to (27) does not help. With diffusion at identical rates for both
species, the system still goes extinct. However, a proper diffusion limit can be derived from

19



the interacting particle version. As shown in Durrett & Levin (1994a), allowing cell sizes to

shrink to zero and scaling parameters appropriately leads to the limit

Su v
— = aAu+u{(a-—u)—ﬁgm—K(u+U)}
i)

in which

9 = 1—exp(—Ni(u+v))

and N, is the number of sites in the neighborhood At. In the extreme (g = 1}, (29) is the
mean field system with diffusion added, and cannot support persistence. For intermediate

Ny, however, persistence is possible in (29), because susceptibles stay tsolated long enough to

build up their numbers.

Conclusion

In recent years, it has become increasingly clear that the assurnption of homogeneous mixing
is a penr one for the dynamics of many diseases. The simplest approach, rooted in the
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classical methods, is to modify the usual dynamical system for susceptibles, infectives, and
recovereds, adjusting the rate of infection via phenomenologically-derived terms reflecting
the influence of the heterogeneous distribution of individuals. This is not entirely

satisfactory, since it confounds attempts to extrapolate beyond the particular situation.

An alternative, especially given the increased ease of highspeed computations, is to develop
individual-based models, in which rules are given for every individual in a population. (In
other situations, intermediate levels of heterogeneity—e.g., schools—provide more natural
starting points. We argue, however, that the individual-based approach, though still not
easily parameterized, provides an invaluable dual to the macroscopic view). Such an
approach cannot be an end in itself, however. For a variety of statistical and methodological
reasons, the most reliable and useful models will be ones that assume some level of
generality; and the most powerful analytic methods will be ones that focus attention on
determing how much or how little detail at the individual level is essential for understanding

the macroscopic dynamics.

In this paper, we have introduced approaches that seek to bridge the gap between
individual-based models and macroscopic descriptions for epidemic systems. Moment closure
methods, such as those describect for the contact process and related models, provide a first
step towards renormalization. These methods can be expanded, as in the work of Bolker &
Pacala (1996) for forest growth models, beyond neighbor correlations to the full spatial
covariance function (see also Levin & Pacala 1996; Mollison 1977); but such approaches have

not yet been applied to epidemiological problems.
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Contact process models are the simplest of all spatial epidemic models. More generally,
space may be divided up into cells, representing highly mixing subpopulations that exchange
individuals less frequently with other subpopulations. The epidemiological dynamics of such
spatially structured populations can differ qualitatively from other formulations. For such
models, diffusion approximations may mimic the behavior of the interacting particle systems
under appropriate conditions. To derive such approximations requires that, mimicking
techniques used in deriving diffusion approximations for random walks, we develop finer and

finer lattices in which cell size is shrunk to zero, and moment rates scaled appropriately.

Heterogeneous mixing is a fact for many epidemiological systems, and can qualitatively
change dynamics. It is attractive to represent the effects of nonlinearity through appropriate
nonlinear terms (e.g. Liu et al. 1987); but, since those terms cannot be derived from first
principles, confidence in them must be limited. In this paper, we point the way to some
useful techniques for making the transition from assumptions about individual behavior to

the desired macroscopic dynamics. It is, indeed, only a beginning,.
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Figure Legends

Figure 1: The basic contact process equilibrum when A = 0.25 and § = 0.35. Reprinted from

Durrett & Levin 1994b.

Figure 2: Fraction of occupied sites as a function of the recovery rate §. Lowest curve (O)
denotes a simulation result, upper curve (o) the mean field approximation, and middle curve

(+) the improved agreement possible via second-order approximation.

Figure 3: Fraction of contiguous pairs of (unoccupied/occupied) cells in the configuration as
a function of the recovery rate §. Symbols are as in Figure 2. Again, lowest curve
demonstrates simulation, upper curve mean field, and middle curve the second-order

approximation.
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