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. Basic principles of surface wave tomography

Scismic tomography is reconstruction of 3D Earth structure from the data
obtained along different wave paths. Usually determined are seismic wave
velocities, and the data are travel times, though some other characteristics of
the waves, even the wave forms, may be used for the purpose. Surface wave
tomography is based on the data on surface wave observations,

Surface waves propagate in upper layers of the Earth, and the thickness of
the layer, in which the most part of their energy is concentrated, depends on
the wavelength: the larger is the wavelength, the deeper the wave is penetrated.
Therefore characteristics of surface  waves for different wavelengths, or
periods, contain information on 3D structure of the upper part of the Earth -
the Earth’s crust and upper mantle.

Thus, surface waves may be used for the¢ abovementioned purpose -
reconstruction of a 3D distribution of eclastic parameters in the upper part of
the Earth. However, the peculiarities of surface wave propagation lead to the
corresponding peculiarities of the tomography methods.

It is clear that for 3D tomography we must use the data for a sufficiently
wide range of periods. It can be done by two approaches. One is the use of the
data for the whole range of periods altogether, and (o reconstruct the 3D
structure directly. Another one is to divide the tomographic reconstruction
into two steps: at the first step the data for a fixed period are used, and 2D
tomography problem is solved to determine a 2D distribution of surface wave
characteristics - phase or group velocities. Then, when this problem has been
solved lor different periods, vertical velocity sections in different points of the
arca can be obtained by solving 1D inverse problem. In other words, the
initial 31D problem is divided into two problems: properly 2D tomography
problem for phase or group surface wave velocities, and 1D inverse problem
for dispersion curves.

Example of the first approach is the so-called ‘waveform tomography’
proposed by Nolet (1990). This method is based on determination of a 3D
model, for which the calculated wave forms fit to those observed at different
stations from different sources. Adjustment of the wave forms is practically
cquivalent to the adjustment of their phases, i.e. of the dispersion curves of
group velocities. But this approach is too difficult for the practical use. It
requires to calculate  the wavetorms in 3D inhomogeneous media, and 1o
solve the inverse problem with too many parameters.

The sccond approach is casier for practice, therefore it is widely used in
seismological studies. Most of studies are restricted with the first step - solving
the 2D problem for determination of lateral variations of phase or group
velocitics, because they are sufficient for inferences about lateral variations of
the lithosphere structure. It is obvious that 2D tomography problem is much
casier than 31). Therelore the development of this approach is connected with
claboration of the methods specific for 21D tomography.



2. Methods for solving 2D tomography problem

2.1. General approach

The data obtained from surface wave observations, which can be used for
tomography, are:

group velocities,

phase velocities,

azimuthal anomalies

The data on phase or group velocities are the same as group or phase travel
times, and after linearizarion these data are reduced to time delays. The time
delays &¢, are related o the 21D phase or group velocity pattern Ur) (r=(xy)
or (g,A)) by the following functional

ot =11, =[5 —C—E—~J5(~1Jdc
SRR T i = A 0

where Vi(r) is velocity in the starting model.
The equatjon (1) may be rewritten in the standard form

d =) G(r)nr)d (2)
h)
where nxr) is the unknown model] - relative perturbation of slowness

é‘V"(r) / V,{‘(I‘), and Gi(r) is the data kernel, which is singular on the /-
th ray, equal o zero clsewhere, and satisfying the constraint
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The refationship  between azimuthal anomaly and the model may be written
also in the form (2), but the data kernel GAr) will be difterent (see below).

Il the data are exact, the problem is to determine m(r) from a finite set of
cquations (2). If they have errors, m(r) should be determined by minimization
of the functional

Z[fk]@(rmr)d]lﬁ;‘[%~f@(r)nir)dJ 4)
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where R is covariance matrix of the data crrors.

Since u function cannot be determined from 4 finite data set, some a priori
constrains should be imposed to the unknown function. The constrains may be
ol different kind, but finally the solution may be written in the following
general form

M
me) =2 Ly (r) (5)
J=1



where (1) are some basis functions. The basis functions may be cither
assumed a priori, or constructed proceeding from the given data set. Once the
basis lunctions are assumed, the coeflicients 2; may be determined
from a lincar system of equations, which is obtained by substitution of (5) into
(2) or (4).

2.2 Alternatives for choice of the basis functions

The basis functions wyT) may be either chosen apriori, or constructed
from some properties assumed about the model nxr).

1. A’’priori choice of the basis functions. In surface wave tomography usually
Iwo approaches are applied. If the wave paths cover the whole globe, the
model mX¢,A) is represented as a series in spherical harmonics, so that the
basis functions are just spherical harmonics. The number of the basis functions
i1s chosen to be Iess than the number of the data, then the coefficients by the
functions arc determined from minimization of the functional (4). However,
it the paths cover the globe non-uniformly - and this situation is wusual, -
then the solution will have artificial details in the parts poorly covered by the
paths, and on the contrary, some details in the regions crossed by a large
number of paths will be smoothed.

Another approach is used in regional studies - it is so-called regionalization.
the area under investigation is divided into some regions K; (=1,2,..,M),
which are assumed (o be laterally homogeneous on the basis of
geomorphological, geotectonical or some other geophysical data. The velocities
within each region are assumed to be constants (for a given period), so that
the problem is reduced to estimation of a number of parameters, which are the
unknown slowness corrections

. The basis functions in this case are defined as follows:

1 i rck,
w(r) = (6)

() othcerwise
A drawback of the latter approach is that it requires a priors regionalization,
which is usually made on the basis of differences in surface features, though
they may not rellect the lateral heterogencity at depth.

2. Determination of thc basis functions from a’priori assumptions
about the model One method was proposed by Tarantola & Nersessian
(1984) on the basis of Baycsian approach. If the a’priori covariance
function of the model C(r,r’) is assumed, #27Kr) is determined by
minimizing the functional:
| ) C e oyt )k +(d-Gm) RS (d-Gm) (D)
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where Gm is a vector with components I({T(r)n{r)(}r.
S



The solution is m= CG™(R, +GCG™) ', where the following notation is
implied:
(Gea", = [famarm e da
The basis functions are
v, (0= arme e 8)
5

The apriori covariance function of the model is assumed usually as
(aussian

dr,r') =g’ cx;{~ fr—r’!zJ
’ 20

where L is a correlation length.

It should be noted that this method is valid both for 2D and 3D
tomography problems.

