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Dynamical Aspects of Regional Modeling

Masashi Nagata, JMA
14:00 - 15:00 Morn. 21 October 1998
<< Tropical LAM Woarkshop in Trieste, ltaly >

1. Introduction

Since regional maodeling 1o be discussed here occuptes a portion of the
atmospheric modeling field, its hasic principle has no essential difference from that of the
other portion of the atmospheric moedeling field, i.e., globai modeling. They are both
madeling of physical stetes of the atmosphere based on physical luws governing the
atmospheric motion and state. Since the physical laws are given in the form of non-tinear
partial differential equations. their solutions are calculated numernically. This is why the
weather prediction is called numerical weather prediction.

{ Discretization)

The most commaon way of solving the equations is to find approximate
expressions defined using values at grid points or amplitudes of base functions at various
wave numbers. The discretization is done both in the horizontal and in the vertical. Mast
widely used in the horizontal discretization are a finite difference method and spectral
method. For the vertical discretization. a multi-layer modeling (finite difference method)
is commonly used. We call the model using finite difference method in the horizontal
discretization a grid point model while the one using spectral method a speciral model.
For the time differencing. finite difference method is widely used.

Finne difterence method has been used for the horizontal discretization since the
very beginning of the atmospheric modeling. Compared to it. the spectral method
appeared later in the numerical weather prediction (NWPY fietd. 1t was first suceessfully
applied to global NWP in 19705 However, it had not been apphied to regional NWP until
mid to late [980s when the Jupan Meteorological Agency (JMA) [irst succeeded in
putting spectral regional models into operation. The much later application of spectral
method to regional NWP than that 1o global NWP was mainly due to the difficuley
encountered in handling time dependent lateral boundary conditions which will contradict
boundary conditions pertaining (o the orthogonal base functions for expansion.

There have been proposed many kinds of fintte difference schemes with different
characters and different degrees of accuracy for the time differencing as well as for the
space differencing (grid point model). On the other hand, there is much smaller room in
choasing discretization schemes for the spectral space differencing (spectral model).

Fhis 1s because once you choose a particular set of hase functions for a spectral model
that means you have already determined the whole space differencing and the tateral
boundary conditions as well which are inherent to the base functions.

2. Fnite difference method
<Accuracy, consistency. convergence, stability> o

In the grid point moded {in the finite difference method), space derivatives must
be approximated using finite ditferences. The way how they are approximated determine
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the degree (order) of accuracy. For example, if )7 1s upproximated with an uncentered
dx

torward difference as:

Uiel - Ui (2-1)
AX

irs order of accuracy is one, since using the Tailor series:

N

d d’u 2
W =1y + U)A-’(+_l)( 1)A.\ +-- - (2’2}
dx < ox

115 expanded as:

QL,' = Uil YL (_a_u) + l(akl:) AX + - - ., (23
ox Ax I, 2507

1
and the approximation contains errors including aterm with  Ax 1o the Ist order, If we
adopt a centered difference scheme as:

Uip) = it (2-4)
2Ax

the order of accuracy is two.

When we wish to increase the order of accuracy of the approximate expressions,
we need to increase the number of terms involved in the approximaticn, which requires
more computation in actual time integration. Thus there is a kind of trade-off relatonship
between the accuracy you want and the computer resources you need to attain such
accuracy.

Consistency, which means that the finite difference form of equations approaches
the differencial equations when both space and time intervals approach zero, is an basic
and important characteristics which an approximate scheme should have. A necesary
condition for consistency is that the finite difference scheme has at least the order of
accuracy of |

ConvcrEencz of the numerical solution means that errors assoctated with the use
of approximate expressions approach zero as the znd imervals are reduced o zero.
Consistency of a scheme does not necessarily guarantee its convergent character. To
guarantee the convergency of a scheme which is adopting a conventienal Fuleriun type of
scheme of time integration, the condition for a simple advective equation:
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c At < Ax, (2-5)

where ¢ is the largest Propagation speed of disturbance tn the medel.
15 necessary.

