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New Constraints on Deep Earth Structure from Generalized Spectral Fitting:

Application to Free Oscillations below 3 mHz

Abstract

We present the results of generalized spectral fitting (GSF) regressions which esti-
mate normal mode interaction coefficients for the observable spheriodal and toroidal
free oscillation multiplets below 3 mHz. This i8 a set of more than 3000 coefficients
for 90 multiplets and 15 coupled pairs, including several deep mantle overtones previ-
ously obscured by fundamentals. The coefficients constrain mantle structures of both
even and odd spherical harmonic degrees, through degree 12. These new and refined
constraints complement existing body and surface wave data sets.

We describe the development of GSF, an adaptation of the established spectral
fitting technique which incorporates both Coriolis and structural coupling between
multiplets. Estimates of coupling coefficients yield new normal mode constraints for
both even and odd-degree structures. GSF improves the accuracy of estimates for
nearly degenerate overtone multiplets and for pairs of spheroidal and toroidal funda-
mentals coupled by the Coriolis force. These enhancements permit the extension of
analyses to new multiplets and stuctural degrees not previously estimated.

Several guidelines for the application of GSF are established. The most important
of these is the use of an edited, high signal-to-noise data set of more than 4500 records
from 37 high-moment events. We demonstrate that the use of geographically diverse
data can produce order-of magnitude improvements in matrix stability and coefficient
standard deviation.

Coefficient estimates are assessed both quantitatively and qualitatively. Both inter-
nal and external consistency of the coefficients are inspected. The improved fits to data
gpectra are tabulated, using measures of misfits to high signal-to-noise records. Uncer-
tainties are assigned through the application of & Monte-Carlo method which simulates
both additive (random) noise and multiplicative (signal generated) noise. The latter

represents the impacts of unspecified structures and other theoretical errors.



short title: Generalized Spectral Fitting below 3 mHz
key words: interaction coefficients, multiplet coupling

1 Introduction

The dramatic increase in the quantity, quality, and distribution of broadband seismo-
graphic stations, and the occurrence of several very strong earthquakes in the 1990’s, have
provided thousands of new high signal-to-noise broadband seismograms. These data provide
the opportunity for much more detailed analyses of the Earth’s free-oscillation spectrum
than have been attempted to date. Furthermore, comparisons of recent three-dimensional
global models reveal significant ambiguities which emphasize the need for additional normal
mode constraints on aspherical structure. Such constraints can be used to assess the models
and address persistent questions about correlations and scalings between variations in v,
vp, p, and topography on internal boundaries [e.g., Ritzwoller and Lavely, 1995]. With these
motivations, we have made our goal the establishment of a new, higher quality, and greatly
expanded database of normal mode interaction coefficients, the observations of normal mode

spectra that serve to constrain three-dimensional Earth structure.

This paper presents the first major steps in that program:

e The development of Generalized Spectral Fitting (GSF), an enhancement of the es-
tablished Spectral Fitting (SF) technique [Ritzwoller, et al., 1986, 1988; Giardini et
al., 1987, 1988; Li et al,, 1991; Widmer, et al., 1992a,b; Tromp and Zanzerkia, 1995;
He and Tromp, 1996}, which incorporates inter-multiplet coupling through aspherical

structure and the Coriolis force and a Monte-Carlo error analysis;

e The assembly of an expanded data set of ~ 4500 edited broadband seismograms from

37 strong earthquakes;

e The application of GSF to these data to obtain estimates of more than 3000 new normal
mode interaction coefficients from 90 different multiplets with frequencies below 3mHz

(Figure 1).

Most of these multiplets sample heretofore poorly constrained structures in the transition

zone and lower mantle. Thus, the new coefficient estimates provide an important complement



to existing body and surface wave data. Furthermore, they establish the utility of GSF, which

will be employed in future analyses of the normal mode spectrum above 3mHz.

Individual free oscillations, or normal mode singlets, are clustered into spectral multiplets
of modes with similar wavelengths and nearly degenerate frequencies. It is these usually
unresolved multiplet peaks that characterize typical normal mode spectra, such as that
shown in Figure 2a. The first investigations of long period normal modes measured the center
frequencies and attenuations of fundamental mode multiplet peaks. Treated as degenerate
complex frequencies, these were used in constructing spherically symmetric Earth models
such as 1066A (Gilbert and Dziewonski, 1975), PREM (Dziewonski and Anderson, 1981),
and the Q models of Widmer et al., 1991. The differences between observed multiplet
center frequencies and values predicted by spherical models could then be interpreted as the
signature of aspherical structure with several asymptotic approximations [e.g., Jordan, 1978;
Dahlen, 1979] and were used to constrain three-dimensional mantle models [e.g. Silver and
Jordan, 1981; Masters et al., 1982; Davis, 1985, 1987; Masters and Ritzwoller, 1987]. An
approximate description of the Coriolis coupling between fundamental spheroidal (Raleigh-
type) and toroidal (Love-type) multiplets was used to correct and re-interpret the center
frequency measurements [Masters et al., 1983; Smith and Masters, 1989a,b], but further
refinements require a more complete and accurate description of the interaction of normal

mode singlets and multiplets.

Broadband digital seismic data became readily available in the late 1970’s and early
1980's with the deployment of the GDSN and IDA networks. To take advantage of these
data, the techniques of singlet stripping [Ritzwoller ef al., 1986; Widmer, et al., 1992a] and
Spectral Fitting (SF) [Giardini et al., 1987, 1988; Ritzwoller et al., 1986, 1988; Li et al.,
1991] were developed. These were used to observe the spreading, or splitting, of singlet
frequencies that was expected to be the dominant effect of aspherical Earth structure on
isolated fundamental and overtone multiplets. The observations were reported as interac-
tion coefficients (also called splitting function coefficients or structure coefficients), which
are nonlinearly related to the observed multiplet spectra, but are linear functionals of Earth
structure. These coefficients became new constraints on Earth structure at spherical har-
monic degrees s = 2 and s = 4, and were emploved in the construction of three-dimensional
mantle models such as SH.10¢.17 [Masters et al., 1992} and S16B30 [Masters et al., 1996].

The utility of interaction coefficient estimates from SF was limited by the relatively small



number of multiplets analyzed, by the isolated multiplet approximation which de-emphasized
the importance of amplitude perturbations in normal mode spectra and confined the modal
constraints to even-degree structures, and by the aliasing of the signals of higher structural

degrees into the degree 2 and 4 coefficient estimates.

More accurate and detailed analyses of the normal mode spectrum require data sets of
a size and quality that have only recently become available. For this reason, most recent
aspherical Earth models, including $12.-WM13 [Su, et al.,,, 1994], MK12.WM13 [Su and
Dziewonski, 1996}, and SAW12D [Li and Romanowicz, 1996], have been constrained to fit
only body and surface wave data, which are complements to normal mode observations.
Even models that incorporate normal mode constraints, such as S16B30, use interaction
coefficients that are, for the most part, almost a decade old. It is not surprising, therefore,
that correlations between various models, exemplified by Figure 3, are poorest at depths best
sampled by normal modes. Additionally, as illustrated in Figure 2, seismic spectra below 3
mHz are not as well fit by model predictions as might be expected. There is a clear need for
an improved set of normal mode interaction coefficients for this spectral regime, which can

be used:

e to assess existing models of v, and v, structures in the mantle (e.g., Ritzwoller and

Lavely, 1995});

e in new inversions for 3-D models, which may be constrained to be geodynamically

consistent [e.g., Ritzwoller and Wahr, 1994];

e to explore the possibility of using normal mode constraints to obtain independent

models of aspherical density structures [e.g., Ritzwoller and Wahr, 1995].

The generalization of Spectral Fitting and the newly estimated interaction coefficients
presented in this study, therefore, represent a necessary step forward in the evolution of the
estimation and application of normal mode constraints on the structure of the deep Earth.
The GSF technique enables us to extract much more information from normal mode spectra,
in the form of new interation coefficient estimates, than had been possible with traditional
SF methods. GSF also allows us to refine earlier interaction coefficient estimates which had

been biased by structural signals unspecified in earlier regressions.
The most significant innovation of GSF is the incorporation of coupling between the
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modes of different multiplets. This inter-multiplet or cross-coupling, as opposed to the self-
coupling interactions of modes within an isolated multiplet, permits much more accurate
interpretations of spectral amplitudes. It is also the only means by which interaction coeffi-
cients sensitive to odd-degree Earth structures may be estimated. These considerations were
discussed in Resovsky and Ritzwoller [1995a], which introduced the inclusion of multiplet
cross-coupling in Spectral Fitting techniques, and presented the first estimates of normal

mode constraints on odd-degree structures.

The incorporation of cross-coupling also leads to improved estimates of interaction coeffi-
cients for fundamental modes coupled by the Coriolis force [Resovsky and Ritzwoller, 1995b).
These estimates, in turn, can be used to construct the synthetic spectra needed to reduce
the strong spectral signals of fundamental modes that interfere with the analysis of the more
weakly excited overtones. GSF coefficient estimates are better at this than model predic-
tions. Additionally, the reduction of the bias in self-coupled interaction coefficient estimates
by multiplet interference and by previously unestimated cross-coupling allows us to report
estimates for coefficients through spherical harmonic degree 12. The rationale for such an

extension of the estimates beyond degree 4 was discussed by Ritzwoller and Resovsky [1995].

In addition to presenting the normal mode interaction coefficients that result from GSF,
this paper provides qualitative and quantitative assessments of the estimated coefficients
(Section 6). We employ standard statistical tools as well as inspection of the consistency
of the estimated coefficients and comparisons of the estimates to model predictions. In the
error analysis of Section 7, we demonstrate the augmentation of standard statistical mea-
sures of uncertainty with a Monte Carlo method for the estimation of biases. This method
incorporates readily observable properties of the data and the GSF residuals in an attempt
to circumvent the problem of incomplete knowledge of the error sources. In particular, we
argue that the coeflicient bias caused by unmodeled structures and methodological errors can
be synthesized using statistical properties of misfits to the high signal-to-noise spectra from
recent large events. This procedure is combined with an appropriate additive random noise
model to yield suites of synthetic data used to characterize uncertainties in the estimated

coeflicients.

Section 2 defines the terminology and methodology of GSF regressions for normal mode

interaction coefficient estimates. Section 3 describes the assembly and processing of the



broadband data set used for our free oscillation studies. Section 4 discusses the technical
challenges addressed in obtaining the new interaction coefficients. Particular attention is
given to the nature of covariances in the regressions, and the necessity of employing data
with a diverse distribution of seismic sources. Regression inputs, coefficient estimates, and
data misfits are discussed in Section 5. Section 6 provides assessments of the estimated
coefficients, including examinations of the internal consistency of the results and comparisons
with model predictions. Section 7 provides the error analysis for the GSF estimates, including

a description of the Monte Carlo technique employed in assigning uncertainties.

2 Methodology
2.1 The normal mode interaction matrix

Starting from a spherically symmetric, isotropic, anelastic Earth model, designated by
my(r) = [ko(r), o(r), po(r)], an aspherical isotropic elastic Earth model is described by
m(r)=my(r) + dm(r, 9, ), and by a set of two-dimensional perturbations, h4(8, ¢}, to the
radii of discontinuities (ry) in the structural parameters. The perturbations to the spherical
model may be represented as sums of spherical harmonic components:

Sm(r) = 3 [6k(r), Opz(r), 605 (1Y (6, ¢) and ha(6, 6) = 3 hi,Y[(6,9), (1)

a,t
where s (> 0)and ¢t (|| < s) index, respectively, the angular and azimuthal orders of the

complex spherical harmonics, Y(6, #), which are normalized according to the convention of

Edmonds [1960].

Free oscillation multiplets of the spherical model are identified by the radial and angular
orders, {n,l} = k, of their eigenfunctions, and comprise 2/ + 1 degenerate singlet modes,
referred to by azimuthal index m. Assuming that aspherical perturbations to Earth struc-
ture are relatively small, the singlets of a rotating aspherical Earth model have frequencies
near to the degenerate frequencies of the corresponding spherical Earth multiplets, and their
eigenfunctions are linear combinations of those of the spherical earth modeé. The expan-
sion coeflicients of these linear combinations are the components of the eigenvectors of an
interaction matrix, Z, with elements:

mm’ _ T i
Tln"ril’ - Cnn"lau'émm’ +Z Pu"g Cs(nnfuf) . (2)

a,t



Modal frequencies are determined by the eigenvalues of this matrix.

