

SMR/941 - 4

"Third ICTP/WMO International Workshop on Tropical Limited Area Modelling" 21 October - 1 November 1996

"Hurricane Modelling"

Y. KURIHARA
GFDL/NOAA
Princeton University
New Jersey
USA

Please note: These are preliminary notes intended for internal distribution only.

Hurricane Modelling

YOSHIO KURIHARA GFDL/NOAA

1. Structure of hurricanes

Primary structure

A high resolution model is a fundamental of hurricane modelling.

Hurricane movement capability of hurricane tracking → multiply-nested movable mesh model

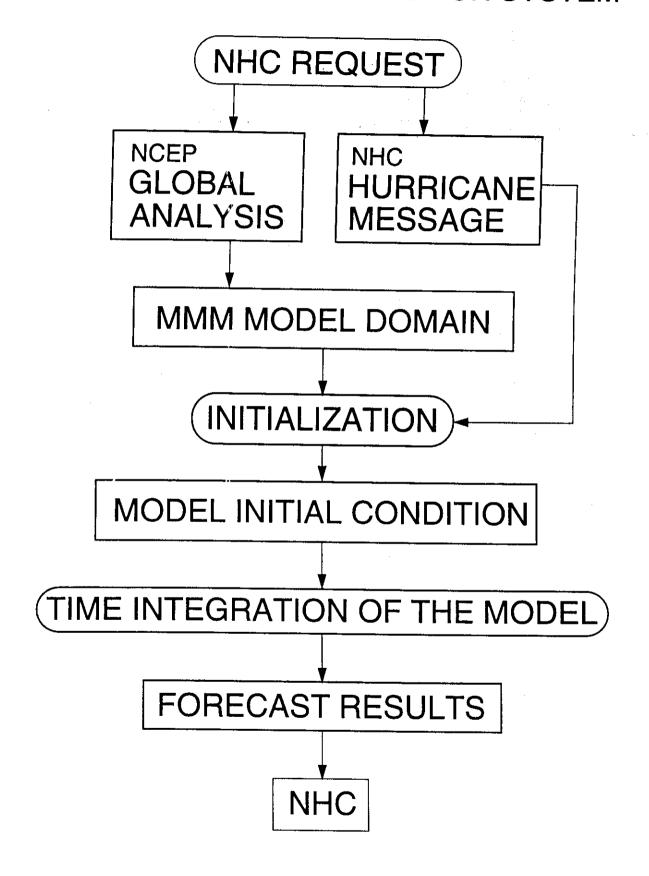
2. GFDL Hurricane Prediction System

Accurate model physics is a fundamental of hurricane modeling. simulation capability of primary features of hurricanes

Database of the hurricane model: global analysis, hurricane message

Initialization of the hurricane model
replacement of a vortex
ambiguity in field separation
vortex generation
controlled spin-up using hurricane messages
symmetric vortex in a quiet environment
beta-gyre

3. Prediction skill


storm track storm structure and intensity

further improvement:

hurricane model
parameterization
ocean coupling
model resolution
global analysis: data, mountain
initialization

vortex generation including effects of environmental flow four-dimensional data assimilation

GFDL HURRICANE PREDICTION SYSTEM

GFDL MMM Hurricane Model

- 1. primitive equation model
- 2. 18 vertical σ-levels
- 3. multiply-nested movable mesh (MMM)

Mesh	Resolution degrees	Size degrees (points)		Time Step sec	
1: coarse		75	(75x75)	120	
2: medium	1/3	11	(33x33)	40	
3: fine	1/6	5	(30x30)	20	

4. physics

diffusion

horizontal: Smagorinsky nonlinear viscosity

vertical: Mellor-Yamada turbulence closure scheme level 2

background mixing added

surface flux

Monin-Obukhov framework, interfacial layer included

ocean: SST (unchanged from the initial field)

land: land surface temperature prediction

vegetation type dependent roughness and wetness

cumulus convection

soft moist-convective adjustment scheme entrainment effect considered, relaxation time assumed

radiation

infrared: Schwarzkopf-Fels scheme; solar: Lacis-Hansen scheme effects of diurnal cycle and cloud variation considered

5. initialization

environmental fields from an NCEP global analysis generation of a hurricane vortex by controlled spin-up replacement of an NCEP analyzed vortex by the generated vortex

6. time integration

two-step iterative integration scheme wind direction dependent boundary condition for limited domain mesh by mesh integration using dynamical interface