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OQUTLINE

e Advection Equations

e Numerical Methods

e Theoretical Predictions of Accuracy and Stability
e Numerical Results for Some Test Examples

e Applications



DEFINITION

e Advection Equation (1D)

e Advection Equation (3D)
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NUMERICAL METHODS

Temporal Differencing (Two level schemes)

C*=Cn—ufat
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xr

(a+0=1)

e Euler FT: a = 1,3 =0, (Ist-order)
e Matsuno scheme: a = 0,5 = 1, (Ist-order)
e Heun scheme: o = 3 = 1/2, (2nd-order)

e Miller-Pearce scheme: Combination (2nd-
order)



NUMERICAL METHODS
Spatial Differencing

e Upwinding difference

¢ Central differencing

Time + Space Schemes

e Standard schemes: 1st-order upwind method;
Lax-Wendroft method; Leap-Frog method; ...

e Advanced schemes: Wave Propagation Schemes:
Semi-Lagrangian Schemes; ...



NUMERICAL METHO)|

7

Heun Scheme +
Higher-Odd-Order upwinding

Motivations:

e Higher resolution with little computational cost
e 2nd-order accuracy in time, sufficiently stable

e Dissipation mechanism in upwinding scheme help
to filter out spurious 2Az waves

e Good amplitude properties and little phase error

e Vector supercomputer adaptable



STABILITY AND ACCURACY

A=1-Ch/2+iCg
A= 1+ R
P = éﬁtan_l[%?eﬁ]
e A — amplification factor
e P — relative phase error

o Uy = UAA—:% — Courant number

Cn| |A] | P
0.11.00017|1.0004
0.3] 1.0146 |1.0001
0.5 1.0383 |1.0008
0.7 1.0682 | 1.0029

Table 1: Amplification factors and relative phase errors for Heun scheme



TESTING

¢ #+1: Smooth initial data + constant coef-
ficient + periodic boundary conditions

C(z,y,0) = sin(2rz) sin(2my)

e #2: Solid body rotation
u=—(y—1/2),0=(z—1/2),
Cla,y,0) = (1 +cos(mp(z, )

where
plz,y) = min({(x — 202 + (y = ¥0)?, p0)/ Po:
(2 = 0.5,y = 1.25, pg = 0.2)
e #3: Slotted disk + cone + hump

o #4: Swirling flow



APPLICATIONS

e Case #1: Tropical cyclone evolution

o Case #2: Atmospheric dust transport



CONCLUSIONS

e Works well for both smooth and discontinuous
data.

e ADVECTION-diffusion more suitable.
e Boundary condition non-sensitive.

e Computationally robust and effective.
e Parallel computing adaptable.

e Simplicity and flexibility.

Overall, the algorithm performs quite well for the
test problems and is a very good scheme for the
weather prediction model.
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Fig.9.2. Upwind solution for the convection |

equation with C
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Fig. 9.3. Lax-Wendroff solution for the con-

vection equation with C
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Example #1
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Third-order upwind in space. (U=1.0, V=1.0)
(No phase error, almost no damp).

b .

Second-order central diferencing in space. (U=1.0, V=1.0)
(No phase error, serious ocillation).
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Third-order upwind in space. (U=0.0, V=20.0
(Serious phase, Acceleration scheme when Velocity is too

big).



Using Heun’s
scheme in
time with
third-order
upwind in
space.

Using Heun’s
scheme in time
with second-
order central
differencing

in space.
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Initial condition of solid body before rotation.




Numerical results after one revolution.

628 time steps. Mesh size: 100 * 100
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Numerical results for solid body rotation after one
revolution (628 time steps) usingHeun’s scheme in time
and third-order upwind scheme in space. Four different
cross sections of the solution are shown along with the
perspective plot. The solid lines are the true solution.



Amp. Err. Heun/2-Central .




Numerical results by using Heun's in time
central differencing in space(40 time steps}.
For one revolution, this scheme is not stable at all.
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Numerical results for example #4 (15 time step).
Heun Scheme + Central differecing.

Strong ocillation, unstable.
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