The fast but most important characteristics which an approximate scheme must
huave is the stability of the numerical solution, Actually we often examine the
boundedness of the error with the Von Neumann m

ethod that anulyzes the binearized
version of the non-linear equations usin

g a single harmonic solution as arepresentative of
all hurmonic components of the solution, In applying the method we use an amphification
Factor defined by:

untl = g (2-6)

and constder that N < [ guaruntees the necessary condition for stubility of the solution.
If we upply the method 1o the simple advection equation,

c At € Ax (2-7)

1S again the necessary condition for stability of the solution, which ts the
the necessary condition for convergency.

same as that for

The same discussions above except for those of accuracy are applicabie to a
spectral model. [Ina spectral model, accuracy associated with the spatial discretization
15 solely determined by the truncation of the base functions we have chosen. |

<Time differencing schemes>
We consider the equation:

d% = f{ut), u=u(). (2-8)
There can be also a wide variety of schemes for time differencing. However, less effect
has been devoted 10 using a complicated higher-order schemes, compared to m the case
of space differencing. One of the major reasens for this may be the fact that there is
usually insufficient information about the initial conditions, which may become larger
sources of errors, which probably waste the effort. Another reason may be that errors
associated with spatial differencing are much larger than thase due o the time
differencing. This. of course, does net mean that we do not need to care about the
properties of time differencing schemes.

- Number of time leveis of the scheme

Schemes using values at two time levels n and n+1. such as the Buler (forward)
scheme:

2
R STU (-9

are called ‘two-time-level scheme’. while those using values at three time levels n-1.n
and n+t are called three time-tevel scheme’. To define time derivatives of dependent
vartables, values at two time levels are necessary and sufficient. Therefore. if we use o
three time-level scheme, such as the leap-frog scheme:

uttl =gl g A (2-1th

an extra (computations} mode will uppeur besides the physically meaningiul mode.
When the extra mode has an amplification factor greater than unity, we have to adopt
Some treatment suppressing the made, such as the time filtering by Asselin ¢ 1972),
- Explicit and implicit schemes

When we approximate the right-hand side of (2-8): f without using values al
future ume level n+1, the scheme is called explicit scheme, while when we approximale
f using values at future time level n+l, the scheme is called implicit scheme. In general
when we use an implicit scheme, we have (o solve the whole time difference equations
simultaneously.

The properties including stability of the time differencing schemes depend on the
form of the equation. The trapezoidal implicit scheme:

n+l — on t l[‘n i,fﬂﬂ (2-11)
u ut+ A (2 +2 )

1s always neutral when it is applied 10 the oscillation equation. This property s utthzed
in the widely used senu-implicit scheme integrating high-frequency gravity modes with a
much longer time step than the tme constraint for explicet schemes. The stubiltiy of
scheme for a particulur form of eyuation does not necessarily guaraniee the stabifity of
the scheme for other forms of equations. For example, both of the two mades in the leip-
frog scheme are stable and neutral in the oscillation equation if the stability condition:

’cg;‘< [ (2-12)
Ax

i5 satisfied, while the computational mode is unstable for any At an the friction equation,
Therefore, it is not suitable for numerical integration of the (riction equation while it is
widely used for that of the oscillation equation such as the advection equation.

For the friction terms, we use stable schemes, such as the buck ward impheit
scheme, while we yse the leap-frog scheme for the advective terms, forming a
combinatton of time tniegration schemes.

<Phase error and comutational dispersion>

When we use 3 second-order centered ditferece scheme for the advective lermm, in
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the advection equation:

waves propagale with the phase speed which is a function of the wave number k:

¢t :L-.Si_.n. _k:l‘{. (2-1d)

kAx
Thus, the fimite differencing in space has produced a dispersion of waves (computational
disperston), which nature is not included in the original differential equution. As kAx
inc. -ases from zera (longest wave length), the phase speed ¢* decreases monotonicilly
from ¢ to become 7ero ut the shortest wave length of 2Ax. where kAx = m. This means
that the shortest resolvable wave is statonary,

There are two probleims in using the finite difference scheme. One is the
retardation of advective processes. The other is the false dispersion, which will result in
a deformation of disturbances, especialty those of smaller scales, such as tropical
cyclones, fronts, and shear lines, which are important for regional (mesoscule) weather
predictions and are major targets of limited-area models.