Another method proposed by Ditmar & Yanovskaya( 1987, 1990) is valid
only for 2D tomography problems. It is based on the assumption of
smoothness of the solution according to the criterion

IV & = min (9a)

n=const at | f s {9b)

The condition (9a) provides continuity of zxr), though the derivatives
of this function are discontinuous at the rays. For accurale data the
condition analogous to {9b) is

(d-Gm)'R} (d-Gm)+a [{Vol o = min, (10)

where o is parameter of regularization. The basis function in Cartesian
coordinates satisfying (9a) or (10) are following;

(1)

Tine-riGia 12 N
w.(r)=1 |

i= N+1

In case of accurate data the cocflicicnts by the basis functions are
determined from the following system of equations:

SA+ ay=d

ATto=0
where AT = (A1, A2,... &n,) are the coefficients by the N first functions,
and ¢ is the coclficient by the (N+1)-th function, the matrix S being
defined as

ds, s,

S = | jr‘—r,‘
! {LZ'.,W ' ‘f‘ Wir,) V()

[f the data are inaccurate, the coefficients are determined from the
system
(StaRp)r+ dp=d

?Lrl():()

Examples of the basis functions (8) and (11) are shown in Figs. 1,2.

(12)



Figure 1. Example of the basis function w(x, y) for a ray along the
y-axis between the points y = —1 and y = +1. [t is clear that the
derivative dy/dx is discontinuous on the ray.
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Figure 2. Examples of the basis functions (16) for the same ray as in Fig. 1 for two different values of L: (2), L=0.333; (b), L=1.0.

3. Resolving power of the data

A solution of the tomography problem is not unique, because the data
(functionals along the rays) do not contain information on the velocities in all
points, so that the solution is always averaged over some area. Therefore
estumation of resolving power of the data is an important problem in seismic
wave tomography. A knowledge of the resolution allows to estimate sizes of
anomalies , which can be revealed reliably from a given set of the data. Also it

allows 1o conclude if the anomalies obtained in the solution are realistic or
artificial.



In general the resolving power of the data may be estimated by the
averaging kernel A solution of the tomography problem is sought in a general
form

m(r)=A"y(r)
where w "(D={y1(1), pa(r),.... ym()} - basis functions. Since the problem is
reduced o a linear system of cquations in respect to the coefficients A, in the
right-hand side of which are the darta d; , or their lincar combination, the
solution for #Ar) may be also ¢xpressed as a linear combination of the data:

ar) = 3 afryd; (13)
This is on¢ of the solutions satisfying the data
d, = | G(ryntr)d (14)

Therefore the solution may be written as
atr)= X a,0)] Grontea, (15)
where m4r') is any solution of (14).

Otherwise (15) may be written as ﬁfr)——-jf(r,r’)nfr')af’, where A(r,r’) is the
averaging kernel, which is expressed as a linear combination of data kernels.

In tomography problems the data kernels are singular at the rays,
consequently the averaging kernel is also singular. Therefore it is inconvenient
to characterise the resolution in each point by the averaging kernel directly:
besides that it js singular, it should be determined in cach point r, so that it
requires a (remendous amount of computations.

In some studies the resolution is cstimated by calculation of the solution for
some synthetic models (Snieder, 1988). Usually the model contains a set of
low and high velocily anomalies of a certain size allernating in chess-board
order. The time delays are calculated for the same paths as in the real data set.
If these anomalies are appeared in the solution, this means that in the real
problem the anomalies of the same size would be resolved.

The advantage of such approach is that it is unnecessary to obtain the inverse
operator in an explicit form: the iterative methods may be used for solving the
problem. A main drawback is that it is dilficult to conclude, anomalies of what
size can be resolved in different parts ol the area.

For cstimation of the resolution in the case, when the solution is
determined from the criterion of smoothness, a method analogous to that
proposed by Backus & Gilbert can be applied (Ditmar & Yanovskaya, 1987).
The resolution in each point s cstimated by a lincar size of the averaging
arca. It has been shown that the solution minimizing (9a) is equivalent to that
obtained from a criterion of proximity of the averaging kernel to the 2D delta-
function (so-called §-ness criterion). For singular kernel the 8-ness crilerion



may be replaced by a criterion of proximity of the integral of the kernel to
the integral of the delta-function (in 1D case to the Heaviside function). In
2D case this criterion is following:

Sy = [[Br,r) - Hror) o= min O (16)
under the normalization condition
[ aecya =1,

where dnE(r,r')= Alr,r'), diH(r r')=6('-r) .

To evaluate a size of the averaging area, we consider the kernel which would
be a constant equal to 1/zR? within a circle of radius R centred at r and
vanish outside the circle. It is easy to calculate §°(r) for such kernel, which is
obviously a function of R. Then the value of R, which provides the same
§*(r), may be accepted as an estimate of a linear size of the averaging area. It
may be shown that

KR =cexp(3/4~a™Sa+2a"y) (17)
where a is defined by (13), w(r) is the vector formed by the N basis functions
(11), and the matrix S is defined by (12).
Fig 4 shows the distribution of R(x,)) for the pattern of paths shown in
fig.3. The effective radius of the averaging area is the smallest in those parts of
the region, which are covered most densely by the rays.
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A drawback of the estimation of the resolution by the effective radius of the
averaging area is that it does not allow to conclude about the resolving power
in different directions. Indeed, when the rays are oriented predominantly in
one direction, the resolving power is low in this direction and high in the
perpendicular dircction.

Below we consider an approach for estimation of the resolution depending on
azimuth.

Let us consider a plane area ¥ (0<x<X, 0<y,Y) covered by the rays. The
data are travel time residuals &7, As mentioned above, a solution of the

tomography problem in a point X,, ¥, may be represented as a linear
combination of the data:

m(X()s .Vo) = Z aj(XDS .Vo)é‘tf

The averaging kernel in the point Xy, V, is expressed as follows:

A, ¥, X, ¥,) = X a(x,, v,)GAx, y) (18)

where the data kernels G (x, V) satisfy (3).

Now we determine a criterion for estimating the resolution in a point
Xy, Vy  along a fixed direction. Without a loss of generality this direction
may be assumed coinciding with x-axis direction.

Integrating (18) with respect Lo y~coordinate over the interval (0,Y),
corresponding to the area covered by the rays, we obtain a function of X,

depending on the coordinates Xos Vo

Y
Fx X, 5,) = X a(x,, )] G(x, y)dy (19)
i o
This function characterises a rate of smoothing of the solution along the x-
direction. Therefore a resolution in this direction may be determined by a
deviation of this function from the delta-function O(x — XU). But since

they both are singular, it is reasonable to replace this deviation by a deviation
of the integral of this function

D(x; x,,¥,) = I F(x x,, y)dx' o

from the Heaviside function /A (x - X,). Substituting (19) into (20) we
oblain:

Dx; x,¥,) = 2 a(x, ¥, )r(x) (21)



where 7,(X) is travel time along

the £th ray up to the point X.
Example of such function for the
straight-forward ray with the end-

points X; , X! isshown in fig.5.

i

Fig.5
- It is reasonable to determine the deviation of the function (21) from the
Heaviside function by the mean square residual

s(xy, ¥,) = 'I(CD(X; X,, Vo) — &(x - x,)) dx (22)

The less s, the less difference between d(x; x,, y,) and the Heaviside function,

and the higher resolution in X -direction. The value of § may be used for
estimating the effective averaging length analogously to that as in Backus-
Gilbert method for 1D inverse problems.