The C term of equation (2) includes the effects of multiplet spacing and of the Earth’s
rotation and ellipticity, while the I factors are analytic functions that result from the geom-
etry of the spherical harmonic basis functions. These factors multiply interaction coefficients

of the form,
TE
Ci(u—,f) = /0 dm(r) - M,y (r) ridr + Zh:std(kk’)Tg ; (3)
4

with structural kernels, Mery (r) =K, (1), M,(r), R, (7))kky, and boundary factors, Biagiy =
(K4, Mg, R,a)(kw), that are known functions of the radial eigenfunctions of the modes. The
interaction coefficients are linear functionals of aspherical structure which summarize the
impact of structural perturbations on the modes. (Since they represent the “interaction” be-
tween two coupled modes we refer to them by the name “interaction coefficient” rather than
the more common “structure coefficient” or “splitting function coefficient”.) This theory is

presented in full in Woodhouse and Dahlen [1978] and Woodhouse [1980].

Each element of Z describes the interaction of a pair of normal modes through aspher-
ical structure. The spectral impacts of these interactions, or couplings, vary inversely with
the frequency difference between the singlets. Normal mode spectra, therefore, are often
approximated using truncated interaction matrices, in which it is assumed that only k = k'
terms in equations (2) and (3) are non-zero. This is the multiplet self-coupling approxima-
tion employed in most normal mode studies. More accurate synthetic formalisms employ
interaction matrices in which both self-coupling and multiplet cross-coupling (k # k') terms
are computed for sets of two or more multiplets [e.g., Park, 1986; Park and Gilbert, 1986;
Resovsky and Ritzwoller, 1994]. Matrices are truncated only by assuming that these sub-
sets of simultaneously self- and cross-coupled multiplets are isolated from one another in
frequency. Synthetic experiments inform the choice of coupling scheme employed for the

analysis of each spectral window.,

Geometric selection rules included in the I" factors of equation (2}, determine which as-
pherical structures can affect each form of modal coupling. For each pair (k, &') of multiplets
the structural degrees that can contribute to coupling are confined to | [ — I’ |Ks< (I+1).
Additionally, for multiplet self-coupling, I' = 0 when s is odd, and the interaction coeffi-
cients depend upon only even-degree structures up to s = 21. The use of the self-coupling

approximation has confined most normal mode studies to date to estimate constraints only



on even degrees of aspherical Earth structure.

For cross-coupling of spheroidal modes, k # k' and I' = 0 for (Il +1! +s) odd. In the
case of the cross-coupling of spheroidal-toroidal muitiplet pairs, I' = 0 for (I + ' + s) even.
For example, nonzero interaction coefficients of the overtone pair ;S5 — 25, exist only for
s =1,3,57,9, and those for 454—1T5 are at s = 5,7,9. Interaction coefficient estimates
for these types of cross-coupling, which have been made only after the introduction of GSF
[Resovsky and Ritzwoller, 1995a], constitute the only normal mode constraints on odd-degree
structures. Cross-coupled interaction coefficients can also constrain even-degree structures.
For example, coupling coefficients of the multiplet pair 0511 —2.57 are nonzero only for even
harmonic degrees s = 4 through s = 18, and those for o112 — 257 exist only at even degrees
s = 6 through s = 18. Finally, it should be noted that in the 1.5 to 3.0 mHz range, the
cross-coupling of fundamental multiplet pairs of the form 0S1—0T {141y is dominantly produced

by the Coriolis force.

Using the interaction matrix to describe the modes of an aspherical Earth model, a

synthetic seismogram for a receiver at position rg is given by equation:
s(tp,t) =R -8, (4)

where, as in Woodhouse and Girnius {1982}, R is a receiver vector combining instrument
response information with modal displacement eigenfunctions at the receiver, while S is a

product of the moment and strain tensors at the source location.

2.2 Regressions for interaction coefficients

In SF, as described by Ritzwoller et al. [1986,1988], Giardini ef ol. {1987,1988|, and Li
et al. [1991], and in GSF, interaction coefficients are estimated by linearizing their effect

on the data. The spectral residual of record j, produced by estimates of the coefficients

{n-1)

~(wi), for each discrete frequency (index

after n — 1 iterations, is Asy” (w;) = s¥**(w;) —s
i) in the band around the targeted group of multiplets. For SF or GSF, gaps and edits of
the data timeseries are inclided in the synthetic timeseries before data and synthetics are

transformed and compared in the frequency domain.

The interaction coefficients of the next iteration are given by ci((:L,) = i((',:;,l)) + Jci((',:i,),



where the perturbations are estimated using the first-order approximation:

Jsj{w

k k#£k st acs(k !

(n}) 33(&4) {n}
P zz[ }4@+zzz[fﬂs@. ®)

The right side of equation (5) is separated into sums over perturbations to the self-coupled
and cross-coupled interaction coefficients of the targeted multiplets. The interaction coeffi-
cients for self-coupling are referred to with a single multipet index, k. For GSF, the partial
derivatives of equation (5) are approximated with finite differences. This first-order approx-
imation which incorporates cross-coupling contrasts with the second-order approximation of

He and Tromp [1996], which ignores the first-order effects of cross-coupling.

Equation (5) is equivalent to a matrix equation of the form As™ = A®.§¢™ | The resid-
ual vector, As(™, has an element for each frequency of each spectrum, and the perturbation
vector, :5c("), has an element for each self-coupled or cross-coupled interaction coefficient.
A™ ig the matrix of partial derivatives. In practice, the regressions employ a weight, w;, for
each spectrum, as described in Section 4.5. These row weights become the nonzero elements
of a diagonal matrix, W, that modifies the matrix equation. With iteration indices now

dropped, equation (5) becomes:
W.-As=W- A éc. (6)

W - A is referred to as the regression matrix. For each iteration of GSF, the singular-value
decomposition (SVD) of the regression matrix is used to find the perturbation estimates

according to:
fe=V-A1.U".W.As. (7

W - A is decomposed by the rectangular matrix U, the square matrix V, and the diagonal
matrix of singular values, A = dp;A;. The stability of the algorithm is enhanced by nor-
malizing the square of the Euclidean norm of each column of W - A/ [Lawson and Hanson,
1974]. Additionally, such regressions are often damped by ranking and tapering the set of
singular values [e.g., Gilbert, 1971]. Our applications of GSF to date have required only
the truncation of the columns of V corresponding to a few small singular values. With ap-
propriate input data, variable specification, and weighting, these perturbations dct™ yield a
convergent series of iterative improvements to the coefficient estimates which satisfies certain
standards of improved data fit, low variance, and low covariance. These considerations are

discussed further in Section 4.



Successful GSF regressions provide sets of interaction coefficient estimates for each tar-
geted self-coupled multiplet and cross-coupled multiplet pair. These coefficients may be

displayed in map format using generalized splitting functions:
Frw(0,9) = Zci(lck’)}?(‘g’ ). (8)
st

This is a simple generalization of the self-coupling splitting functions defined by Giardini
et al. [1987]. These functions, which have units of frequency (uHz), are the normal mode
analogue of surface wave phase and group velocity maps, and display the structure of the
earth under each point, averaged by the depth sensitivity kernels of the multiplets in question.

Figure 12 displays a number of estimated splitting functions.

2.3 Capabilities of GSF

In SF, only the first term on the right of equation (5) is employed in constructing the
regressions, so that only the self-coupled (k' = k) interaction coefficients of equations (2)
and (3) are estimated. This approximation yields constraints on only even-degree aspherical
structures. When cross-coupling appreciably impacts spectra, the self-coupling approxima-
tion results in significantly biased estimates of self-coupled interaction coefficients. This
has been demonstrated for both closely spaced overtone multiplets [Ritzwoller et al., 1988;
Resovsky and Ritzwoller, 1995a], and Coriolis-coupled fundamentals [Ritzwoller et al., 1988].
Figure 4 shows how neglecting Coriolis coupling in the GSF regression produces biased inter-
action coefficient estimates for two pairs of coupled spheroidal and toroidal modes. Strong
biases occur not only in the degenerate frequency, @, and zonal interaction coefficients, but

extend to all coefficients since GSF fits amplitudes as well as phases.

In contrast, in GSF all forms of multipiet coupling may be included for two or more
multiplets, and the interaction coefficients for the self-coupling and cross-coupling of all the
specified multiplets may be estimated simultaneously. The cross-coupled coeflicients posses
unique depth dependencies at both even and odd degrees since the integral kernels for a cross-
coupling multiplet pair are hybrids of those for the self-coupling of the individual multiplets

in the pair. Figure 12 shows several examples of coupling kernels.

GSF explicitly incorporates the contribution of the Coriolis force in spheroidal-toroidal

multiplet coupling. This has permitted us to refine interaction coefficient estimates for the
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fundamental mode multiplets between 1.5 and 3 mHz [Resovsky and Ritzwoller, 1995b].
These multiplets are well excited and overlap most overtone multiplets within the 1.5-3
mHz spectral band. Accurate estimates of interaction coefficients for the overtones can be
obtained only if most of the signal of the fundamental modes can be removed using accurate
synthetics. GSF estimates for the fundamentals fit the data considerably better than do
model predictions (Figure 2), and successfully produce synthetics that reduce fundamental
mode interference on overtones. These synthetics are used to retrieve the first interaction
coefficient estimates for several overtone multiplets, and for extending and refining coefficient

estimates for other sets of overtones,

Biases in interaction coefficient estimates due to unmodeled structures tend to be greatest
for the highest degrees estimated, as demonstrated in Table 2. GSF significantly reduces
biases formerly produced by cross-coupling and by the interference of strong fundamentals
in overtone estimates. With adequate data, therefore, it is possible to use GSF to estimate
interaction coefficients for degrees above s = 4 with biases at or below the level associated
with earlier estimates for degrees 2 and 4. Additionally, estimates of the higher degree
coefficients further reduce the level of bias present in degree 2 and 4 estimates. The bias
likely to remain in GSF estimates is discussed in Section 7. Section 4 addresses issues of
matrix stability and covariance associated with the large regressions required for estimates

of s > 4 interaction coeflficients.

Other capabilities of GSF, which will be described and exploited in future submissions,
include the simultaneous estimation of interaction coefficients and corrections to source pa-

rameters, and the estimation of the interaction coefficients for aspherical anelastic structure.

3 An edited broadband data set

A primary motivation for the development of generalized spectral fitting has been the
need to reduce biases that can result from modal coupling and unspecified structures. In
particular, biases produced by previously unconstrained structures are lowered by estimating
new coeflicients corresponding to those structures. For this reason, it is often desirable to
perform GSF regressions for 250 to 300 coefficients simultaneously. This represents an order
of magnitude increase in the number of variables in each regression, compared to spectral

fitting regressions of a decade ago [e.g., Ritzwoller et al., 1988]. The data set employed,
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therefore, must be significantly improved in both quantity and quality.

The recent deployment of many new broadband instruments and the occurrence of dozens
of strong events in the late 1980’s and early 1990’s, displayed in Figure 5 and Table 1, have
created a sizeable raw data set. However, as demonstrated in Figure 6, many recordings
become useful only after careful hand editing which removes clipped data, calibration pulses,
glitches, large aftershocks, and extraneous events. Strong tidal signals must also be removed,
to prevent their spectral sidelobes from contaminating the targeted frequency band. Another
concern is that the fitting of normal mode multiplets is slowed, and not particularly enhanced,
by the inclusion of low signal-to-noise recordings. For computational efficiency, therefore,
it is advantageous to inspect the available spectra for each multiplet group and select for

analysis only those with relatively high signal-to-noise ratios (SNR).