A sprectral mode! can escape from the phase error and the computational
despersion ansing from the spatial discretization, Meanwhile it has a problem in
representing very sharp gradients like step functions, which may produce the Gibbs
phenomenon in the diseretization.

<Aliasing error and non-linear instability>

Since the atmaspheric equations are generally non-linear, waves with wive
aumber greater than that resolved can be generated al every time step. These wuves are
projected onto the waves that can be resolved. This is the aliasing error. which cun
produce false change of energy spectrum, especially around the marginally resolved wave
number:

km‘lx:"ﬁ (2-15)
Ax

The false energy change can cause a blowup of the model (non-linear instability). The
Arakawa Jacobian succeeded in solving the instability problem in an elegant way,
considenng the conservation properties of kinetic energy and enstrophy (square of
vorticity). We do not need to use any atificial dissipation scheme 1o prevent the
instability when we use the Arakawa Jacobian,

In a spectral model, we do not need 1o care about the same instakibiny problem if
numbers of transform gnid points are determined so that all the aliased waves are
projected outside the wave number range which cun be represented.

5

<Integral properties conservation schemes>

Numericat atmospheric models are encouragingly advised to adopt schemes
which have properties conserving physically important integrals, such as total energy.
potential temperature. and enstrophy when simplified 10 2 two-dimentional non-diversent
mode|.

<Horizontal distribution of variables on the grid an fight of simulation of geostrophie
aujusiment>

There are several possible schemes of distribution of prognastic vartables over the
horizontal grid in a grid point model. Properties in the simulation of geastrophic
adjustment are different from scheme to scheme. Schemes which have a property as
close to that of the differentiul equation as pemssible are good. Arakawa and Lamb (1977)
recommended that the Arakawa C grid be used for atmospheric maodeling from the view
point of the simulation of geostrophic adjustment.

<Vertical distribution of variabics on the grid in tight of simulatton ol baroclinic waves>

There are a few possible schemes of distribution of prognastic variahles over the
vertical grid in both grid point model and spectral model. Arakawa and Moothi (198%)
and Arakawa and Konor (1996) discussed that the Chamey-Phitlips grid on which
{emperature is defined at the same level as vertical veloctty and stagggerd from
horizomal velocity is more appropriate than the Lorentz grid on which temperature is
staggered from ventical velocity and defined at the same level as horizontd veloctty in
terms of simulating baroclinic waves, although the former loses conservation property of
the volume integral of potential temerature while the tatter can keepat “That is because
the Jatter scheme includes a computational mode arising from the averaging of potential
temperature in the vertucal differencing and making a stationary zigzag vertical
distribution of potential temperature and an excess degree of frecdumn in potential
vorticity, leading to spurious patentil vorticity disturbances resufting o a growth of
small-scale features.

3. Spectral model

In a spectral model, we prepare a series of base functions and use them to eXPress
fields of dependent variables of the modeled atmosphere. There arc two conditions for
the base functions, First, the functions are arthogonal to each ather so that we can easily
and uniquely decompose the fields onto the wave number space. Second. the functions
satisfy the boundary conditions. One major advantage of prepresenting fields with
analytical functions is that once 3 field is expressed on the wave number space, spatial
derivatives are sutomatically given in analytical forms of the base functions, which do
not include any approximation. Other advantages of the spectral maodel are:
- Several integral constraints, such as conservation of mass, encrey and potentiul
temperature, are held withour any special treutment like those in the finite ditference
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schemes of the grid point method,

- There is not either phase retardation, associated false dispersion, or non-linear
nstabtlity withoyt ary special treatment.

- The coding of numerical calculations can be very simple since there is no need to
approximate the horizontaj space derivatives with finite differences,

- A smatler number of wavey than that of grid points can express spatial variations
of physicai quantities with the Same accuracy.