Let the averaging kernel differs from zero and equal to a constant value
within the rectangle

X, —g <X <KX, —-g—, yo—g <y <y, —% Assuming the kernel to be
normalized, this constant should be equal to Lb It is easy to show that
a

s(x,,y,) for such kernel turns out to be equal to 1%. Consequently, 1258 may

be taken as an estimate of the width of the averaging area in X- direction,

As mentioned above, the direction of x-axis may be chosen arbitrarily.
Therefore the width of the averaging area can be estimated in any direction
by rotating the X-axis, i.e. 2 may be determined as a function of azimuth 9 .

Estumation of the resolving power by the effective radius of the averaging
area (Ditmar & Yanovskaya, 1987) is equivalent to the assumption that a
linear size of the area is equal in all directions, therefore it can be estimated
by averaging a(4) /2 over the whole interval of 9 . The next step in

detalization of the resolving power is approximation of a($) by a function
a+0bcos(23 - 2¢). Then in the azimuths $=¢ and 3= ¢+ 7 the
resolution is the worst (the linear size [ of the averaging area in these
azimuths is @ + b), and in azimuths $=¢+7 /2 and $=¢+37/2
it is the best (L = a — b). If b0, the resolution is approximately one and the

same in all azimuths, and the estimation of the resolving power by the

radius of the averaging area is justified. Large values of /a indicate to

predominance of the rays of a certain direction, and consequently to
insufficiency of the data for tomographic reconstruction.

10



Thus, in this approach the effective averaging area is of elliptic shape, with

axes @t b and 2-H, maximum axis being in the azimuth ¢ .

Fig.6 shows effective averaging areas for two patterns of rays. In Fig 6a the
arcas are stretched in the predominant directions of the rays. In fig.6b, where
the rays are oriented approximately uniformly, the areas are close to circles.

Figs.7a,b show distributions of the value 24 / a for the two sets of rays.

These values are much smaller in the latter case.

Fig.6a Fig.6b

Fig.7a Fig.7b

11



4. Tomography based jointly on the data on
phase and group velocities

The method described in the last section assumes knowledge of either phase or
group velocities of surface waves along different paths for a fixed period. The
solution will represent the velocity distribution as a function of the lateral
coordinates for the period. This approach is not however always practicable for
the following reasons.

First, observations do not always provide enough data for the particular period
under consideration, while data may be available for near periods along a fairly
large number of paths, and they contain certain information on the velocity for
that period which the above approach ignores.

Secondly, if we remember that the resulting velocity distributions V(x, y) (V =
C or U) are to be used for determining crustal and upper mantle structure, then it
s fairly obvious that the method should be applied to find phase velocity distribu-
tions, since the use of group velocity dispersion in this problem may lead to much
greater nonuniqueness associated with the fact that a dispersion curve of group
velocity may have infinitely many curves of phase velocity corresponding to it,
hence infinitely many velocity structures. At the same time, group velocities are
much simpler to determine from observations than phase velocities; there are quite
large amounts of data of this kind accumulated for different areas. This accounts
for the fact that it is group velocities which are used in the many papers dealing
with lateral variations of surface wave velocities (Yanovskaya, 1982; Yanovskaya
and Nikolova, 1984; Sabitova and Yanovskaya, 1986; Dmitrieva et al, 1986),
even though the conclusions they contain on lateral inhomogeneities cannot be
considered sufficiently substantiated.

Determination of phase rather than group velocity distributions is important,
also because this enables one to incorporate nonlinearity of inverse problem in
finding V(x, y) from the set of functionals (6.30). We recall that (6.30) can be
reduced to the linear functional (6.32) in which the integration is done along a
straight line, provided the ray shape can be assumed to be determined by the
starting model, which is V; = constant in our case. However, if the lateral variation
of velocity is not small enough, one should accomodate ray curvature; this can be
done by successive approximations, the initial approximation at each iteration
being the solution obtained at the last iteration, i.e., the path of integration in
(6.32) 1s taken to correspond to the velocity distribution obtained at the last
iteration. Now since ray shape is controlled by the distribution of phase velocity,
then obviously, successive approximations cannot be constructed, unless it is the
phase velocity that one obtains at the last iteration. However, these drawbacks of
the above approach can be obviated, if one recalls the well-known relation
between phase and group velocity

- :
. Uw)= Cw)+ w %ﬂ (6.81)

so that the dispersion curve of phase velocity can be completely determined from
that of group velocity, provided the constant of integration is known. In the case of
a single dimension it is sufficient to know phase velocity at a single value of
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frequency. This fact can form the basis of a technique for determining phase
velocity distributions for different frequencies in laterally varying structures from
the values of group velocity along different paths, provided we know a few values
of phase velocity along some paths in the study area. The technique in question
was proposed by Yanovskaya ez al. (1 98%).

The raw data are phase C(* (i =1, 2, ... my) and/or group velocities Uk
(/=1,2,..., n)for periods T along paths L(k=1,2,.. ., K)) traversing the
study area. A path is as before defined by giving the coordinates of the initial and
end point; the problem will be solved in the linearized formulation, i.e., paths are
assumed to be straight lines L. The data can be converted into travel time
residuals to be related to the unknown distributions of phase and group velocities
C(x, y, T)and U(x, y, T) through

[ 0C™ (x, y, Ty dl = &0
Lo '

(6.82)
J U™\ (x, y, T¥Y dl = &%

ETy

where 6C~' = C~\(x, y, T) — Col(TY, oU™ = U '(x, 5, T) U (T), C(T)
and Uy(T) being dispersion curves of phase and group velocity, respectively,
averaged over the area. It should also be remembered that ¢ and U are related by
(6.81).

The idea of the method is that the phase slowness as a function of frequency w
= 2a/T is fitted by a polynomial whose coefficients are unknown functions of the
lateral coordinates

N

Clix, yw)= L a,(x, y) w". (6.83)

Gg=i

Accordingly, group slowness is also fitted by a polynomial of the same degree:

Ux o)=L (1+q)a,(xy) v (6.84)

g=0

To find C(x, y, w), we must determine the coeffictents a, which are now functions
of the spatial coordinates x, ¥y only. This problem can in turn be reduced to that
discussed in the last section.

We represent the ‘mean’ dispersion curve Cy(w) in the form (6.83) again:

N
Ci'(w)y= L dog 4 (6.85)
q =1

where the ay, are constants to be determined from Gy(w). Accordingly, Uy(w) is
also expressible in terms of the same corefficients:

Usl(w)= L ag(1 +q) w9, (6.86)

=0
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Equations (6.82) for the kth path can now be written as

N
) (wf-“)" Aoq J' m,(x, yyd/= oBi(i=1,2,...,m)
[

g =1

N (6.87)
L (@ (1 + Q)J myx, ydi=06t5(j=1,2,..., 1)
[N

=10

where m,(x, y) = (a,(x, ¥) — @y,)/a,, These equations for all paths k = 1, PR
K can be combined to form the set of equations

N
Z by J m,(x, ¥) di=vy, r=12,....M (6.88)
- Lo

where v, = ot} or 85, k = k(r), b,, = ay,(wi@)(1 + pg), p = 0(1) corre-
sponding to phase (group) velocity; M = Z,(m; + n;).