To address these needs, a total of nearly 4500 long-period or broad-band recordings
for 37 major events have been assembled, edited, and detided, with between 50 and 300
seismograms associated with each event. These data, summarized by Table 1, come from
the IDA, IRIS-GSN, and GEOSCOPE databases. All gaps in the timeseries, both those
of the original data and those produced by edits, are recorded for use in GSF regressions.
From the spectra of this data set, high SNR subsets of between 50 to 2000 records have been
selected for each separate group of multiplets analyzed. Table 3a describes the nature of the
data subset used in each GSF regression. Note that at least two, and usually more than a
dozen events provide data for each regression. As discussed in Section 4.1, such diversity of

sources proves essential in achieving reliable estimates for large variable sets.

4 Guidelines for Proscribing and Performing GSF Regressions

The goal of GSF applied to the free-oscillation spectrum below 3 mHz is to estimate a
set of normal mode interaction coefficient that is as extensive, as precise, and as accurate
as possible. This goal can be achieved with a combination of careful a priori selection of
regresston inputs and detailed a posteriori assessments of the coefficient estimates and other
regression outputs. The inputs include certain choices of: the time series window, the subset
of data distinguished by source depth and instrument orientation, the data weighting and the
regression damping schemes. Because the data are usually insufficient to estimate the full set

of interaction coefficients that affect all the modes within each spectral window, and because
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unspecified structures can significantly bias coefficient estimates, variable specification is
another important decision in setting up each regression. In addition to interaction coefficient
estimates, important GSF outputs include residual misfits to the complex data spectra and

the characteristics of the regression matrices.

In the absence of significant and complex sources of systematic error, standard statistical
estimates of variance and covariance provide reliable information to guide both input selec-
tion and output assessment. When an SVD is employed the estimated covariance matrix
is:

Ot = % 5 VaoVin: ©

P p

where V;; and )A; are defined by equations (6) and (7), and the diagonal elements of C
provide estimates of the coefficient variances. Unfortunately, interaction coefficient esti-
mates can be strongly biased by unspecified short-wavelength structures, by anelastic and
anisotropic structures, and by errant source solutions and receiver functions. Standard es-
timates of variance and covariance have repeatedly proven inadequate for explaining the
observed inconsistencies in normal mode observations [e.g., Ritzwoller, et al., 1988]. For
example, when data from a large number of events are included in the regression matrix,
the coefficient standard deviations, shown in Figure 8 and discussed below, are simply too
small, as demonstrated by synthetic experiments that attempt to model systematic errors in
the data (such as those in Section 7). Therefore, to investigate the precision and accuracy
of the estimated coefficients, the estimated covariance matrices must be supplemented with
a variety of different tools. Nevertheless, valuable information derives from observations of
how variances, covariance, and matrix condition change as a function of regression inputs.
In this section we summarize our experience and provide guidelines for performing GSF

regressions.

4.1 Diversity of events in GSF regressions ‘

The number of distinct seismograms employed in GSF is important in determining the
number of interaction coefficients that can be retrieved and reported with reasonable con-
fidence. The signal in each seismogram is determined by the source and receiver vectors of
equation (4). For a multiplet of degree #, all of the information about the Earth from a

single event is contained in the 2¢ + 1 time series ¢'Z! . 8. Irrespective of how many receivers
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sample these time series, for realistic signal-to-noise levels, 2 + 1 time series are inadequate
to determine much about the structure of the Earth. Thus, the retrieval of information
about structural degrees above about 4 requires the use of a multiplicity of events, each con-
tributing 2¢ + 1 time series. Normal mode investigations which employ data from only cne
or two strong events can usually obtain reliable estimates for only even degree interaction

coeflicients through degree 6 at most, as demonstrated by He and Tromp [1996].

The importance of event distribution is illustrated by Figures 7, 8, and 9, which display
condition numbers, variances, and covariances for two sets of regressions. These regressions
target the isolated multiplet Sz and the group of coupled multiplets ;T15-0S17-2511. The
198 regressions estimate the 92 interaction coefficients of the even degrees 0-12. The ¢T}s-
0517-251, regressions estimate 264 even degree coefficients: self-coupled degrees 0-10 of (Tg;
degrees 0-14 of (Sy7; degrees 0-8 of 2s11; and degree 6 and 8 cross-coupled coefficients for
0S17-2511. The trial regressions are performed with data sets comprising increasing numbers
of records and events. The first several events included are those which provide the largest
quantity of high SNR recordings: event 15, Macquarie Ridge, 5/23/89; event 29, Northern
Bolivia, 6/9/94; event 30, Kurile Islands, 10/4/94; event 32, Northern Chile, 7/30/95.

The trends in Figure 7a track condition number as recordings and events are added to
the data sets. Those of Figure 7b similarly track “root-mean-variance”, a summary of the
estimated variances which is defined by & = W , where J is the number of degrees
of freedom. Increasing the number of recordings for a single event is much less important
than adding the same number of recordings from a different event. Furthermore, condition
numbers and variances for regressions using data from the 2 or 3 largest events can be reduced
by as much as an order of magnitude by the addition of data from a dozen or more smaller
events. The use of the full data set gives condition numbers below 25. In our experience,
this is an important threshold, because most regressions with larger condition numbers are

insufficiently stable to yield reliable coefficient estimates.

Perhaps more significantly, adding data from multiple events strongly affects covari-

ances. Figures 8a and 8b demonstrate this using root-mean-covariances, defined by g =

\/ Li#j Cij/(J — 1). The root-mean-covariances associated with the trial regressions of Fig-
ure 7 again imply that increasing the number of events has a greater impact than increasing

the number of records from the few largest events. For both sets of regressions, use of the full
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data set reduces overall covariance by about an order of magnitude relative to the covariances
of regressions employing only the strongest three events. Just as importantly, the covariance
matrices of the regressions become more diagonal and increasingly sparse as the data sets are
expanded. Figure 9 demonstrates this effect using estimated covariance matrices normalized
according to:

C; =

]
1 (CRC) (10)

4.2 Interpreting Covariances

There are several notable characteristics of the estimated covariance matrices. The first
is that sparseness is increased when events are added. The second relates to the nature of
the covariances. With data from 3 large events, there is considerable covariance among all
estimated self-coupled coefficients for ;.Ss. This implies that, for 155 and similar multiplets,
the results of using limited data to estimate degrees 0-4 or 0-6 can be significantly biased
by unconstrained structures at higher degrees. The experiments of Ritzwoller and Resovsky

[1995a] confirm this.

Finally, even when a large number of events are employed, several significant covariances
remain. The banded structure evident in the right-most matrices of Figure 9 indicate three

dominant types of covariance that may be effectively irreducible:

(1) covariances between coefficients of the same multiplet and angular order (s) with az-

imuthal orders t and t' differing by 2;
(2) covariances between coefficients of a single multiplet with s and s’ differing by 2 or 4;

(3) covariances between coefficients with identical structural indices ((s,t) = (s',t")) from

the two Coriolis-coupled multiplets.

These covariances motivate further expansion of the data set, but may indicate that the
distributions of large earthquakes and current seismographic stations are not adequate to

resolve tradeoffs between estimates of the covarying coefficients.

The covariances between coefficients with different structural degrees also suggest that
structures of degrees above those estimated are most likely to bias the highest 2 degrees

of coefficient estimates for each multiplet. To test this hypothesis, we have constructed a
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test mode! incorporating structure through degree and order 36. GSF was applied to the
synthetic data to retrieve coefficients for the degrees estimated in the real data regression.
The input and output coefficients from this experiment are compared in Table 2 and referred
to as Experiment 1. While the estimates correlate well with the input model, the output
coefficients at the highest degrees are amplified by 20-100% It is therefore advisable, and our
practice, to discard at least the highest degree coefficients estimated for each multiplet or
coupling pair. Thus, if we report coefficients to degree and order 10, regressions have been
specified at least to 12 and preferably to 14 for that multiplet. Exceptions occur for fullly
specified multiplets such as 453, which is sensitive only to degrees 0-6, or for multiplets such

as 95 which are only weakly sensitive to aspherical structure.

4.3 Variable specification

There are not, in general, sufficient data to permit well-conditioned regressions for all
of the interaction coefficients which affect the multiplets studied here. For each spectral
window, only a subset of relevant interaction coefficients are specified as variables. The
choice of which coefficients are specified is guided by experiments with synthetics and data.
These experiments identify coefficients likely to be expressed in the data, and covariances
that indicate potential sources of bias. The variables specified in each regression include as
many as possible of the coefficients which affect the data. Particular emphasis is placed on

including coefficients which would bias the estimates if not specified.

An example of variable specification is provided by the multiplet group 3S5g-718-1.512-
0S17-2511, all of which have degenerate frequencies within the same 25 uHz frequency band.
Referring to the structural kernels of Figure 12, 355 is most sensitive to the lower mantle, (517
samples the transition zone, and (715 and 25); are upper mantle multiplets. S, is a CMB
Stonely multiplet and is almost unobservable at the surface. Figure 10a displays synthetic
spectra that demonstrate that all of the other multiplets should contribute significantly to
the data. Figure 10b shows synthetics which typify the expected affects of the cross-coupled
coeflicients of pairs ¢T1g-0517, 0T1s-2511, and ¢S17-2511. The effect of the §517-2511 cross-
coupling is nearly as large as that of the Coriolis coupling between the fundamentals. For
many synthetics, the impact of the 73-0517 coupling coefficients is also noticeable, but is

small enough that it should be obscured by noise in most spectra. 3Sg has a much higher Q)

16



than the other multiplets and does not couple significantly to the others.

Inspection of the covariance matrix of Figure 9f indicates that there are significant covari-
ances between Ths and (.S)7 and between the self- and cross-coupled coefficients of 0S17-2511-
Other experiments reveal weak covariances between the cross-coupling of pT14-0517 and ¢Ta-
,8,; and other coefficients, and almost no covariance between 355 and the other multiplets.
These observations imply that GSF need not be significantly biased if 355 is analyzed apart
from the other multiplets. Ignoring the oTis-0917 or oT1s-2511 couplings should only slightly
bias results for the other coefficients, but coupling between 0S17-2511 should be specified in

the regression.

These observations motivate GSF regressions for the self-coupled coefficients of 355, 071s,
0517, and »S1y, and for the cross-coupled coefficients of 0S17-2511. One or more of these multi-
plets are observable on spectra from approximately 1400 recordings, of which about half are
vertical component seismograms. Investigations of regression matrix condition numbers sug-
gest that, with these data, GSF regressions can provide stable estimates for 300 coeflicients,
at most. Specifying coefficients for degrees 0-6 of 5S¢, degrees 0-8 of 551, degrees 0-10 of
oTis, degrees 0-14 of 517, and degrees 6 and 8 of 0S17-251; requires a total of 293 variables.
Because of the weak covariances between 156 and the other multiplets, we choose to perform
separate regressions for the 264 coefficients of ¢T1s-0517-25115 using ~ 1200 recordings, and
for the 29 .S, coefficients with ~ 200 records. This separation is discussed further in the

next subsection.

4.4 Data subsetting, windowing, and weighting

The choice of time series windows, events, and channels used in each regression depends
on the nature of the modes targeted for analysis. For simplicity, a single time window is
applied to all records in each regression for a given multiplet group. In general, time series
windows begin a few hours after the event time, to permit the inclusion of gravimeter data
and other records which are clipped immediately after large events. To enhance the signal-
to-noise content in the data, the windows are as long as possible while insuring that the free

oscillations remain above noise levels throughout most of the records employed.

Figure 11 illustrates the effective use both of different events and time windows to separate

the signals of overlapping multiplets 35 and (Tis. Interference from strongly attenuated
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modes like oTi4 can be greatly reduced by employing time series beginning 10-15 hours
after the events. Interference from upper mantle toroidal overtones is further reduced by

employing only data from deep events recorded by vertically oriented instruments.

Ritzwoller et al. [1988] discussed the necessity of including weights in the regression
matrices of SF. These regressions can be very sensitive to statistical outliers such as those
produced by erroneous instrument response functions. Also, both SF and GSF preferentially
fit data from the strongest events, which tends to moderate the benefits of using data from

numerous events.