- The semi-implicit scheme is much more efficiently used since the Heimholtz
equation can be solved directly and easily because the base functions are the
eigenfunctions of the Laplacian operator. This property works to save much
computition,

<Wave number truncation>

Since the atmaospheric equations are non-linear. the expansion base functions
nteract with each other. Waves with wiave number n and M interact to produce wives
with wave number n +m and n-m at every time step. We have (o spectty an upper
tirmit of the wave number (truncation wave number) beyond which waves are not handled
in the spectral model. Once we determine the truncation wave number, wives with wave
number larger than this are automaticatly eliminated from the madel.

<Expansion functions>

series are used, which are also 4 set of solutions of the same equation. These expansion
functions have the following advantages:

- Transformation and inverse transformation between physical spuce and wave-
number space can be done economically with the FFT method.

- The semi-implicit time Integration scheme:

i +| -1
untlgnet ipus + (06l l_lf.\,'*__l."l,)_' (3-1}
24t 2

where g is the frequency of a representative Rosshy mode and u); Is that of a
representative gravity-wave mode,
can be used in a very economical way, since the scheme is rearranged into the Helmholtz
equation including the Laplacian operator.

<l :raction coefficient method and transfi rm methods
We consider a one-dimensional non-linear equatton:

étl.+u(zu+ul:)£:0 (3-0
o dx  ax

where 4 is a constant. 7
The second term and the thard term on the left-hand side is a non-tinear and 4 linear tem,
respectively. To solve this equation by the spectral method., first we transform it into the
spectral (wave-number) space using:

u(x) = Z Ligm)emx (3-3)
m

Uim) = 1 u(x)emx iy (3-4)
2n

‘Ej— = mUimjens (3-5)

X m
§£ = E ay‘_llljcimx (3-6)
ot mo g
as:
l_ ?Ee'““‘dx + [_ u?—u(:'i"‘"dx + 1 a{}uCJnI\dx =), (},7)
rn X in ax 2n ax

for wave number m:

Utm) + ik[l(k)_—jl- u(xje IM-Kxdx 4 imaln) = 0 (3-8)
t k T N
9Utm) + 3 kUKIU(m-k) + imalm) = 0 (-9)
ot k

This is the equation in the specteal form {in the wave number space).

In this form, Um) s independent of space (x). dependent of Lime (1},
Therefore, it is free from the EITOF originating from space differencing. To solve the
equation (3-9), we simply approximate the time derivative with a suitable time
differencing scheme and perform the time integration with a proper time step,

The second term on the lefi-hand side of {3-9) shows that (wo waves with wave
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number k and m - k. whose sum makes m.
number m. The number of combinatioy of such waves is quite large. On the other hand,
the tinear third term on the left-hand side of (3-9) is composed of a single wave with
wave number m and has no interaction with waves with different wave numbers.

interact and produce 1 wave with wave

In the case of one-dimensional model we can easily calculate the nenlinear term.
However, once we apply spectral method (interaction coefficient method) of this type to a
two-dimensional case, the situation changes drastically. The transfarmation and inverse
transformation are expressed with double summiation and double integration. If we
derive the spectral form of the two-dimensional non-linear equation

of waves which compose a particular w: ve is enormously larger than that in o one-
dimensional case. Thus, the number of calculations required by the interaction
wefficient method is so huge that this type of speciral method has not yeb been applied to
numerical weather prediction.
In 1970 a new method way developed which dramatically decreases the number
of calculations of the non-linear lerms but preserves the accuracy of the calculations of
the terms. That is the transform method. With this method. the non-linear second term

on the left-hand side of (3-7) 15 not transformed into the spectral space but lefi
unchanged:

aUi J
FHlm) + ﬁl u° Hc"'“‘dx +imalUim) = () (3-10y
dt - dx

. . ‘ _ du
To cutculate the second 1erm on the left-hand side, first we catculate u and — on
ax
appropriate grid pownts by making inverse transformation:
M
ufx) = X Utetne (3-11y
m=-M
A1
du :
—_= Z im U ermx (3-12
X m-m

then they are mubtiplicd at the grid points and finally integrated after being multiplied by
e'ms with respect 1o x from 0 to 2

Thas, the transform method can ingeneously escape from huge calculations
associated with interactions among waves and has been used guite successtully in the
atmosphernic niodeling including numerical weather prediction.