One can find m,(x, y) from (6.88) using a method which is an extension of that
described in the last section.

We assume the m,(x, y) to be components of a vector fuction m(x, y) and

demand this function to obey a smoothness requirement similar to (6.35):

J J|Vm||3dx dy=min (6.89)

where Vim is a matrix of the derivatives dm,/dx,. We also assume m(x, y) to be
bounded at infinity. It then turns out that each of the m,(x, y) must satisty
Poisson’s equation (6.37); its solution has the form

M
m, ()= L l,-b,-qJ lnir—r,] di+ C, (6.90)
lan

i=

We have taken path number to correspond to equation number in (6.88), so that
different indices may correspond to one and the same path.

The boundedness of m(r) at infinity yields the requirement that the A; must
satisfy

M
-):1 Ab l=0 (6.91)
where /. is the length of the ith path.

We define matrices S and D as follows:

M

Sij =1L by bmJ' J 1n||‘,-—rf\ dlid[p 1<ijs M (6.92)
g=U Lo, 4 La,

Djj"-=b,~‘,-l,», 1€si€<M 0<£jsN (6.93)

The coefficients 4; (the vector A) and the constant terms C, (the vector C) satisfy
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the following set of equations:
SA+DC=y DTA =0, (6.94)
The set (6.94) is simiiar to (6-43), (6.45). If we now define a matrix K(r):

K,.q(r)=b,.qj Inlr=rid/  1<i<M 0<gsnN (6.95)
Ly,

we obtain a solution for m(r) that is an extension of (6.48):
m(r)=K'S™'y +(I-K”S"! D) (DTS D)y DTS 1y, (6.96)

sense of the minimum squared residuals, the appropriate solution is (6.96) again,
but the inverse matrix $™! is now to be the generalized inverse S* based on the
singular value decomposition of S.

Model example. This method has been tested on the following model exampie.
The distribution of phase velocity in the region —1000 € x < 1000, —1000 < y
€ 1000 s given as

C(x, y, @)= 1.5(3.0 — tan™ (2w H(x, y)) (6.97)

where H(x, y)y =1+ exp[—(x/1000)? ~ 3(y/ 1000)*|. Phase and group travel times
were calculated along the 28 paths shown in Figure 6.9 for 02 < o < 0.5, and a
sample of 100 travel times was used to determine phase velocity in the study area.

Fig. 6.9. A pattern of paths the travel fimes for which have been used in a test inversion. Solid lines
are paths for which phase velocities were known.
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The number of data points for a path was 3 to 5, the phase slowness was fitted by
a straight line, hence N = 1. The phase travel times were taken only for the 4

paths indicated by heavy lines in Figure 6.9.

The inversion gave distributions of phase velocity for four frequencies shown in

Figure 6.10 a—d together with the original velocity
even though few data points of phase velocity were

distributions. One can see that,
used, the resulting distributions

of phase velocity reflect the principal features of the original distributions. One can
thus expect that, also in the interpretation of real seismological data, a few
observations of phase velocity are sufficient, when combined with a large sample
of group velocity measurements, to derive fine detail in the distribution of phase

velocity.
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Fig. 6.10. Results of joint inversion of phase and group velocities. Solid lines show the initial phase

velocity distributions, thin lines the results of inversion, for the
w=0.28 rad/sec, (c} w = 0.42 rad/sec, (d)

frequencies: (a) w = 0.21 rad/sec, (b)
a = 0.50 rad/sec.



5. Estimation of lateral velocity variations and anisotropy

The approach developed for determination of lateral velocity variations can
be easily extended to estimation of azimuthal anisotropy.

For weak lateral velocity variations and weak anisotropy surface wave
velocity may be approximated as follows:

V(x,y,9) =V, +8V(x,y)+ A(x,y)cos 29 + B(x, y)sin 2¢.

Therefore unlike the isotropic media we have to determine three rather than
one unknown functions: 3Vix, y), Alx, ¥) B(x,y).
It is convenient to introduce the non-dimensional functions

m(x,y)=-3V/V,,
a(x,y)=-A1V,,
b(x,y)=-B1YV,.

Denote the angle between the ith path and x-axis as 9;. Then travel time
along this path is

! =1ty; + ][ G;(r)m(r)dr + cos29; [[ G;(r)a(r)dr +sin 29, [[ G,(r)b(r)dr.

Using the notation G; = G; c0s29;, G; = G;sin 2¢; we can write the mean
square residual in the form:
§=(Gm+G.a+Gb-8) R (Gm+G.a+G b &)

The regularization functional can be taken analogously to the isotropic case,
though in general the parameters of regularization should be different for
lateral velocity variation and anisotropy:

off) VmiZdr + Bf{I Val® + VbI* 1dr.

As before the functions /77, 2 and b are assumed to be finjte at infinity. Then
it can be shown that the following functional should be minimized:

(Gm+G.a+G b 3) R (Gm + G.a+Gb-58t)+off mVmdr +Bf[[ada + bAbidr. (1)
Denote
a"R,‘I(Gm+Gca+Gsb—-8t)= A 2

Then the minimization condition (1) is reduced to the following equations
with respect to the unknown functions m(r), a(r) and b(r):

Am+ATG =0, ,
Aa+kATGc=0, (3)

Ab+kATG, =0,
where k=q/B. . It follows from (3):

17



m :'—Zlh”Gl lnlr—l',ldl'+cl = '—ZA','KI'(I')'PC],

b=—-k3 A;cos29; G, Inir-xldr+ C; = -3 A;K;(r)+ C;, @)

where Mg =KA;cos29;, Ay =kA,;sin2@;, and the functions K{r)} are

determined by formulae (4).
Substitute these expressions into (2), and assume for simplicity that R=I._

unit matrix:
l.j = _é[zliQﬁ +Cty; +kcos2Q; A cos29;0;; + Cztoj cosZ(p}- +

+ksin2¢; 3 A, sin29;Q;; + Cyty; sin29; +3t;],

5
where jS = [{glnlrj ‘rildsid"j V. Otherwise
i & f

(Q+0DA + Gty + Gyto, + oty = 8t,

where ]

Qj,‘ = Qj.'[l +kcos 2(q; - ?; )L
fozi = fg; COS20Q;,

toy“ = IOI Sin ZCP,-.

The conditions of finiteness of the functions /72,2 and b at infinity result in
the three additional equations

ATty =0,
ATty =0.

Thus, the following system should be solved:

(S S-St fom fon ) (A, ) (8t )

S SpeSin M toxa fop A | | By

E T (5
Svt Syzeeeene. Sw fon forn  fogw Ay |=] 8ty |,

It lgpeeeeennn. oy 0 O 0 G 0

fox1 foxz---e-- v 0 0 0 = 0

oy Toyz--eeee toyw O 0 0 NG 0
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or SA® = 8t*, , where 8 is the matrix of the system (5); AT = (A1, Ay,.y AN, €1, Cy, Cy
St* is vector of the right-hand side of (5).