The weighting employed by Ritzwoller et al. [1988] addressed each of these concerns.
For each data spectrum (index j) in each iteration of GSF, the RMS residual is v =
[ (As;(wi))2/ 12, where v; Is the variance of the residual. Both anomalous data and
high-amplitude spectra tend to produce large RMS residuals when compared to synthetics.
For this reason, each spectrum was weighted according to w; =1/ /7. which both reduced

sensitivity to outliers and de-emphasized data from strong events.

For GSF regressions, we have found it useful to modify these weights according to

‘e % (11)

where f = 1 — [v/ 3, s, (w:)]'/? is the fractional RMS misfit. This modification serves to
further deemphasize anomalous or low SNR records. In practice, values for 3 range from
0.25 to 2.0. Also, in order to avoid assigning excessively high weights to extremely high
SNR records from recent large events, we cap the weights at some small factor (< 10) of the

median of 1/, /7.

5 Results of GSF: Coefficient Estimates and Fits to Data

We have analyzed a total of 90 multiplets below 3 mHz of which 59 are spheroidal and
31 are toroidal. These multiplets and the maximum degree of the interaction coefficients
estimated are shown in Figure 1. Self-coupled interaction coefficients for each of these mul-
tiplets are listed in Tables 5a-d. Thirteen spheroidal - toroidal pairs are coupled through
the Coriolis force (9Sy — ¢7'jg t0 ¢Sy — T2} and thirteen multiplets are coupled through

aspherical structure. Estimates of the interaction coefficients for cross-coupling are listed in

Tables 5e-i.
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For a regression to be considered converged, we have required that the coefficients esti-
mated in the last three successive iterations at each degree correlate with better than 99%
confidence, and their RMS amplitudes differ by less than 1%. Thus, reported estimates
at each degree must demonstrate convergence in both amplitude and geometry. The only
damping applied to the regressions is singular value truncation, which occurs for all singular
values A such that Amez/A > 20. Estimates are not reported when truncation is required for
more than 5% of the singular values. The convergence of the estimates is not, therefore, a

consequence of strong damping.

The characteristics of each regression are summarized by Tables 3a and 3b. Estimates of
degenerate frequencies and Q’s, and their uncertainties, are contained in Table 4. Tables 5a
and 5b list the interaction coefficient estimates through degree 8, and corresponding uncer-
tainties are in Tables 6a and 6b. Figure 12 displays a sampling of the generalized splitting
function maps that result from our coefficient estimates. For comparison, each splitting

function is displayed with a prediction from one of two models, SH.10¢.17 or S12_.WM13.

An important factor to consider in assessing the quality of the estimated coefficients
is misfit. There are two separate contributors to misfit: additive noise, which to a fair
approximation can be considered Gaussian, and théoretical errors which are not additive
to the data. Theoretical errors include errors in nominal instrument responses, in moment
tensor estimates, in the coupling scheme used, in the interaction coefficients used to construct

the synthetics, and higher degree structures unspecified in the regression.

To quantify misfit in the spectral bands used to analyze each multiplet group, we employ

a misfit ratio (MR). This quantity is defined by

_ Ty [(s(wi) - 3’(‘-’-’1’)]2
m= (B ) 12

where s(w;) is the data spectrum for a given record and §'(w;) is the corresponding synthetic

spectrum, computed with be estimated interaction coefficients. Phase and amplitude con-
tributions to the misfit are examined separately, using phase misfit and amplitude misfit.
Phase misfit is the average, across the frequency band analyzed, of the difference between the
phases of the data and synthetic spectra. Amplitude misfit is the average of the difference

between unity and the ratio of the amplitude of the synthetic to that of the data.

MR, phase misfits, and amplitude misfits that result from additive noise are expected to
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decrese monotonically and asymptotically to zero with increasing signal-to-noise ratio (SNR)
in the data. Figure 13 demonstrates this behavior with the results of a simulation, in which
only additive noise was added to synthetic spectra for the coupled pair ¢Sz —o T13. Least-
squares-fit quadratic curves, constrained to have zero slope at high SNR, are overplotted.
This figure may be constrasted with Figure 14, which displays the misfit plots for real data
for the coupled trio ¢T1s —o Si7 — 251:. Misfits observed for the real data vary with SNR
in a manner consistent with the behavior of additive noise, except that at high SNR misfits
level off at non-zero values. Such non-zero high SNR asymptotes are the expected signature

of theoretical errors.

In constructing figures such as Figures 13 and 14, the noise level is estimated for each
time series in our data set (station:channel:event) using the RMS amplitude averaged over a
set of low frequency (0.5 - 2 mHz) spectral bands which are devoid of normal mode peaks. On
vertical records there are 4 such bands (1.261 - 1.335, 1.435 - 1.480, 1.895 - 1.940, 2.605 - 2.645
mHz) and on horiztonal records there are 5 bands (1.265 - 1.305, 1.445 - 1.470, 1.886 - 1.915,
3.029 - 3.054, 3.125 - 3.150 mHz). The signal level is defined as the (1-norm) peak amplitude
in the spectral window which contains the targeted multiplet or group of multiplets. SNR
is simply the ratio of these estimates of signal and noise. Improved instrumentation and the
very strong events of the past several years permit us now to characterize misfits for many

records with extremely high SNR.

In Table 3b, the fit to the data given by the estimated interaction coefficients is compared
to the fits produced by predictions from aspherical mantle models. Four misfit statistics are
included: (1) MR averaged over all records used in each regression, (2) the high signal-to-noise
ratic (HSNR) misfit which is the HSNR asymptotic value of the quadratic curve fit to MR
versus log(SNR), (3) the HSNR amplitude misfit, and (4) the HSNR phase misfit. For poorly
excited multiplets the HSNR misfits can be difficult to estimate accurately, and care has
been taken to insure that the reported misfits are robust. Figure 15 displays the asymptotic
trends that provide the HSNR statistics for 3 multiplets. In estimating HSNR asymptotes,
it is assumed that these trends have zero slope above SNR= 70. When the distribution of
SNR in the data does not extend to SNR= 70, best-fit trends which extrapolate to zero slope

at SNR= 70 are employed whenever such fits prove robust.

Mean misfits and HSNR misfits provide significantly different information about the
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regression. Mean misfits are related, but are not identical, to what is being minimized in
each regression. They are also strong functions of the average SNR of the data set used.
Consequently, mean misfits cannot meaningfully be compared between multiplets or across
different data sets, since the noise contents for different multiplets or different data sets may
differ. Comparisons of mean misfits resulting from different coefficient sets for the same
multiplet group with the same data set are meaningful, however, and are included in Table

3b.

HSNR. misfits are also included in Table 3b. These are generally more useful statistics
since they estimate quantities that should be largely independent of SNR. They also provide
ostimates of the impact on the data of theoretical errors, which should be the dominant
cause of errors in the estimated coefficients. For this reason, the HSNR misfits are the basis

of the error analysis described in Section 7.

6 Assessing Interaction Coefficient Estimates

Providing an accurate assessment of the quality of estimates of normal mode interaction
coefficients is as important as providing the coefficients themselves. We break assessment
into two categories: qualitative and quantitative. Quantitative assessment is presented in
terms of coefficient uncertainties and is discussed in Section 7. Qualitative assessment is the

subject of this section.

6.1 Necessary Criteria for Reliable Coefficient Estimates

Experience with both simulated and real data shows that the following criteria should be
met for the estimated interaction coefficients to be considered sufficiently accurate to be

reported here.

e Estimated interaction coefficients should improve average and high SNR fit to the
data relative to the coefficients obtained from regressions which estimate less detailed

structures (lower degrees, less coupling).

e Estimated interaction coefficients should be consistent with the coefficients from mul-

tiplets with similar sensitivities to mantle structures. (Internal consistency.)
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o Estimated interaction coefficients should fit data better than the coefficients predicted
from recent mantle models, but should be consistent with these coefficients, especially

in geographical distribution. (External consistency.)

6.2 Improvement of fit with higher structural degrees and coupling

With the addition of the high quality data recorded in the 1990’s, inclusion of structural
degrees above 4 significantly improves fit to the data. This has been discussed already by
Ritzwoller and Resovsky [1995] and is further documented by the mean and HSNR. misfits
tisted in Table 7. The HSNR misfits are most relevant to this issue since they are more useful
in identifying theoretical errors such as the impact of higher degree structures on the data.
Inclusion of Coriolis and structural coupling among all overlapping multiplets, in general,

has an even more significant effect on data misfit than higher structural degrees.

6.3 Internal consistency

A useful check of the internal consistency of the estimated interaction coefficients is the
correlation of the coefficients along an overtone branch, because modal sensitivity to earth
structure tends to vary smoothly along each branch (with certain known exceptions). The
thick solid lines in Figure 16 plot the confidence of the geographical correlation between the
estimated coefficients for multiplets of adjacent ! values along several modal branches. Esti-
mated interaction coefficients along the overtone branches at the structural degrees reported
are frequently correlated at better than 95% confidence, and are almost everywhere above
the 90% confidence level. Exceptions are greatest when strong coupling occurs between pairs
(e.g., 195 —2S4,1 56 —2 Ss) or trios of multiplets (e.g., 0T12 —0 S11 —257, oT15 —o S1s —2 Se, and
oTis —o Si7 —2 Si1). Reported coefficients exhibiting relatively weak along-branch correla-
tions are generally assigned larger uncertainties. It is important to note that the interaction

coefficient estimates were made without employing any along-branch smoothness constraints.

6.4 Improvement of fit relative to existing models and external consistency

An example of a broadband spectrum displaying misfits for estimated and model interaction

coefficients has been shown in Figure 2. In addition to providing misfit statistics for the
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estimated coefficients, Table 3b lists the misfits for the coefficients predicted from either
S12.WM13 or SH.10c.17, depending upon which model fits the data better for the specified
mode group. In nearly every case, the estimated interaction coefficients provide better fits
to the normal mode multiplets than the predictions of either model both in an averaged
sense and for the highest SNR data in both amplitude and phase. Preliminary investigations
suggest that the newer mantle models MK12_.WM13 , Si6B30, and SAW12D probably fit the
these spectra no better than the older models §12_.WM13 or SH.10e.17. Figure 15 illustrates
the difference between the misfits for our coefficients and those predicted by S12.-WM13 and
SH.10c.17 for several multiplets. This figure and Table 3b demonstrate the improvement in
fit to the data provided by the new coefficient estimates relative to model predictions. The
coefficient estimates do, in general, fit both phase and amplitude data better than the models,
although the relative size of these two differences varies considerably from one multiplet to

another.

Figure 16 also presents correlations between the estimated coefficients and model predic-
tions. The most important characteristic of these plots is that the GSF estimates usually
correlate with at least one model better than the models correlate with each other. Thus,
while the new normal modal coefficients and model predictions differ substantially, they are

not inconsistent with what is presently believed about the Earth’s interior structure.

Figure 17 identifies the primary difference between model predictions and the GSF in-
teraction coefficients. These plots show the root-mean-squared (RMS) amplitude of the
coefficients as a function of structural degree for both the models and our estimates. While
both predicted and measured interaction coefficients are largest at degree 2, the estimates are
consistently larger than predicted coefficients at degrees 4, 6, and 8 of structure, especially
for the o7 and »S modes which are dominantly sensitive to the upper mantle and transition
zone. This implies a somewhat flatter, or whiter, spectrum of heterogeneity within these re-
gions of the Earth than anticipated by the models. A possible source of the discrepancy may
be the scalings between perturbations in p, vs, and vp, which are implicit in the construction
of most of the models, and which may not be accurate if heterogeneities of different scale

lengths have different causes.
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7 Assigning Uncertainties

Ritzwoller et al [1988] showed that in spectral fitting, standard error analyses based on
estimating the covariance matrix of the estimated coefficients provide uncertainty estimates
that underestimate real errors in the coefficients. This proves to be true both for SF analyses
of genuinely isolated multiplets and for GSF regressions. The reason is that the main sources
of errors in the estimated coeflicients are what was referred to in Section 5 as ‘theoretical
errors’, which introduce systematic errors into the estimated coefficients. As discussed in
Section 5, likely sources of systematic error include incorrect instrument responses, inaccurate
source solutions, mantle structures of smaller scales than the estimated degrees, and other
unspecified structures such as 3-D anelasticity and anisotropy. Ideally, these systematic
errors should be identified by synthesizing each of the sources of error and estimating their
impacts on the results of the regressions. However, there exists considerable ambiguity
concerning the size and distribution of several of the unmodeled structures which render this
process both highly inexact and time consuming. It is more effective and efficient to employ
observed characteristics of the misfits obtained with the estimated coefficients to assess the
net cumulative impact of these theoretical errors. Our approach is to estimate the effects of
theoretical errors on the data in a statistical sense and to use this information to ascertain

the expected affect of these errors on the data.