<Sufficient aumber of gnd points o avoid altasing>

We must introduce suffictent number of grid potnts for transformation (o avoid

9

aliasing error arising from the non-linear term. The maximum wave aumnber which can
i K . . "~
be expressed by [ grid poimts is 12 and a wave whose wave number m* exceeds [/2

is misrepresented as a wave with wave number
- m* (3-13)

To avoid the aliasing error. this wave must have a wave number greater than the
truncation wave number M,

2 omesm (i-14)
2
Here m* may have wave number 2M from the quadratic non-linear tenn. Therefore.
[>3M (3-15)

i the sufficient condition for avoiding the aliasing error arising from the quadratic non-
linear term.

4. A regional spectral model

Fintte difference scheme had heen used for dynamical part of most limited-arca
models, while the spectral method has been used widely in globat models in many NWP
centers. Although the spectral method has several advantages. it had not been applied o
limited-area NWP models with time-dependent lateral boundary conditions owing 1o a
difficulty in property formulating the lateral boundary condutions. Famifiar basic
function series, such as the double Fourier series, do not satisfy a prescribed tine-
dependent lateral boundary condition. To apply the spectral method 10 regional NWP,
we have (o find some treatment method which meets the following two requirements
simultaneously:
- using base function series which satisfy idealized boundary conditions
and
- incorporating prescribed time-dependent lateral boundary conditions,

In this section some essential points of the IMA regional spectral model is
described,

4.1 Spectrat representation and prognestic equations for a free-slip wull beundary
conditing

Using the double Fourter series, dependent varibles are projected onto the
spectral (wave-number) space as:

Uy = Ekslj u* sin kX cos Iy dx dy (4-1)



x

Vour=eef { v+ cos ki sin 1y ok dy @-2)
Sokl =Ek€1[ T cos kX cos 5 dk dy (4-3)
Mow=ee] | m* cos kX cos I§ dx 4y, (4.4

o

where X and ¥ ure horizontal coordinates nermalized with 1he lengths of the
torecast domain L, and Ly

[Ead

=
(s

K=IX 5.

X

4-5)

—
-

e

and k and | are the integer wave number in x and y direction, respectively, and g, is
anommalized factor defined as-

[ for n=0
(4-6)

ENST N

for n=1723--.

The above representation satisfies a free slip wall boundary conditions. The buses within
the four sets of double Fourier series are orthagonal o each other in the rectangular
forecast domain and each set satisfies different lateral boundary conditions. All the bases
of every set are eigenfunctions of the Lalacian operator in the Fectangular domain on a
conformal map projection. This property provides a great advantage to us in solving the
semi-implicit fime ntegration, as shown later.

We use matrix expression of dependent variables ¢ and A inthe physical (grid
pomnt) space and the spectral (wave number} spuace, respectively. The transformation and
the inverse transformation is simply written as:

An=Faa, o = F(-)]_An (4-7)

where the subscript o denotes the component which satisfies the wall boundary
conditions.

Thus, F, eliminates non-orthogonat components which may exist in . Actually
the orthogonal winds have ng components across the boundary and the orthogonal T and
n*  have no gradients normal to the boundary.