Finally (4) can be written as
m(r)=-5t"TS"IK(r),
a(r)=—kdt'TS™'K_(r),
b(r)=-k8t"TS'K _(r),
where

K" = (K (r),..., K\ (r),1,0, 0),

K. (t)" =K (r)cos2g,,..., Ky(r)cos2¢y,0,1,0},

K, (1) = {K,(r)sin29,..... Ky (r)sin20y,0,0.1).

Otherwise

m(r)=-078t, a(r)= -kPT8t, b(r)=—kRTst, (6)

where the vectors Q(r). P(r) and " R(r)
elements of the vectors S-1K(r),

Azimuth of the largest velocity

are determined by the first N
S-1K (r), and S-'K(r), respectively.
is determined from 2 and b -

Az =arctg(a/b)/ 2,

and the anisotropy coefficient defined as (Vp,y, - Viin )/Va is

K:Z‘Vaz'i'bz. '

Estimation of the resolution

The resolution can be estimated only for those
linearly to the €quation for the velocity, i.e for .
We may estimate the resolution of these functions by radii of the averaging
arcas as in the isotropic case.

For accurate data

quantities, which are involved

St=Gm+G_a+Gb. (7)

Substituting (7) into (6) we obtain

19



m(r)=-Q" (Gm+G a+Gb)=Mm+M,a+M,b,
a(r) ==PT(Gm+G,a+G,b) = Aym+ A,a+Ayb,
b(r)=-R7(Gm+G,a+G,b) = B,m+B,a-+Byb.
The notation of the type M,m is of the following meaning:
M,m = [[M,_(r,r')m(r')dr'.

In order that the solution would reflect the real distributions
in the best way, the functions M,,(r, r'), A,(r, r'), Bp(t; ) should be close to
the delta-functions, and the other kernels close to zero.

Analogously to the isotropic case we can define the functionals

s2(r) = JIE™(r,r') — e(r,r' )1 dr' +k[1ES (r, ' ) dr' +k[1ES, (r, 0 dr',

s2(r) = IE™(r,r' W dr'+k [IE% (r,r') - e(r, ' }? dr'+k[1E. (v, 0 )* dr', "
s2(r) = [IEP(r,r' )2 dr'+k[IES(r,r' W dr' +k[IED (r,r') — &(r, ) dr',

where div Y, = M?, div E% =A%, div E} =BY; the kernels M, A, B,  are
normalized:

[ M, (r,r')dr'=1,
J Ag(r,¥)dr'=1,
[ By (ryx')dr'=1,

and the integrals of other kernels are equal to zero.
From these conditions we obtain

QTtO = 1, PTtox - ], RTtOy = 1,
Q'ty, =0, PTty=0, R7t,=0,
Q'ty, =0, PTty, =0, RTty, =0.

After transformation of the functionals (8) and equating their values to those
corresponding to the kernels, which differ from zero within the circles with
‘radii R Ra. R respectively, we obtain the following formulae for
the effective radii of the averaging areas

R, =exp(3/4-QT8Q+2K’Q),
R, =exp[3/4+(-PTSP+2KTP) /],

R, =exp[3/4+(-R"SR+2K]R)/k].
20
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Ray Tomography Based on Azimuthal Anomalies

T. B. YANOVSKAYA'

Abstracs. A method of estimating the lateral velocity variations in the 2D case using the data on
deviations of wave paths from straight lines (or great circle paths in the spherical case) is proposed. The
method is designed for interpretation of azimuthal anomaiies of surface waves which contain informa-
tion on lateral variations of phase velocities supplementary to that obtained from travel-time data in
traditional surface wave tomography.

In the particular 2D case. when the starting velocity is constant {cg) and velocity perturbations
Se(x, y) are sufficiently smooth, a relationship between azimuthal anomaly da and velocity perturbations
dc(x. y) can be obtained by approximate intcgration of the ray tracing system, which l!eads to the
following functional:

[ A :
A(Vm no)dr,
v L

where m{x, y) = &c(x, y)jco, L is the length of the ray, ng is a unit vector perpendicular to the ray in the
starting model, integration “eing performed from the source to the receiver, This formula is valid for
both plane and spherical cases. Numerical testing proves that for a velocity perturbation which does not
exceed 10%, this approximation is jairly good. Lateral variations of surface wave velocities satisfy these
assumptions. Therefore this functional may be used in surface wave tomography.

For the determination of m(x, ¥) from 2 set of 3, corresponding to different wave paths, the
solution is represented as a series in basis functions, which are construcied using the criterion of
smoothness of the sohition proposed by TARANTOLA and NERSESSIAN (1984) for time-delay tomogra-
phy problems. Numerical testing demonstrates the efficiency of the tomography method.

The method is applied to the reconstruction of lateral variations of Rayleigh wave phase velocities
in the Carpathian-Baikan region. The variztions of phase velocities obtained from data on azimuthal
anomalies are found to be correlated with group-velocity variations obtained from travel-time data.

St ==

Key words: Surface waves, phase velocities. azimuthal anomalies, seismic tomography.

1. Introduction

The data which are widely used in tomographic reconstruction of lateral velocity
variations are travel times of seismic waves. This problem can be easily iinearized:
the time delay with respect to a properly chosen starting velocity model is
represented as a linear functional of the unknown velocity variations. Thus the
tomography problem is reduced to a system of linear equations. Alternative data,

Mnstitate of Physics, Sankt-Petersburg State University, Petrodvoretz, Sankt-Petersburg 198904,
Russia.
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which also depend on velocity variations and can be easily obtained from seismo-
logical observations, are polarization anomalies, which are related to anomalies of
direction of wave propagation.

Data on surface wave polarization allow the azimuth of the wave arriving at a
station to be determined. Accordingly the azimuthal anomaly, which is a deviation
of the observed azimuth from that corresponding to the great circle path, contains
information about the lateral variation of surface-wave phase velocities. Thus
it seems to be expedient to incorporate azimuth anomalies in surface wave
tomography.

Observations of surface waves indicate the existence of prominent azimuth
anomalies in some cases (LANDER, 1984; LERNER-LAM and PARK, 1989; NEs-
TEROV and YANOVSKAYA, 1988, LEVSHIN et af., 1994; LASKE er al., 1994),
However, these anomalies have so far been interpreted practically only qualita-
tively. The reason for which azimuthal anomalies are not used in tomographic
reconstruction (separately or jointly with travel-ime data) is the difficulty in
determining the linear functional, which relates velocity variations and azimuthal
anomalies similar to that for time delays. Recently Hu and MENKE (1992)
proposed a formalism for calculating the matrix for transforming model parameters
to polarization anomalies and applied it to the determination of the P-wave velocity
structure in southern California from polarization data (Hu er al., 1994). In this
approach polarization anomalies are related to model parameters rather than to
velocity variations directly, so that this approach requires the preliminary
parametrization of the velocity model. However, when a set of data is rather
poor—and this situation is customary surface wave tomography—in tomographic
studies it is more expedient to use a method which is not based on a priori
parametrization (TARANTOLA and NERSESSIAN, 1984; YANOVSKAYA and DITMAR,
1990}. However in this case the data should be expressed in the form of a linear
functional of the unknown velocity variation.