In Section 5, we discussed a model of the effect of additive noise and theoretical er-
rors on normal mode spectra. For seismogram j and multiplet & this can be represented

mathematically as follows:

ks;}nta(w) ~ kS;ynth(u) —< TLJ'(UJ) > 4 < kAj(w) > ei<k¢’j(w)>k8?odel(w) (13)

= <ni{w) >+ <k Ti{w) > £55%H w). (14)

The brackets <> stand for the ‘expected value’ of the enclosed quantity. In this model,
theoretical errors are represented as a random process that is dependent on the multiplet,
station, channel and event. This process imparts a frequency dependent modification to the
amplitude and phase of the model seismogram, ,s3°*!(w), which can be represented as a
complex transfer function, < (T;(w) >. For obvious reasons, we refer to this transfer func-
tion as ‘multiplicative noise’. If the statistical characteristics of ,T;(w) can be ascertained,
equation (14) can be used to simulate the effects of theoretical errors on the data that should

match the statistics of misfit.
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7.1 Simulating < n(w) > and < T(w) >

The method used to estimate the additive noise level is discussed in Section 5. For
simplicity, we assume that additive noise is frequency independent for each seismogram,
which is a fairly good approximation for the frequency band considered here (f < 3 mHz).
Good estimates of the theoretical noise transfer function are more difficult to obtain since it
varies with the multiplet analyzed. To make progress we have found it useful to make the
following assumptions. First, the frequency dependence of the theoretical noise is determined
exclusively by the multiplet. That is, < kI j(w) > is independent of frequency within a
given multiplet and varies across the spectrum depending exclusively on which multiplet
or multiplets occupy a spectral window. Synthetic experiments show that this should be
a very good approximation in most cases for the frequencies considered here. Second, the
expected value of ,T';(w) is independent of the recording index i. That is, it is independent
of receiver location and event. This implies that expected errors in instrument responses are
independent of station and that errors in estimates of moment tensors and event locations
are independent of earthquake. It also implies that unmodeled structures are expected
to have the same magnitude of affect on each recording independent of the location of
the seismograph. This approximation is more troublesome. Detailed inspection of misfits
indicate that it is not obviously a bad approximation, and without a much more extensive
study of each of the sources of error, it is the best we can currently do. However, future

work needs to be done to investigate the geographical coherence of the misfits.

With these approximations, the expected value of additive noise is just a function of the
seismogram index j and the expected value of multiplicative noise is just dependent on the

multiplet index k, and equation (14) can be rewritten as:

ks?ata(w) ~ kS;Ynth(w) = n; >+ < Ty > kS?Od.l(w)' (15)

The HSNR misfit in amplitude and phase discussed in Section 5 provides an estimate of
< T, >. An example of the absolute values of these quantities is plotted in Figure 14 for
one set of coupled modes. In this case the expected HSNR asymptotic value of the phase
error is about 6 degrees and the expected value of the amplitude error is about 11 percent.
A histogram of the misfit in phase and amplitude for high SNR recordings (SNR > 75) for
the same multiplet group is shown in Figure 18. Assuming that the amplitude and phase

terms are both Gaussian around the mean of the distribution in Figure 18 with the observed
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standard deviation, allows us to simulate < T; > for this multiplet group. One simulation

of the random variable < T} > for the same set of records is also shown in Figure 18.

Using this statistical characterization of < Ty > and adding random additive noise at
the measured SNR for each recording in the data set for ¢T1g —o S17 —2 S11, produces syn-
thetic seismograms as shown in Figure 19 and the misfits between noise-free and the noisy
synthetics shown in Figure 20. The same records are used in Figure 20 as in regressions with
real data, except misfits here represent the difference between synthetics with and without
noise (additive and multiplicative). Inspection of Figure 19 and comparing Figures 14 and
920 demonstrate that the gross characteristics of the data and misfits are reasonably well
duplicated by the synthetics with additive and multiplicative noise of the form given by
equation (15).

7.2 Monte-Carlo uncertainty estimates

Synthetic data with additive and multiplicative noise, as described in the previous sub-
section, can be used to assess the impacts of theoretical errors on interaction coefficient esti-
mates. After a set of interaction coefficients have been estimated with GSF for a multiplet or
group of multiplets, synthetic data are constructed for each seismogram and contaminated
by the expected additive (< n; >) and multiplicative (< T} >) noise following equation (15).
GSF is then applied to these noisy synthetics, and the estimated coefficients are compared
with the input coefficients. A comparison between the input and estimated coefficients for
one realization of the additive and multiplicative noise for ¢Tis —¢ Si7 —2 S11 is listed in
Table 2 under Experiment 2. This simulation demonstrates that contamination by this noise
degrades the amplitudes much more than the geometries of the coefficient estimates, and
that the amplitudes are uniformly biased high especially for the highest degree estimated.
This result is consistent with the synthetic experiment th@t simulated biasing due to higher
degree structures and is the reason we have specified each regression to at least one degree

higher than reported in Table 5.

This procedure is repeated for several realizations of the synthesized noise. The absolute
value of the biases in each coefficient are averaged at each degree and order for each multiplet
to yield the assigned uncertainties for the coefficient estimates. Thus, this is a Monte-Carlo

error estimation procedure. We believe that this procedure produces the most robust error
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estimates currently available for normal mode interaction coefficients.

8 Conclusions

The preceding sections have presented the application of Generalized Spectral Fitting
(GSF) to the normal mode multiplets with frequencies below 3 mHz. GSF is a straightfor-
ward extension of the classical Spectral Fitting (SF) method [e.g., Ritzwoller et al., 1988]
that explicitly incorporates multiplet cross-coupling through aspherical struture and the
Coriolis force in the estimation of normal mode interaction coefficients (elsewhere referred
to as structure coefficients or splitting function coefficients). This allows many multiplets to
be analyzed that could not be studied with SF because of strong coupling to other modes.
Since spectra are more accurately fit with GSF, coefficients can now be estimated to struc-
tural degrees much higher than 4 and constraints can be placed on odd degree structures.
The estimated interaction coefficients meet reasonable standards of internal consistency and
misfit reduction and are externally consistent with existing mantle models, especially in ge-
ographical distribution. The coefficients have been assigned uncertainties which reflect the
statistics of misfit. Taken together, these results should make the interaction coefficient

estimates presented here generally much more useful than earlier published coefficients.

The development of GSF and its application in this paper have the following implications

for future work:

e The new interaction coefficient estimates are complementary to body and surface wave
data. In particular, they can be used to assess and refine models of 3-D mantle structure

that are derived from other types of data.

e It should be practical to continue to apply GSF systematically at frequencies above 3
mHz. GSF may be particularly useful in modeling the elastic focusing and defocusing
of long-period surface waves expressed through the cross-coupling of groups of 3, 9, or

more adjacent multiplets along the fundamental mode branches.

e Because GSF can accurately model the amplitude effects of multiplet cross-coupling,
it should extendable to estimate interaction coefficients for aspherical anelastic and

anisotropic structures.
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Table and Figure Captions

Table 1: Summary of the data. Moments and depths are from the Harvard CMT catalogue. The stations
providing data include vertical component gravimeters of the IDA network, and 3-component seismometers

of the GDSN, GEQOSCOPE and GSN networks.

Table 2: Measurements of interaction coefficient biasing in synthetic experiments. Comparison are
between the “input” interaction coefficients used to construct synthetic data, and the “output” coefficients
estimated using those data. Experiment 1 tests the effect of higher degree biasing. Synthetics are noise-
free, but employ coefficients through degree 36 from a test model. Experiment 2 synthetics employ only
coefficients at the estimated degrees, but incorporate both additive and multiplication noise at the observed
levels (Section 5). Correlation confidence levels (“conf”) are computed as in Figure 3. “RMS diff” is the
root-mean-squared average of the difference between corresponding input and output interaction coefficients

at each degree.

Table 3: (a) Summary of the data and ineteraction coefficients estimated with GSF. “nearby” multiplets
are those which had to be explicitly included in regressions for the target multiplets. Letters in parentheses
indicate which, if any, cross-coupled coefficients are estmated. For trios of multplets, “a” refers to the
coupling of the first and second, and “c” to the coupling of the second and third. (b) Misfit statistics for the
GSF regressions. Section 5 describes the average and asymptotic (“HSNR”) misfit ratio (“MR”) statistics.
HSNR. misfits are not reported when there are insufficient high SNR data to permit robust estimates of the
asymptotes. The model misfits given for each regression are for the predicted interaction coefficients from
S12.WM13 or SH.10c.17, whichever fits the data best. All synthetics employ GSF estimates of multiplet

degenerate frequency and Q.

Table 4: GSF estimates of degenerate frequencies and Q’s for normal mode multiplets below 3 mHz.

These are equivalent to degree s = 0 complex interaction coefficients.

Table 5: GSF estimates of interaction coefficients for normal mode multiplets. Tables (a)-(d) give
estimates for the interaction coefficients of self-coupling. Tables (e)-(i) give estimates for those of cross-
coupling. Units are uHz. Only t > 0 coefficients are listed. The reality condition implies that for ¢ < 0,
e = (—l)l”cif". These coefficients may be compared to those normalized as in He and Tromp [1996], using

the relations: A% = (—1)ty/2rRe(ct) and Bf = (—=1)t+!y/2xIm(ct) [Li et al., 1991).
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Table 6: HSNR misfit statistics illustrating the impact of estimates of interaction coefficients for coupling
and for structures of degrees > 4. Misfits to data for synthetics that do not employ these coefficients (left
column of each pair) are compared to misfits for synthetics that do employ the full sets of reported GSF

estimates for each multiplet and coupling pair (right columns).

Figure 1: Dispersion diagrams displaying the multiplets analyzed in this study. The type of symbol

indicates the maximum degree of interaction coefficient reported for each multiplet.

Figure 2: Sample comparisons of low-frequency normal mode spectra of data and synthetic seismograms.
{(a} Data amplitude spectrum from the IDA station ALE in Alert, Northwest Territories, after the deep
Bolivian event of June 6, 1994, and the spectrum predicted by the recent Harvard medel MK12. WM13. (b)
The amplitude of the difference between these two complex spectra. In this example, which is typical of
high signal-to-noise records, many muitiplet peaks are misfit by more than 20%. (c) The amplitude of the
difference between the data and a synthetic spectrum constructed using the interaction coefficients reported

here. The largest residual amplitudes in this case are nearer to the 10% level.

Figure 3: Intermodel correlations for two generations of mantle models expressed in terms of confi-
dence levels (Confidence is related to geographical correlation by Eckhardt [1984]). Models S12.WM13 and
MK12_-WM13 are from Harvard. Models SH.10c.17 and $16B30 are from Scripps Institution of Oceanogra-
phy. Only the shear-velocity components of the models are compared. Persistent decorrelations between the

two families of models are most pronounced in the transition zone and top of the lower mantle.

Figure 4. Input and estimated interaction coefficients for a synthetic experiment. This demonstrates the

bias caused by Coriolis coupling of coefficients estimated without accounting for the coupling.

Figure 5: Geographical distribution of the data set employed. There has been a marked increase in the

number of events and stations employed compared to those in Ritzwoller et al. {1988).

Figure 6: Example of editing to produce reliable data. The large glitches in the original time series
produce a large DC offset and considerable noise in the spectrum. When these are removed by editing,

overtone peaks, such as the lower mantle 55 multiplets, become observable.

Figure 7: (a) Matrix condition numbers of the singular-value-decompositions of GSF for a series of
regressions employing increasing numbers of stations and events to estimate interaction coeflicients of 1S5s

and of ¢T13 —0 517 —2.511. The horizontal axis gives the number of records used and labels indicate the events
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which provide each set of addtional records. Event numbers refer to Table 1. (b) Root-mean-variances for

each of these regressions. The circled numbers and letters mark regressions selected for the plots of Figure

8.