If we define differential operators in the spectral space as:

11
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Fi'DxAg = {}A_Q‘ F'Dyas =0, (4-8)
ax dy

we have

DxUn kI = irk Ua ks D) U, A= Iiluﬂ k!- {49

Using these relattons we can convert the prognostic equatton in the physical space
- a) {4-1)
into the one in the spectral space for the wall boundary conditions,

d
5'—&0 = Fuul(Fb'Anv F()IDAAHV l!'7.}][)3/‘1&0-') : FQJA\) (4’l I)
1 o

4.2 Spectral representation and progrostic equation with a time-dependent lateral
boundary condition

The spectral model with the wall boundary conditions have ne fexibility o allow
time-dependent Jateral boundary conditions, which are essential to actual limited-urea
modeling. To treut the difficulty. we introduce non-orthogonal additions! bases for four
sets of wall-boundary orthogonal hases. Thus, the new sets of hases consists of the wall-
boundary orthogonal buses and the addittonal non-orthogonal bases. specitically for the
Fourier sine series in 4 one-dimensional case, we introduce cosine functions of small
wive numbers:

fN(;(\) = F() cos 0; + F,| o8 l.’K\‘ FN = (F(]‘ F.])T (4-12)
1 represent the non-orthogonal component fniX) with its values at the lateral
boundaries:

(D) = [0, fy(m) = frn) (4-13)

Using this, the spectral representation of fix): ¥ iy
F=Fn+Fo=Fy+ Ffi®) - fyon, (4-14)

which is the modified Fourier sine seriey that includes additional non-urthogonal
components. From the definition of f.
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i) =Fy+ Fy

Nty =Fp - Fy t4-1%)
The Lateral boundary conditions are pojected on to the spectral space ax:

Fo= ;%f.wt[)] + ()

F.y = Sl - fyim) (4-16)

For a modified Founer cosine expansion, we introduce additional bases specifying non-
a

tere — at the boundary:
Jx

BnX) = Gy sin 1X + Gy sin 2%, G =G, G o) (4-17)

to represent the non-orthogonal component — g(x) with its first derivative at the Tateral
boundary:

a d o g
aﬁN{(J; = "By, My = %, (4-18)

X 0% ax ox
Using this, the spectral representation of g(X): G is
G =G + Gy = G + Folg(X) - gn(X) (4-19)

which is the modified Fourier cosine series that includes additional non-orthogonal
components. From the definition of gy,

dgn )
a—_mﬂ()) =Gcos 0+ Geos 20=G +2G,
X

d
gN{K) =Gacosm+Gacos 20 =-G +2G., (4-20)

X

The lateral boundary conditions are pojected on to the spectral space as:

g o
G =10 - BNy
<y Jx
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o den
Ga= L0 + iy (4-21)

1
T A

There are a wide variety of functional forms (o be used for additional bases. From the
practical point of view, our choice of small wave-number sinusoidal functions has the
tollowing advantages:
- all operations and calculations can be done in the wave-number space

the Fast Fourier Transform (FFT) algorithm is etficiently used

the model structure can be simplified resulting in computational cconomy.

For the two-dimensional case. the same procedure applies except for double
Fuourier series. The costespondence of dependent variables to the modified Fourier series
152

c-c*: T.m*

c-s% ovF
s-c¥: ou*
s-s*: g (4-22}

We specify the following boundary conditions:

values u* al x=0. &

values v¥ at y =0, &

values ¢ at the lateral boundaries

gradients of T and 7* normal (o the boundaries.
Other quantitics. such as u* at 3? = (. m, are predicted in the model.

To reduce the spurious selution arising from the ill-posedness, we apply the
boundary relaxation technique to a frame region with seme width along the lateral
boundanes.

The spectral prognostic equation can be derived from the definition of the
modified Fourter series:

Aall) = Folalt - F Anon, {4-23)

where  An{t) is the prescribed values at the lateral boundaries and I is the modified
Fourier transform operator. By differenciating this with tespect 1o time, we have

a -
—Ay(t) = Fg(—a——g(t) - F,;,' -a_AN(t]), (4-24)
ot o ot

Using the onginal prognostic equations. this can be writien as:
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2A,n(l) = Fu(MF"A'F"DxA.F‘nyA,iF"A)) - FL,F,;J'—aLAN([) (4-25)
dt og at

Naote here that the effects of the time-de

pendent non-orthogonal tatera| boundary
conditions are incorporated into

the prognostic equation 4s a convolution. Thus,
obtained the prognostic equations of the orthogonal com
lateral boundary conditions included.