The present paper demonstrates how to simplify the relationship between
azimuth anomalies and lateral phase velocity variations in the 2D case of the
velocity in the starting model may be assumed to be constant. This case is
applicable to surface wave data. A method of inverting the azimuth anomalies to
lateral velocity variations is also proposed.

2. Approximate Relationship between Velocity Variations and Azimuthal
Anomalies for Constant Initial Velocity

We consider a 2D model, the velocity in the starting model being constant. The
surface wave velocity corresponding to a fixed period satisfies this assumption: in
fact, lateral variations of phase velocities are smail, and in the first approximation
the surface waves propagate along great circle paths, or along straight lines in the
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plane case. In general the probiem is formulated as follows:

to derive a relationship between azimuthal anomaly éx and lateral
sariation of phase velocity 8¢(X) = (X} — ¢o in linear approximation,

where x signifies the coordinates on the surface (plane or spherical).

Plane Case
It is convenient to express the ray tracing system in the form

dax
ol la
q—St ( )

dt _Sn {Vec,n)

1
% . (1%}

where t and n are unit vectors tangent and orthogonal to the ray, respectively, S is
the length of the ray, ¢ a parameter varying from 0 to0 I, so that ds = S dg, where
ds is an element of the ray length. This parameterization was introduced by JuLIAN
and GUBBINS {1977) for simple mapping from inttial ray to perturbed ray, and it
is useful in studies dealing with ray perturbation (e.g., SNIEDER and SPENCER,
1993).

Assuming Ve, =0, the system for the variations dx and 6t can be expressed as
follows

@-=t063-.-505t {2a)
dg
fi._a_t = ~S, @.C_’.m_)no_ {2b)
dq Co

The value of Véc should be taken along the ray corresponding to the model ¢(x, ¥),
i.e., at points x =X, + X, so that

Voe(x) = Véc(Xg) + (5 ::C) 5x. (3)
lo

In the case of smooth velocity variations, the last term on the rh.s. of (3) is of the
second order of smallness. Indeed, if the correlation length of the heterogeneities is
L, this term is of the order of d¢c|éx|/L?. Thus this term may be neglected if L is not
oo small, i.e., in the case of smooth velocity variations.

Substituting Vde(x) in (2b) by Vdc(x,) and integrating this equation from the
receiver to the source we obtain:

5t(g) =61, — So J‘ (Vo&,0o)

[ Co

dq’ (4
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Figure 1
Scheme of rays, unit vectors 1y, ny and azimuthal anomaly da.

where §t, is the variation of unit vector t at the receiver. Vector dt, as well as unit
vectors ty and n, are shown schematically in Figure 1.

Substituting (4) into equation (2a) and integrating again from the receiver to the
source, i.e., from ¢ =0 to ¢ =1, yields

1 " “{Vdc, n,
5x=t05$+Soj 6t,.dq—S,§J dqj. glnodq'. (5
[ o o Co
Taking into account that dx =0 at the source, and integrating along the undis-

turbed ray (ds = §, dg) we obtain

S0 ds " (Véc, n,)

40 Jo o

Sy ot = Ny ds’ —ty 85, (&)

The second term on the rh.s, of {6) should be at least of the second order of
smallness: the variation of the unit vector should be orthogonal to the vector itseif,
and in linear approximation

(5tr: r{)) :""01 51 = (5trs 1']0),

where dx is the deviation of the azimuth at the receiver (see Fig. 1). Consequently,
_ [% ((Vse,m
Sooz=f dSJ L——O)ds'. {7
o o S
The double integral in (7) can be transformed to a single integral by changing the
order of integration:
{"Sq

[‘ * i [, Fs) ds’ = f:" fisds | ds = F" (So — 5)/(s") ds”.

N o w3 +0
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Thus

s ¥ (Véc, ny)
o1 = —5) ———ds.
2 J; ($r—9) =g ds (&

Assuming the opposite direction of integration, from the source to the receiver,
we obtain

S 5 % s {8éc déc

51—J; E(V&C,m)dﬁ— 'S:;Z,(axno,ﬂ-gno,)ds. (9)
Thus the azimuthal anomaly is expressed in the form of a linear functional of the
spatial derivatives of dc(x, y).

Equation (9) shows that the azimuthal anomaly is affected by the component of
the gradient of the velocity variation orthogonal to the ray. It follows from the facts
that a constant perturbation of the velocity has no effect on the shape of the ray;
and that the shape of the ray remains unchanged if the velocity perturbation varies
only along the ray. This agrees with the conclusion drawn by Hu er a/. (1994) and
FARRA and LE BEGAT (1995) regarding the sensitivity of polarization data: they are
most sensitive to local heterogeneities, whereas travel-time anomalies are affected by
the long waelength components of velocity variations: in the former case the
velocity gradient is larger. Also equation (9) clearly supports the conclusion (HU ez
al., 1994) that the velocity perturbation in the vicinity of the receiver has a stronger
effect on the polarization anomaly than that in the vicinity of the source: the
contribution of (Véc, ny) o the azimuthal anomaly is proportional to the distance
5 from the source.

In the tomography problem it is convenient to represent the functional as an
integral over the 2D area. As is usuaily adopted in time delay tomography, we
introduce a dimensionless unknown function m(x) = dc(x}/c,. After transforming
the Cartesian coordinate system such that the origin is located at the source and the
x axis directed along the ray, (9) can be modified 10 read:

-

J(Vm,F’)dx (10)

L

do =

where F(x, y} = x6(y){H(x) — H(x = §5)}ey, o(y) is the Dirac function, and H(x)
is the Heaviside function. : '

Spherical Case

As opposed to travel times, azimuths are not invariant to transformation of a
plane to a spherical surface. Therefore, it is necessary to derive a relationship
between the azimuthal anomaly and perturbation of the velocity gradient directly
on the sphere.
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The ray tracing equations on a spherical surface of radius R are:

dxlds =t, dijds = — V&M, _Cn
¢ R
where eg is the unit vector along the radius. (Now we may differentiate with respect
to s rather than to ¢: as was shown above, the variation of ray length S has no
effect on the azimuthal anomaly.
The equations for variations of x and t read as follows:
déx . dét _ (Vée,ng) deg
ra =0t d ¢ R
The vanation of unit vector e, can be expressed approximately in terms of the
deviation of the ray from the great circle §x: e, = 6x/R. In the plane case system
(11) thus differs from system (2a,b) by the additional term —é&x/R? in the second
equation. This term may be neglected if it is of the same order as other terms being
negiected.
In the plane case we assume that Véc(x) = Vdc(X,), neglecting the term

eq! AR x, m
o BX Jyex » My |

in equation (2b). If the correlation iength of heterogeneities is L, it is easy to see
that this term is of the order of (Jc|éx|)/c, L2 The additional term in the second
equation (11) would be of the same order if dc/c, ~ L3/R2 This means that if the
dimension of heterogeneities is not too large, this term may also be neglected. Thus
the approximate relationship between the azimuth anomaly and gradient of velocity
variation should be the same as in the plane case (formula (9).