Figure 8: Root mean covariances, as functions of variable index, for several of the regressions of Figure

7, for (a) 15s and (b) oT1s —0 Si7 —2 S11. The multiplets are ordered as indicated, with coefficient degree

increasing from left to right.

Figure 9: The normalized covariance matrices for several of the the regressions of the sequence shown
in Figure 7. The darker boxes indicate matrix elements with larger amplitudes. (a}, (b), and (c) show even
degrees 0-12 of 1 Sg, ordered left-to-right and top-to-bottom starting with real and imaginary parts of degree
0. In (d), (e), and (f), covariances for the self-coupling of 2511 are in the upper left, followed by those for

oT1s and S 7. Covariances among the cross-coupling coefficients of ¢S17-2511 are in the lower right corner.

Figure 10: (a) Sample spectra illustrating the effect of overtones beneath a pair of fundamental multiplet
peaks. The inclusion of 251, and its coupling to o517 through aspherical structure of degrees s = 6, 8 improves
fit to the peak on the right. The peak on the left is fit better when 3.5 is included. The time window here is
intermediate between those which best accentuate the individual multiplets. (b) Sample spectra illustrating
the relative impacts of the various couplings of ¢T1s —o S17 —2 S11. The Coriolis coupling of oT1s —¢ S17 and

interaction coefficients for the structural coupling between o517 —2 S11 have the greatest impacts.

Figure 11: An example illustrating the use of selected time windows and events to enhance observations
of particular multiplets. Each plot shows synthetic spectra created using the 35¢ and oTis —p S17 —2 S1t
interaction coefficient sets both separately and together. The spectra of long, late-starting time series from
the deep Bolivian event are dominated by 3Ss while shorter timeseries for the shallow Kurile event yield

spectra dominated by oT1g in the same frequency band.

Figure 12: Generalized splitting functions from GSF estimates of self-coupling and cross-coupling in-
teraction coefficients. Also displayed are the splitting functions predicted by mantle models SH.10c.17
or $12.WM13, and normalized kernels indicating the sensitivities of the multiplets to v_s (solid) and v_p
(dashed) structures as functions of depth. In general, multiplets with similar sensitivities are observed to
have similar splitting functions, and observations resemble model predictions, though the amplitudes of the
observed coefficients are often noticeably greater at degrees above s = 4. 53 exhibits an anomalous splitting

function typical of multiplets sensitive to core anisotropy [e. g Woodhouse, et al., 1986; Tromp, 1993,
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1995).

Figure 13: Simulated variation with SNR of the misfit between noise-free synthetics and synthetics
contaminated by additive noise. Misfit ratio (MR), amplitude misfit, and phase misfit are defined in Section 5.
“Noise-free” synthetics employ only model S16B30 predictions of T3 —g S;7 —2 811 interaction coefficients.
For “noisy” synthetics, the “noise-free” synthetics are perturbed at each frequency by additive noise of
random phase with RMS amplitude matching the observed SNR of each record. The “best fit” trends shown
result from a least-squares fit to the median of the distribution which employs a quadratic fin log(SNR)]
between SNR=3 and SNR=70, and a horizontal line [asymptote] above SNR=70.

Figure 14: Variation of misfit with SNR in GSF residuals. Residuals are from a comparison of the data
subset employed in the analysis of T —g S17 —9 S11 to synthetics computed using the reported interaction

coefficients for these multiplets. The “best fit” trends are computed as in Figure 13.

Figure 15: Sample quadratic trends in MR for the isolated multiplets ; Sy and 556 and the Coriolis-coupled

pair ¢T3 —¢ S12. Such curves are used in constructing Table 3b.

Figure 16: Correlation confidence levels for internal and external consistency checks of the GSF coefficient
estimates. The along-branch trends compare estimated interaction coefficients of adjacent multiplets on the
same overtone branch. Also shown are the correlations of the estimates to either SH.10c.17 or S12.WM13,
whichever agrees better with the measurements. Correlations between these two models are displayed for

comparison.

Figure 17: RMS amplitude of the observed interaction coefficients at each degree of structure. The
amplitudes are normalized by the degenerate frequencies of the muitiplets. Amplitudes predicted by models

SH.10c.17 and S12.WM13 are also shown.

Figure 18: Distribution of amplitude and phase misfits for spectra of ¢Tyg —g S17 —2 S); with SNR> 50.
Residuals are for (solid) data compared to synthetics made using the observed interaction coefficients and
(dotted) synthesized data of appropriate additive noise levels and multiplicative noise distributions compared
to noise-free synthesized data. The multiplicative noise distributions appear to be adequately duplicated in

this realization.

Figure 19: Comparison of data spectra and noisy synthetic spectra (additive and multiplicative) for

several SNR levels for the multiplet trio oTig —g Sy7 —2 S11.
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Figure 20: Simulated variation of misfit with SNR. This figure is contructed similarly to Figure 14,
except that the “noisy” data include multiplicative noise as well as additive noise. The multiplicative noise
is distributed as in Figure 19. The synthesized misfit trends figures compare favorably with those observed

in Figure 15, although the misfit values in this simulation are somewhat less scattered than in the real data.
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Table 1: data summary

index date (Julian) location depth  moment stations providing
{km) (10*'Nm) useful data

T 6/22/77 (173 Tonga 61 13.9 14
2 8/19/77  (231)  S.of Sumbawa 23 35.9 17
3 12/6/78 (340} Kuril Is. 181 6.4 24
4 12/12/79  (346) Ecuador Coast 20 16.9 25
5 T/17/80 (199) Santa Cruz Is. 34 48 25
6  6/22/82  (173) Banda Sea 473 17 33
7 3/28/83 (077) New Ireland 70 4.6 33
8 11/20/84 {325) Mindanao 181 2.2 42
9 3/3/85  (062)  Central Chile 41 10.3 39
10 9/19/85 (262) Michoacan 21 11.0 45
11 5/7/86  (127)  Andreanof Is. 31 10.4 52
12 10/20/86 (293) Kermadec Is. 50 4.5 50
13 11/30/87  (334)  Gulf of Alaska 15 7.3 52
14 3/16/88 (066) Gulf of Alaska 15 49 a3
15 5/23/89 (143) Macquarie Is. 15 13.6 62
16 3/3/90  (062) S, of Fiji 25 3.0 53
17 4/18/90  (108) Minahassa 33 3.3 64
18 7/16/90  (197) Luzon 15 4.1 60
19 12/30/90 (364) New Britian 205 1.8 62
20 4/22/91 (112) Costa Rica 13 3.3 69
21 9/2/92 (246) Nicaragua 15 34 70
22 10/11/92  (285) Vanuatu 141 1.5 69
23 12/12/92 (347) Flores Is. 20 5.1 78
24 1/15/93 (015) Hokkaido 100 2.7 68
25 7/12/93 (193) Hekkaido 17 4.7 82
26 8/8/93 {220) S. of Mariana 59 5.2 76
97 3/8/94  (068) Fiji Is. 567 31 82
28 6/2/94  (153) S. of Java 15 53 44
29 6/9/94 (160} North Bolivia 647 26.3 88
30 10/4/94 (277) Kuril Is. 68 30.0 76
31 12/28/94 (362) E. of Honshu 34 4.0 46°
32 7/30/95 (211) Northern Chile 20 16.8 63°
33 10/9/95  (282) Jalisco 49 11.5 4
34 12/3/95 (337) Kuril Ts. 22 8.2 10°
35 1/1/96  (001) Minahassa 33 7.8 10°
36 2/17/96 (048) West Irian 13 24.1 10¢
37 6/17/96 (169) Flores Sea 593 52 107

%data processing incomplete



Table 2: synthetic bias

multiplet | degree Exp. # 1, out vs in Exp. # 2, 0ut vs in
(ntypel) | (s) |% corr. confid. | ratio of rms amp | % corr. confid. | ratio of rms amp
2 99.99 0.952 99.99 0.976
4 59.99 0.918 99.99 1.121
0T18 6 99.99 1.095 99.95 0.899
8 99.99 0.966 99.54 1.635
10 99.99 1.638 98.43 2.802
2 99.99 1.009 99.99 1.003
4 09.99 1.106 99.99 0.973
6 99.99 1.070 99.99 1.067
0817 8 99.95 1.215 99.99 1.118
10 995.99 1.034 99.99 1.306
12 899.99 1.276 99.80 1.473
14 99.56 2.034 98.22 1.880
2 69.99 1.087 99.99 1.058
2511 4 99.99 0.996 99.99 0.931
6 99.99 1.113 99.99 1.239
8 99.99 1.264 99.97 1.457
0S17 6 99.99 0.973 99.99 1.108
2511 8 993.99 1.180 95.99 1.050




Table 3a: Regression Inputs

target nearby number number number number  highest degrees
multipets multiplets events  horizontal  vertical variables estimated
054 - 16 4 182 46 8
055 - 23 9 345 46 8
056 - 25 a7 495 46 8
057,253 aT7,Th 18 0 287 46 8,6
058 451,070 a2 57 553 67 10
0S59-0T0 1T 32 50 550 92 8,8
oS10-0T11 {a) 452 a2 528 1036 172 14,8,(2)
oT12-0511- - 33 512 1018 233 8,12,8,
257 {a,b,c} (2,6,6)
ol13-0512 651 24 450 455 246 12,16
0T14-0513 552,177 24 450 855 246 2,16
o0T15-2.50- - 33 508 992 293 10,8,14,
2T2-0514 () 8,(7)
oT16-0515 ; 33 521 1063 246 12,16
2T17-0518 1 Ta a3 511 1027 246 12,16
oTa-05:7- 356 24 404 736 269 10,14,8,
2511 (a,0) (2,8}
oT19-0518 357,355 24 407 762 248 12,16
oT20-0519 (a) - i3 453 948 215 10,14,(6)
g5ap-pT21- 851,278 25 292 681 239 14,10,8
2513 (8) (2}
0521 1514,0T22,556 25 0 634 154 16
152 - 4 P4 24 16 4
183-351 (a) oTs 17 0 256 50 6,2,(4)
154 - 15 12 160 46 8
155-255 {a) aoTs 23 137 453 149 10,8,(7)
255-156 (a) - 16 86 181 128 8,8.(7)
LSy - 16 1 210 46 8
158 - 20 0 284 92 12
1 59 - 12 1 118 46 8
1510 - 12 i 35 46 8
1514 0521,0722,556 8 82 212 16 4
258 - 18 155 169 67 10
253 153 20 167 370 46 8
2510,455 - 20 143 Jo1 92 B.8
352 - 10 0 90 16 4
356 oTs-05:7-251 2 68 93 29 6
357,555 oTi9-0518 17 7 215 80 6,8
258-553 (a) . 22 91 233 101 8.6,(7)
451 053 2 12 66 7 2
152 051w0-0T11 2 64 113 16 4
4593 298 20 96 357 29 6
+54-1Ts (a) - 16 102 163 B4 6,6,(7)
557 0Tia-0513 1T 2 0 104 7 2
583 - 19 120 185 29 6
554-2Ty (a) - 22 61 391 111 8,6,(7}
651 oTiz-0512 2 61 113 7 2
aSy ¢520-0121-2513 5 0 132 7 2
0T . 3 17 0 7 2
oTs 153-351 4 66 0 46 -]
oTs - 16 151 0 29 6
opT7a T 057,253 5 104 0 36 6,2
aTs 1 Sp-254 12 151 0 29 6
ol 058,255-156 13 205 0 29 6
0T22 1514,0521,858 24 286 0 67 10
VT ; 2 66 0 7 2
¥E) - 2 81 0 7 2
175 059,070 9 49 0 16 4
1Ts #510-pTh 1 14 388 0 29 6
176 - 14 176 1] 46 8
1 Tq 592,07 14+0513 22 417 0 29 6
1T 7170516 18 462 0 29 6
2Ta 3820-0T21-2513 12 283 0 29 ]