we have
ponents with the time-dependent

4.3 Aliasing-free transform grid and wave number fruncation

We use the transform method to evalyate
equations. To eliminate aliasing eror, the num
Since the size of the full domain from

the non-linear tems of the prognostic
ber of grid points has 1o be targe:

X=010 X=2r s 2(I-1) in number of grid

‘ . 2I-
pomts, the maximum wave number represented by <D

the grid is i Meanwhile the

. . du* .
quadratic non-linear terms, such as  min* o wig yield waves with maximum wave
d

X
number:

K + K, (4-26)
where K is the truncation wave number for the prognostic variables, K., is the one for

m* (square of the map factor). To escape from aliasing, aliased waves must be projected
outside the truncation wave number as;

2(0-1) .
2 —7 - (2K + K} > K.
mix. wave number wave number of truncation
represented by grids waves yielded by wave number
non-linear term
<

wave number of aliased wave

Thus,

I>:J)_{3K+Km)+| (4-27)

is the condition for alias-free transform grid.

4.4 Boundary relaxation

We use a Laplacian-type (red 5
spectrum} boundary relaxation to sy
posedness;

pectrum} and/or a Newloniun-type (white
ppress spurious solutions ansing from the ill-

15

Eg =af----)+ aVz(g—;) - Bra-m),
]

LIV S+ FaV FA-R) BFA-AD. 4-28)
ot

4.5 Integration procedure

(1) Starting with grid-point data a*(u), first transform them into the spectral
form  A(t, using the prescribed lateral boundary condition A

An(t). and then apply
the wave number truncation an- Ag(t).

{2) Calculate - F(;FN[—SAN from coarse-mesh-model predicted fields and store
at
them at appropriate time intervals,
. . da du ) ing the £
3) Calculate the grid-point values of & —and = by applying the
dx Jy
operatoron A. D, A and DyA.

‘ . dy da
(4) Calculate time tendencies of the prognostic variables )— using a, {:—) and
ot X

—é, the latter two of which can he obtained analytically.
Y

(5) Substitute the results of {2y and (4} into the spectral prognostic equation (4

=25 yto calculate 2 4
dt

ol

(6) Calculate the next tme-step values of  AL(14AD with a time integration
scheme,

(7) Go back to (1),

) da
Note that physical processes parameterized are mcorporated to — in (4).

ot
, : o da da
The most imponant festure is that the space derivatives - and BJ are
Jx Y

calculated analytically without any approximation.

4.6 Semi-implicit time integration scheme

We apply the semi-implicit time integration scheme which combines the teap-frog

scheme for Rossby-wave modes and the trapezoidal tnplicit scheme for gravity-wave

maodes:

Qn+l -Qnt . in(Qm] + Qnrl) i
Tw Qe YO (4-29)
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To simplify expressions, we use the following notations:

and

Q=

Q= :l_T(Qum + Quadd

3G = "l_'{(‘)lh\[ “Qad

At

> QU= ALSQ + Qu

V* = u*i+ v¥j

p=vyeo M

dx  dy
§=k'VXV*:a—Yt‘ -aLi
ax  dy

The formulations of the scheme are:

o av+
5D + V(PGF)' = Vo a—) + VA PGFy,.
L'

where (PGF) = Vo + RT, Ve,

. 1)
5T+ (FVAT =(" ) +(TVA),

ot I

where (TVA) = o%g 9—{']'00"‘) -
do c

Pa[n

e OM*
Jor* + (DIV) = *é**) + (DIV),,
(O

where (DIV)Em{Z,[ Dda,
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4-30y

(4-31)

*
on ) Emaj -Ddo = -(DIV),
dt D N
; *
aﬂg_m{z‘l_)v(aﬁ 3. (4-32)
Js at )

Here Ty, which is a function of & only, is the reference tlemperature profile and
m% (constant) is a reference square of map factor. By introducing these reference
quantities. we can linearize the gravity-wave terms and inlegrate them with the
rapezoidal implicit scheme.

The lateral boundary relaxation terms are included in (-}-Q using (- Q) at 1- At

ot

(forward scheme) to avoid the lincar computational stability.