(11

3. Numerical Testing

The validity of eq. (9) was tested numerically. Obviously the larger the second
derivatives of the velocity variations, the larger the errors due 1o the neglect of the
second term on the r.h.s. of (3). For the velocity model shown in Figure 2a, the rays
shown schematically (as straight lines) in Figure 2b have been calculated by
integrating the ray tracing system. The calculated rays allow ‘exact’ azimuth
anomalies 0 be determined. The azimuthal anomalies were then calculated using
eq. (9). The exact and approximate azimuthal anomalies are shown in Figure 3. The
errors due to the adopted approximation are not too large and, therefore, the
approximate formula for calculating the azimuthal anomalies is acceptable for
models with smooth velocity variations as in the case considered.

Numerical testing performed for many different velocity models confirms this
conclusion.
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13

Figure 2
Velocity model (22) and pattern of rays {2b) used for testing the validity of the approximate formula for
azimuth anomalies. The rays are numbered from | to 17 for cach set of rays.

4. A Method for Azimuthal Tomography on a Plane

Once the azimuthal anomaly is represented in the form of a linear functional,
the traditional approaches developed in time-delay tomography may be used for
reconstructing the velocity variations from azimuthal anomalies. However, this

da, degrees

—-10-

Figure 3
Exact (solid lines) and approximate (dashed lines) azimuth anomalies for the rays shown in Figure 2b.
The numbers of the rays are shown along the x axis, Curves | and 2 correspond to the sets of rays from
sources in the left and in the right comners, respectively.
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problem (later referred to as ‘azimuthal tomography’) has specific features con-
nected with the data being related to the velocity gradient rather than to the
velocity itseif. Therefore, some standard methods, such as discretization of the
model, are invalid in solving this problem. It is clear that the unknown model
should be sufficiently smooth in order to eliminate large values and jumps of the
gradient.

A general approach for solving the tomography problem is to represent the
unknown function as a set in some basis functions ¥, (x):

m(x) =}, 4y, (x) (12)

and thereby to reduce the problem to a linear system in the unknown coefficients 4,.
Obviously, a key point in such an approach is the suitable choice of the basis
functions. The best way is to construct the basis functions using some reasonable a
priori assumptions concerning the unknown function, as proposed by TARANTOLA
and NERSESSIAN (1984), or YANOVSKAYA and DITMAR (1990), because in this case
the basis functions would be in agreement with the data set. As mentioned above,
in azzmuthal tomography it is necessary Lo assume the function to be sufficiently
smooth.

The smoothness criterion proposed by TARANTOLA and NERSESSIAN (1984)
ensures the smoothness of function m(x) as well as of all its denivatives, as was
shown by YaNovskAYa and DITMAR (1990). Therefore this criterion is suitable for
the probiem of azimuthal tomography, and this is the reason why it was chosen in
the present study.

For exact data this criterion is reduced to the minimization of the functional

JTm(x)C“(x, x)m(x) dx dx’ (13)

where C(x. x') 15 an a priori covariance function of the model.

To determine a solution satisfying the minimization of (13) under constraints
(10) it is convenient o represent (10) as a functional of m(x) rather than of its
gradient. This can be done by applying Green's formula:

~

(Vm, F)dx=J.

[og

mF,dIaJ m div F dx
€ z

ol

where Cy is the contour of area I, and F, is the component of F normal to the
contour, If ail the rays are inside Z, then, according to the definidon of F, F, =0
along the contour, and consequently,

~

J (Vm, F)dx = — [ m{x) div F(x) dx. (14)

vi
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Figure 4
Example of the basis function (18) for the ray represented by the bold line.

Now the problem has been formulated as the minimization of (13) under con-
straints

J m(x) div F,(x) dx = =dz,, (15)
z

where { =1,2,..., N, and ¥ is the number of observations.
Analogously to TARANTOLA and NERSESSIAN (1984) it may be shown that the
solution of this problem is:

Clx, x7} div F,(x) &x’ (16}
9

N
m(x) = Z Ay

fel o

and consequently, the basis functions are as follows:
09 = | Clux) divF, ) . (a7
b2

If the a priori covariance function of the model is assumed in the form

. x - x|

C(x,x") =d-expl — L——-—.,—

(x,x) =¢"¢ p( oTE )

where L is the correlation length, the basis functions (17) may then be expressed in
coordinates x, v connected with the ray, as indicated above, in explicit form up to



Louoviay

R R b )

10

Fage i

T. B. Yanovskaya

»

‘P " \\
34 Y
R RONRA N

"&°\ B W %N
A \\\.“,""‘ X
A4S '{.“\‘:_\"“"/;_

o

Figure 3

PAGEOPH,

Solution of the tomography problem——model cxample, plane case. a—pattern of rays, b—velocity

model. c—solution.
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a constant factor a%:

r Sop = . So — X)2
o(x, y) = { \/ % (Sps ~ x}[erf( z\/{) - erf(LLE):l - LI:eXp(_ (_oﬁz_‘)_>

RN I
""p(" 2L’ﬂ}LSo.exp( 2L} 8

The behavior of the basis function is shown in Figure 4.
Inserting (12) into {10) we obtain a linear system of equations for the vector A
of the unknown coefficients 4,;

AA = da
where dx is the vector of data d=,, and

=JAS° aﬂb!-(-‘,Y)_f__ds (19)

i .
0 dny, o

If the data are inaccurate, and the statistical properties of the data errors are
described by covariance matrix R, the solution should be determined by minimizing
functional

J[m(x)C' i(x, xIm(x) dx dx’

- dz, ~ | mdivF, dx |R;'| 6a, + | mdivF dx |, (20)
L 7 I

M
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where R:' are elements of matrix R™1. Ii is easy to see that coefficients i, are
determined from the system

(A+RjeDA = da,

where A is defined by {19). If the data are independent and have one and the same
standard error a4, this equation becomes:

(A +yDA = da, 21

where [ is the unit matrix, and y = ¢}/o* may be regarded as the regularization
parameter.

Figure 5 demonstrates the reconstruction of the model velocity distribution
using the above technique. The azimuthal anomalies have been calculated by
integrating the ray tracing system along the rays drawn schematically in Figure 5a
for the velocity mode! shown in Figure Sb.