Table 3b: Regression fits

target mean misfi HSNR misfit — amp."misht (%) phase misAt {°)
multipets model  GSF  model GSF  model GSF model GSF
054 49 47 .24 .20 13.0 12.6 7.4 6.2
0Ss 42 .39 .16 12 7.8 7.3 5.0 23
056 40 .36 12 .09 5.7 4.5 4.0 2.5
057,253 A5 .37 .28 13 8.0 5.1 7.8 3.6
0Ss 42 37 .25 13 7.4 6.1 6.6 3.5
089-0T10 A7 A3 24 .15 5.6 6.7 7.3 5.8
0510-0T11 52 AR 27 18 12.0 8.4 7.8 5.0
0T12-0S511-257 K] 51 31 21 10.4 B.7 8.1 4.8
oT13-0812 .50 45 .29 24 13.3 11.0 B.6 7.0
0T14-0513 54 49 25 .19 11.1 8.9 B.7 5.7
oT15-0514-250 56 .50 32 22 14.1 13.3 9.3 5.2
0l16-0515 .55 48 .33 .22 15.3 12.4 7.9 6.8
0T17-0518 58 5l .35 .26 16.7 14.3 8.2 8.1
oTis-0517-2511 .63 48 .40 24 19.4 10.8 10.2 6.2
oT1g-0518 .64 .59 38 .28 2.0 16.8 11.4 6.2
0T20-0510 .67 .59 A0 31 19.4 13.8 10.3 7.9
0520-0T21-2513 56 49 41 4 16.7 13.6 9.3 6.6
052 .60 53 39 32 20.5 18.5 9.9 8.1
152 49 47 - - - - - -
153-35; 47 45 13 .09 3.4 5.1 4.5 5.6
154 46 34 A7 13 34 4.0 5.5 4.2
1 55-254 58 50 22 .14 2.8 1.1 3.9 26
25%-156 47 38 .24 10 5.5 2.5 5.6 25
1S 42 35 14 .07 2.8 3.2 3.7 2.3
158 49 36 22 .06 2.8 0.7 6.0 2.8
159 .54 .42 35 13 6.3 1.8 13.2 2.8
1510 a7 41 - - - - - -
1514 .54 54 .33 31 131 13.6 8.2 8.2
256 45 .38 .21 A2 11.5 7.9 5.5 2.0
258 .58 45 21 14 6.2 6.6 6.5 4.9
2510,455 7 71 .50 41 24,4 29.7 12.4 9.5
352 89 .63 25 16 70.2 55.5 16.3 10.9
356 72 62 .50 .46 22.8 15.3 10.5 16.4
351-55% 66 A6 48 .19 9.8 3.8 9.8 5.6
358-653 .84 43 70 10 45.6 6.1 29.0 5.6
48 .44 40 27 .19 15.7 7.1 5.8 3.2
453 58 49 36 19 16.6 13.0 15.3 6.7
453 75 59 .42 15 13.3 RN 7.6 5.0
454173 60 59 38 28 15.9 10.0 10.1 8.6
552 19 51 .21 20 13.0 14.4 4.3 6.8
553 71 68 45 35 14.3 4.6 7.0 6.4
554-2Ty 68 45 .53 .13 13.3 4.7 12.9 3.1
551 75 59 51 33 231 15.9 15.3 3.8
851 7 49 47 33 12.6 12.9 8.4 6.7
Y 45 40 - - - - - -
oTs .44 39 - - - - - -
076 59 .57 35 .28 18.0 12.2 3.8 8.1
0Ty T 52 47 26 15 7.2 5.9 3.4 2.2
ols 59 o7 .28 .19 7.1 7.6 4.2 3.1
oTs 45 42 .23 .15 111 4.2 5.8 3.7
0Thos .70 72 44 44 - - - -
172 .69 .69 - - - - - -
175 .56 52 - - - - - -
1Ty .36 35 12 12 34 1.0 2.8 5.3
175 57 56 14 14 2.3 2.5 3.1 4.4
175 64 56 34 27 11.2 9.3 11.4 10.9
T 49 49 19 .19 14.1 ILi 4.4 5.1



Table 4: multiplet degenerate frequency and Q estimates

mult. (mu;{z) w “;J;m QG Q- Qemm mult. ( “';l | w —;Pm Q Q- Qe
mHz p#Hz

A e s m e ®
% 103753 070 341 a4 1S 214598 -2.47 433 54
oS7 123103  -0.78 353 10 1Su 297400 182 30613
e 141282 070 346 ) Ty 123568  -0.43 269 9
0So 157763  -0.67 343 10 Ty 131925 086 295 38
Ve 172566 082 335 7 Ty 143833 -0.77 274 21
o 186124 110 331 8 Ty 158508  -0.41 292 42
o512 198917  -122 328 13 Ts TS0 e o
081 2.11165 -1.30 325 18 ‘T“ 5 e 5 5
oSi4 223006  -136 318 20 Jn 210312068 285 5
S 234450  -139 314 25 ‘;ﬂ iiggg gg gzg 33
oSie  2.45690 -1.32 306 27 ! Sg 942 '0 78 416 1
oSz 2.56615 -0.99 203 24 z 53 1'3792?, 0.37 136 5
oS1n 267223  -1.08 288 29 2 S‘ L 51537 0.43 210 g
0oS1s  2.77615 -0.83 288 39 2 55 168126 0.42 243 5
oS, 287774 064 280 39 25“ 186519 0.93 215 A
oS 297725 -0.49 266 34 z S’ o 04966 0.45 206 s
oTs  0.76609 0.43 268 39 : S“ 299033 0.58 188 0
oTs  0.52837 0.13 254 37 e '

oTs  1.07928 0.44 245 40 2510 240404 1.14 189 8
T 122100 0.29 207 12 2811 2.57253 0.38 180 34
STE 1.35658 0.46 200 13 eSis  2.80072 -0.09 174 12
n Las707 0.45 187 ; oI 223237 1.56 230 25
o 161350 042 177 1 .Ta 237910 073 238 28
“T‘D 1'73767 0.63 173 p 2Ts 291236 -1.29 253 24
"T” 1‘85868 0'73 165 5 aS 0.94447 0.53 852 25
°T” 197785 0.86 165 6 28 1.10642 0.21 284 -82
"T” 2'095 8 111 157 9 2S5  2.54884 -0.80 289 14
‘;T: 591088 052 151 3 38y 268561  -0.72 279 10
oTie 232628 108 149 -1 2% 281031 038 78
oThz  2.44040 1.28 149 2 S 14l7d -0.89 36 9
T 355295 o1 140 “ W82 172162 067 466 32
°T“’ 5 66565 0.93 142 2 Sz 20414 -0.83 528 47
ZT; 577731 0.62 145 3 4S5y 2.27821 -1.39 313 23
oTy  2.88843 0.22 131 -10 “gs 3'33323 %‘%81 ggg g
oTee  3.00026 0.86 130 9 302 ‘ - 97
15 0.68022 0.37 367 56 555 216928 -036 319

o 094014 031 310 »7 sSe 237921 031 554 65
! 33 1'17299 013 294 23 55, 2.70357 0.22 570 67
‘S“ 137016 012 331 19 sSs  3.01138 0.69 589 83
; SZ L5a147 057 495 19 S 198417 3.78 298 :;21

: : 553 2.82186 0.14 492
157 165457 095 42 3 WS 287%9  -0.67 973 "

188 1.79793 -1.38 117 37



Table 5a, degree 2 self-coupling interaction coeficient estimates

mult, (!2 re cé im el re n% im rg
nSa 1.44 0.28 ¢.30 -0.8! 0.98
03k 1.78 0.52 0.34  -1.50 L.78
0Ss L.77 0.75 043 -2.35% 2.29
nSz a.57 1.4 033 284 262
0 5a 1.50 136 047 .269 3.09
05 109 153 0286 .1.93 3.4
oSw | 04l 183 031 202 380
oS11 -3.15  2.83 038 -1.40 4.71
0812 | 443 2684 .0@7 112 543
0513 | -5.40 296 003 -041 584
nS14 -6.72 2.99 -0.27 0.28 T.44
nS1s 741 385 038 053 8.8
0S8 | -10.08 4.31 -0.38 0.97 9.34
nS17 | 945 478 032 002 8.83
oFr -10.21 5.25 0.06 1.685 9.10
2819 -11.71 6.17 -0.09 3.48 11.14
0820 [ -1112 564 050 3569 11.08
0S5z | -12.29 5.85 -1.35 3.96 1218
0Ta 0.8] 0.54 -0.77 -39 -0.31
nTs -1.46 3.51 0.62 -0.99 2.24
0Ty 077 088 042 0.2 4.7l
nTy -1.38 1.82 0.46 3.87 4.50
0T -2.36 2.04 003 1.58 4.64
nTy -0.45 2.468 -1.56 .17 6.15
oTia 284 273 021 322 758
aT11 1.36 257  .1.18 362 7.8
nTig -L.07 3.83 -1.83 4,74 8.41
aTia | 422 237 227 474 11
0Tia | 192 323 244 502 10.08
oTig 342 248 813 6,28 12.23
aTis | -T.52 464 .7.17 9.84 12.94
oz -3.61 6.682 -4.78 7.80 12,18
oTia 0.22 4.89 -6.41  12.t5 15.59
oTeg | -2.13 508 670 998 1440
oTep | 446 824  7.37 992 18.42
0Tz, 4.85 6.94 -7.19 L1.61 15.45
0Tz [ -10.38  B.16  -7.39 11.62 24.55
159 0.69 0.70 1.25 .G.67 0.45
153 a.03 0.74 0.61 -1.38 2.28
154 0.34 0.65 0.71 -1.93 2.60
155 1.79 ¢.23 0.77 -3.28 3.24
1 Sg 222 -0.38 .33 -4.82 3.23
1Sy 3.54 0.28 0.96 .5.25 3.30
1 Sa 500 026 G071 585 3.59

muit. r'g e r.; im r:; re cg im cg
159 6.04 0.47 0.29 -7.09 4.14
1510 8.22 0.03 2,22 -8.73 4.92
1514 | 1659 813 268 585 880
17 423 -063 -1.72 -3.87 4,25
1Ta -2.35 0.18 -0.53 0.36 1.48
1Ty -0.40 0.29 .80 -2.14 3.57
1Ty .64 1.34 0.69 -0.58 5.64
1Th 1.53 0.47 0.08 -4.77 4.34
L Ta 42 63t 011 -592 556
1Ty 464 3.03 4.34 -2.35 7.09
1Tx .73 1.08 1.13 -3.719 7.57
1Th 1.06 1.58 1.49 -3.43 4.26
283 8.53 0.40 0.23 -2.46 1.92
2854 1.36 1.18 0.48 -2.43 3.31
28 -0.02  2.59 B.02 1.28 4.36
25 -2.68 3.59 1.36 0.72 6.94
287 | -4.26 383 2.1 6.18  &17
258 | -4.60 507 198 1.89  9.30
259 -4.47 5.73 2.34 .70 11.77
2810 | 265 5.44 3.27 2,25 1ta9
2511 | 348 643 392 2.80 14.07
2513 | 378 609 484 078 11.89
273 0.19 -0.21 1.45 0.64 2.26
2Ty 3.96 .0.03 3.28 -3.54 2.92
2Ty 8.36 Qa7 L8686 -10.90 11.28
351 0.43 002 0.9 0.2T 0.85
aS2 [ 1364 099 030 354 37
aSg 3.52 1.81 217 -6.94 6.40
aSy -0.42 2,15 0.54 -1.31 1081
aSg | 351 271 LST 484 A8.99
45y 0.78 0.55 0.76 Q.67 L1t
459 -0.62  -0.22 0.34 0.24 1.6
455 | 052 027 038 031 239
aSa 0.08  .0.01 0.54 -4.07 L.81
456 | 443 167 135 522 1.5
583 1.1% 1.17 1.29 -0.62 3.9¢
(15 1.02 0.68 1.37 -2.79 3.85
554 | 0.49 035 0868 .1.21 260
»Sh 0.37  0.45 1.03 -1.24 4.09
£S5k 0.56 .43 1.43 -2.38 5.51
g1 11.41 4.01 7.58 -1.61 3.08
s%3 | 16.38 045 1.03 -1.55 3.82
as 3.46 -1.02 0.75 -0.07 1.63
/