Introducing the matrix notation for the vertical differencing schemes of the

hydrostatic equation and the thermodynamic equation:

$=PI
(TVA) = H D, (-3
where Q=(Q,---.Q)". k=1-Kisthe index for the vertical level. The

constart matrices P and  H are uniquely determined from the verticad difference

schemes. Using these expressions, the prognoestic equations become:
5D + AP V3T + At RT\V 8,1 = ND
S3T+AMHJD =NT
P
dr* + Atmiag’ &.D = Nr*, (4-34)

where ND.NT and Nn* include all other terms than the linearized gravity-wave
terms as;

a hl
ND=(- V.V*} +P VQ(L - T a0 + RTpV(T* - ¥, )

ot .
J
NT=(-T) +H(D -D. )
a
a ¥
Nr* = té- %y + AT (D - Dy - {4-15)
L
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Eliminating 3T and &,n*, we obtain the Helmholtz-type equation wih respect to §,D.
- ACPH + miRToAGT)V 8D + S
=ND-APVINT) . A RTV(Nm%). (4-36)

Up to this point, the formulation of the scheme has no difference between the gnd point
model and the spectral madel.

converted to D and £ by applying the D, and Dy operators. We do not need to take
inte account the non-orthogonal bases in this conversion.

2 3 3
L+ Ak 24+ ClaDy = (NL),. (4-37)
where VZQH =- (k*2+l"‘3}Qk| has been used and (L) representing the

spectral form of the right-hand side of the Helmholtz equation and I is the uni matrix.
The matrix C is a constar matrix:

C=PH + m}RT,aq". (4-38)
We have prepared the matrix E which consists of the eigenvectors of the matrix :
¢t o0

EICE = & LEE=EE!=| {4-39)
0 C

F )

Here, c; is the phase speed of the gravity-wave mode of the i-th vertical mode. Then the
equation is written as:

E(AC(K*2413) € + DEE-15,D,, = E'{(NLy,. (4-40)
The equation can now be solved as:

(wj + 1y 0
SDu=E|[ (@ + 1y 1E-(NL),, 441)
0 (wf + 1)
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where @ = (A0 (k*2 + 1*2) is the frequency normalized by At of the i-th
vertical mode with wave number k and L

Using 8Dy, we can obtain 8Ti and &%, and then By and §v*,,.

Finaily, future values of all the progrosiic variables Q,, 5, are obtained by

Quac=248,Q + Qrar (-+-42)

5. Recent developments of regional models
<Hybnd sigma-p vertical coordinate>

To reduce the error in the calculation of pressure gradient force in the middi: and
upper troposphere and the stratosphere, a hybnd sigma-p vertical coondinate has been
developed and put into use in replacement of the sigma coordinate system both in global
and regional models.

<Regional spectrat model using spectral nesting>

Another framework of regional spectral model way developed by Juang and
Kanamitsu (1994) and has been used operationally in the 1/.S. NCEP. The basic idea is
that the regional mode| only predicts perturbations from the large-scale field predicred by
a coarse-mesh maodel.

<Semi—Lagrangian time integration:>

To relax the limit of time interval for stable tategration, semi-Lagrangian scheme
has been developed and used in an increasing number of NWP centers. The time changes
of prognostic variables due to the advection process are evaluated by seuarching upstream
peints from where air parcels are supposed to be advected 1o the relevant grid points in a
time interval. Although some interpolation enters the calculution, which might become
additional source of errors, the stability criterion of the time interval has been relaxed
considerably. This has lead to a large reduction of computation time.

One problem might be the lack of conservation properties for physical integrals,
although usually it is not a serious problem for short-range NWP. Efforts are now being
devoted to developing models with conservation properties.

<Regionally enhanced resolution and adaptjve gnd>

To focus on 3 particular meso-scale phenomenon with limited computation
resources, there have been developed models with regionaily enhanced resalution or
those with temporally adaptive grid. The triply-nesied mode) for aperational hurricane
prediction at NCEP, which was developed in GFDL, is an excellent exampie.
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