Calculations for different values of correlation length L have shown that the
optimal value is that corresponding to the mean distance between paths, which is
estimated as \/3'7;‘\7 where § is the area covered by the paths, and .V is the number
of paths. For larger L the solution is too smooth, and for smaller L it becomes
concentrated in the narrow vicinity of the paths. In this example L was taken to be
equal to 12,

The agreement of the result of the inversion (Fig. 5¢) with the initial model
seems to be siriking, if we take into account that the tomographic solution is based
on the approximate relationship between the azimuthal anomaly and velocity
variation.

The errors in azimuths due to approximation are shown in Figure 6 for the rays
in Figure 3a. Though they are large enough (about 5-10%), they do not display
any systematic behavier. Perhaps this is the reason why the tomographic recon-
struction is so similar to the initial model: the errors due to the use of an
approximate formula may be regarded as random errors of observations, which are
suppressed when a large body of data is used.

5. Azimuthal Tomography on a Spherical Surface

Since the relationship between the azimuthal anomaly and velocity gradient in
a spherical case 1s identical to a plane case, the tomography technique is analogous
to that described in the previous section. A solution is represented as a set in basis
funetions (12}, which corresponds to the smoothness criterion (13). However, in the
spherical case it is impossible to represent the basis function in terms of elementary
functions: it can only be expressed in the form of a double integral, which is
inconvenient for numerical computation, the more so, as an additional numerical
integration is required to calculate matrix A. Although in principle, a solution may
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model, c—soiution for the case when 4 sources are placed in the comners of the area, d—solution for
the case when sources and receivers are exchanged.
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be constructed as a set in any basis functions. Therefore, for simplicity we may take
basis functions { 18), assuming x and y to be the distance along the ray and distance
along the great circle orthogonal in the ray. Such basis functions differ insignifi-
cantly from those obtained from the criterion (13). Of course a solution expanded
in such basis functions does not strictly minimize {13) or (20), but it should be
adequate to the data set, which is not the case if some arbitrary basis functions, e.g.,
spherical functions, are assumed.

Figure 7 shows a numerical example of the velocity reconstruction in the
spherical case when basis functions (18) were used. This figure also demonstrates
the sensitivity of azimuthal anomalies to the location of velocity heterogeneities. As
was mentioned in Section 2, the azimuthal anomalies are more sensitive to local
heterogeneities in the vicinity of receivers rather than to those near sources. Figure
7¢ shows the tomographic reconstruction of the velocity when the sources are
located in the corners of the area, where the velocity varies smoothly and the
receivers are located near strong velocity perturbations. In this case the solution
reflects the peculiarities of the model (Fig. 7b) well enough. However, if the
receivers and sources are exchanged, the sensitivity of the data to the local
heterogeneities drops, and the resuit of the tomographic inversion becomes much
less satisfactory (Fig. 7d).

6. Laterial Variations of Rayleigh Wave Phase Velocities in the Carpathian-Balkan
Region from Azimuth Anomalies

Unfortunately, a sufficient amount of reliable data on azimuthal anomalies of
surface waves applicable to tomographic inversion is not available. Therefore, we
must restrict the study to an example of applying the above technique to data which
are not sufficiently accurate, over paths which do not cover the area under
investigation densely. Such data on azimuthal anomalies of Rayleigh waves for
periods of 10-25s in the Carpathian-Balkan region have been obtained by NEs-
TEROV and YANOVSKAYA (1988) using spectral polarization analysis. The wave
paths for which the polarization data are available are shown in Figure 8. The rays
are drawn schematically as circular arcs with the observed azimuthal anomalies at
the stations.

The technique described above is employed to reconstruct the lateral phase
velocity variations for periods T =105 and T =25,

The solution 1s determined in the central part of the region, covered most
densely by wave paths (it is contoured by the dashed line in Fig. 8). Since the data
on azimuthal anomalies yield only velocity variations, the mean velocities have been
assumed a priori: 3 km/s and 3.3 km/s for T = 10's and 25 s, respectively. Correla-
tion length Z is taken to be equal to 300 km according to considerations described
in Section 4, though the result differs insignificantly from those of L =200 km and
L =300 km.
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Pattern of Rayleigh wave paths for which azimuth anomalies have been determined from the polariza-

tion analysis by NESTEROV and YANOVSKAYa (1988). The paths arc shown schemarically as circular

arcs with the observed azimuthal anomalies at the stations. The dashed line contours the area where the
soiution has been calculated.

The solution is affected more sirongly by regularization parameter ; (see eq.
(21)), which depends on the standard error of the data. Since this error was not
known, and it is presumed 1o be large enough, parameter y was chosen arbitrarily,
such that the lateral velocity variations in the solution would be realistic, i.e., not
exceedingly large, which could occur if the regularization parameter were taken 100
small. Therefore, the solution should be regarded only as an approximation ic the
real velocity distribution, and only locations of low and high velocity zones may be
obtained with confidence from these data.

Since the regularization parameter was assumed to be large enough, a strong
reduction of the data variance could not be expected. Indeed, the square root of the
variance was reduced from 15.4° to 8.3° for T=10s and from 13.1° to 7.7° for
T=125s%.
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Lateral phase velocity distribution obtained from azimuth anomalies {a) and group-velocity distribution
obtained from group-velocity data (b) for period 7 =10s.
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The same as Figure 9 for period T =25s.
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The phase velocity distributions are shown in Figures 9a and 10a. Unfortu-
nately, we have no data pertaining to the phase velocities in the region, therefore
the results could not be compared with these quantities. The only data available for
the area are group-velocity distributions obtained from travel-time tomography.
Certainly, a strict correlation between group and phase velocities should not be
expected, though surface wave studies reveal a correlation between group velocities
and the velocity structure similar to that for phase velocities. In particular, in areas
with a thick sedimentary layer we observe low group velocities (and also low phase
velocities), and if the sedimentary layer vanishes, both group and phase velocities
are high.

Group-velocity distributions for the same periods within the same area are
delineated in Figures 9b and [0b (NESTEROV and YANOVSKAYA, 1991
YANOVSKAYA, 1993). A striking similarity between the phase and group velocities
is observed: the low and high velocity zones are located in the same places, with
even their shapes similar. However, to capably draw conclusions on the reality of
the phase velocity solution from azimuthal data, it is necessary to compare it with
the phase—rather than the group-velecity distribution.

Conclusions

An approximate relationship between the lateral velocity variations and azimuth
anomaly has been obtained for the case of constant velocity in the starting model.
In spite of noticeable errors due 1o the approximation, this relationship may be used
for solving tomography probiems, because the errors do not dispiay any systematic
wrend and, consequently, may be included among observation errors. This is
confirmed by numerical examples.

It is evident that more reliable and detailed results may be obtained by the joint
inversion of azimuth anomalies and the data on phase velocities, since they contain
different information on the phase-velocity distributon.

The main problem in azimuthal tomography is the determination of azimuthal
anomalies from observations: the superposition of Rayleigh and Love waves, as
well as multipathing, lead to large errors in azimuths.
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