Table 5b, degree 4 self-coupling interaction coefficient estimates
mult. cg re ri‘ im "'xlt Te "3 im "-21 re ci im ci Te rg iﬁ
5% | 901 G610 0.0 002 000 008 035 006 033
oS | 024 005 058 043 018 081 065 004 053
087 | -uss 006 025 par 016 026 0l 015 -0.78
0Ss | 078 023 085 055 033 092 0.0 038 047
0Se | 012 23 011 087 046 084 076 Ol6 078
oS0 | 036 o010 028 043 0p4 153 L35 135 050
0S5 | 055 083 011 080 02 153 026 040 -L65
0S1z | 116 058 031 114 019 179 L7 L2 1AT
oS1s | 077 003 037 1325 046 294 LTL 044 101
o814 | 106 103 -083 186 102 158 174 L72 LTS
68 [ 121 00 031 208 131 146 163 025 159
oS1s | 206 121 103 e 22 1T 137 186 216
oSi7 | -113 ws0 072 1st L0l 173 166 03t 072
oSis | 233 088 134 152 L7¢ 1 158 -105 -LOB
oSig | -LET 080 043 L2751 232 Ll¢ 141 -LET
0S0 | 115 085 067 ©0AL L0011z L3T 097 056
0821 | -1.85 008 048 021 22 o7 114 080 -0.39
oTs | -0.47 018 183 o089 065 078 094 106 001
oTs | 012 089 030 035 061 008 038 005 0.
ofr | L77 202 -1m4 093 036 115 071 046 103
oTs | 034 143 -053 087 097 L56 -036 D000 .3.00
oTe | 283 032 063 007 307 195 008 050 349
oTio | 260 006 413 003 025 135 076 048 24T
oTi | 1o 217 188 186 D18 LB4 0.4 067 379
oTyz | 991 o085 .06 307 184 213 138 007 399
oThs | 423 150 157 438 210 241 167 0.2 513
oTha | 292 o095 066 485 186 374 60T 129 426
oTis | 537 119 218 022 374 107 186 015 487
oTis | 391 o001 181 287 055 370 064 L56  9.40
oTyr | 257 o072 116 39T 085 347 -0.40 -282 538
oTis | 145 159 010 &2 -2s8 408 006 050 882
oTie 1040 282 237 426 651 641 147 174 723
oTen | -521 425 397 881 516 431 182 0.3 997
2Tz | 300 284 184 450 el 582 067 004 1190
oThg | 661 235 751 678 086 1256 077 640 504
54 | 013 o023 002 o066 046 027 010 094 000
Ss | 044 0Bl 008 050 043 022 089 T2 006
\Ss | 087 094 035 1lla 985 005 05 016 005
,5: | 08¢ o081 040 1ie 5L 025 114 045 019
(Ss | 085 108 021 159 085 009 083 024 013
S | 022 0Bl 031 168 139 -0.27 086 057 052
1 S10 -0.18 1.09 L1y 2.89 2.84 -1.71 1.35 0.20 1.47
\Te | -1.03 047 015 303 041 062 104 BT4 187
(75 [ 006 018 029 -0.60 149 177 054 103 0.4l
Tz | 034 044 038 o018 037 134 285 162 326
\T; | 574 285 137 072 064 070 LO04 067 302
\Ts | 276 212 038 073 133 288 -065 092 362
(T | 271 001 -L41 107 x8s 021 003 091 L83
28s | 022 o040 021 08 042 067 012 044 0T
25; | 245 o016 044 045 012 17T 062 035 0.83
255 | 052 068 081 .0.69 145 034 045 016 076
2S¢ | 045 021 042 0.3 .85 083 065 044 -1.90
25, [ 147 083 067 132 088 125 088 .03 209
285 | 278 001 017 185 103 040 033 081 270
25 | 301 017 032 200 079 0BI6 -L58 0.30 439
2510 | 204 o039 283 32T 253 042 002 176 524
251, | 240 117 27l 386 119 193 022 42 48
2Sis | 227 136 193 608 186 232 DOl 009 A4
aTs | 222 284 .271 080 034 168 056 -0.96 -1.59
2Ty | -4 319 @38 026 108 o085 131 081 253
45 | 040 L2 031 51L 084 015 032 062 003
aSg 0.09 1.73 -2.49 -0.16 2.91 -3.92 -3.48 -4.99 -0.87
45, | 093 .085 0B8R 25l 278 278 038 208 163
oS« | -t02 02 155 079 02l 016 043 201 LB
WSs | o1 034 097 061 -1p3 052 088 028 081
W54 | 036 195 174 D8l 280 280 455 341 0.2
4Se | 107 1a5 L04 055 08T 061 L33 .D.A0  -1.64
&5 | 0.14 033 095 050 008 037 142 0.24 106
5S4 | 010 050 038 044 152 024 081 019 052
£S5 | 073 113 .03z 088 077 060 007 072 -LI3
§Ss | 075 147 001 a4 039 -lag 022 @27 079
eS2 | 534 o094 05 083 021 -LI16 043 075 037




Table 5¢,

degree 6 self-coupling interaction coeflicient estimates

]

mult. cg re cé im cé re cg im cg re (:g im cg re cg im cg re cg im cg re cg im cg
0858 -.28 0.15 -0.07 0.03 -0.51 .23 0.3% 0.03 -0.13 -0.05 0.14 0.29 -0.34
aSr -0.76 0.67 0.08  .1.03 0.03 0.31 0.10 0.08 0.15 -0.90 0.50 0.68 -0.46
058 -0.06  -0.46 -0.30  -i.03 -0.26 0.26 0.49 0.28 -0.55 -0.85 0.82 0.62 -0.50
oSg 0.33 0.76 0.0% .1.22 -0.33 0.30 .03 Q.55 -0.55 -1.31 0.41 0.59 a.51
aS1g 0.67 0.9% -0.01 -1.56 -0.25  .0.22 0.86 -0.11 -0.95 -1,39 0.38 1.26 -0.12
o511 | -L73 LU0 080 206 79 1.61 083 045 056 078 g.2g 1.06 0,26
05tz -1.61 .71 -0.10 -2.00 -0.83  .0.79 1.99  .0.41 -LrG -1.33 -0.11 2.61 -0.06
083 0.83% 1.24 0.93 L.66 -0.24 0.68 1.81 -1L74 LT -1.25 Q.59 1.78 0.56
0514 -0.56 0.68 0.18  .1.57 L.05  -0.30 247 -l1.23 -1.72 -1.25 0.32 2.05 -0.53
2515 2,33 2.53 102 .2.11 0.61 0.43 2.06 -1.76 -1.83 -1.76 Q.27 L.49 0.33
e85 2.38 221 -0.60  .1.88 260 -1.06 237 -0.47 -1.42 -1.48 -0.39 0.83 -0.32
o517 | 231 248 053 295 os; 028 205 261 186 169 044 298 -0.92
5% -4.93 1.78 -0.80 3.48 .85 0.60 317 .23 -1.23 -3.08 -b.81 3.35 1.61
0819 -2.59 2.68 061 .2,54 012 0.44 131 -1.54 -2.79 -2.90 -1.86 L.84 0.71
o Sa20 1.58 2.51 1.04 2.60 0.48 0.22 2.14 .2.87 -2.30 -2.17 -1.15 102 0.09
0521 -2.85 2.72 0.04 L.46 0.52 0.64 1.8 .3.08 -2.28 1.23 1.42 8.59 -0.02
oT1a 1.02 1.42 L.20 006 -.46 0.85 1.75 0.99 -0,56 -0.18 0.07 0.97 -0.47
o7 -1.02 1.48 0.22 2.10 -1.22 2.11 2.16 -1.22 -1.28 1.60 -6.24 1.81 -0.08
oTa 2.61 2.12 -0.61 -1.04 -0.85 .7 4.37 .0.36 -0.70 -2.30 0.90 2.34 -1.02
T -0.57 3.32 0.75 0.43 -los 1.60 4.23  -1.45 -1.43 -2,68 0,22 .1.88 0.64
aT;q 3.05 293 .39 1.96 2.97  0.is 4.46 -2.06 -1.16 2.48 -1.30 1,21 -3.06
VAT -2.43 8.88 0.34 5.74 -1.78 0.18 L.98 .201 -4.55 -3.23 4.39 2.14 2.03
aTs -2.12 5.43 -4.24 0.56 0.70 0.30 5.08 1.30 -3.74 -1.37 -0.40 1.40 0.97
6T7 4.64 4.88 -3.94  .0.18 -3.69 103 2.53 2.39 -5.41 -8.19 1.60 3.57 -1.26
nTig 2.659 a.62 -2,14 0.55 -3.07 4.31 646 .1.79 s -6.82 -5.34 -0.47 1.08 1.23
oTig -4.59 818 148 _5.49 -1.09 2.56 7.56 .1.35 -4.85 -7.23 0.32 G.92 -4.25
oT2p | 11.29 8.87 543 .6.85 0.7¢  -0.32 741 .60 -5.83 -6.48 307 2.96 -4.53
aTz 1,96 L.68 -2.20  .5.52 -3.69 0.03 9.25  .0.92 -3.76 L0.90 3.04 2.79 -1.19
t Sg -0.15 0.25 -0.43 0.25 0.28 ©.21 0.06 .0.38 d.19 -0.82 0.54 0.79 0.14
158 0.64 0.28 -0.50 .0.38 -0.15 047 -0.17  .0.46 -0.85 -L.07 0.09 0.87 -6.17
157 0.81 0.68 -0.14 047 -0.02 0.19 437 -0.14 -0.36 -0.19 0.47 0.05 0.5T7
158 -0.39 0.3r 0.70 0.69 -0.28  0.11 0.18 -0.34 -0.99 0.13 .51 .55 0.41
15 -0.59 (.56 -l10 0,34 -1.0¢ .0.2]1 -0.63 .08 -1.48 -0.30 -0.14 0.14 0.24
1T $.08 0.01 -0.20 1.14 0.10 0.69 Q.77 0.09 0,47 i.30 Q.62 2.03 -0.15
173 4.97 -1.90 N.35 .0.69 -0.27  .0.10 4.23 1.60 1.81 4.71 -2.40 1.30 0.13
2583 i.04 0.00 -1.58  .0.44 -0.02 0.36 0.10 0.10 -0.84 -0.37 1.08 .0.68 0.83
254 -3.02 0.30 035 028 -0.36 0.70 -0.30 a.07 -0.41 -0.44 6.17 0.28 0.24
255 0.05 Q.41 -D.18 G.26 .25 1.08 -0.67 -D.86 -1.63 -3.32 L.z 0.64 1.00
258 -1.08 0.20 0.13 0.75 -0.05 112 0.35 .1.05 -1.33 -0.99 0.78 0.64 -0.37
257 2.14 1.00 0.02 0.58 -1.70 1.53 2.95 1.40 -2.57 -0.09 -0.15 1.65 1.25
25n 1.47 3.48 077 .0.50 -0.23 1.42 2.58 .0.88 -1.07 -1.60 -0.75 3.31 019
259 Q.47 2.56 -1.26 0.39 1.t2 0.30 4.18 1.84 -0.22 -2.51 -0.15 3.16 -0.62
2810 ‘1.70 2.30 -3.34  -3.22 0.28 .0.55 4.893  .1.57 -1.57 -2.63 L.87 2.17 0.41
281 -0.53 4.26 -2.88 2,33 1.9i 2.67 749 2.1 3.16 -3.04 296 2,16 -2.58
2813 Q.67 4.47 -0.90 294 -2.42 2.13 7.31 -1.88 -3.52 -5.26 0.75 1.94 -3.42
358 1.85 1.76 -0.50 0.78 -1.50 0.04 1.19 £.39 -0.42 -1.51 2.83 0.32 0.94
PELY 0.66 Q.07 -1.85 0.96 -0.29 0.25 -1.24 0.33 -3.68 0.03 -0.28 0.20 -0.21
583 L.25 0.01 -0.64 0.86 1.0z .0.38 -i.13 0.32 -0.36 -0.76 1.286  .0.38 4.93
5Sy -0.38 0.18 -0.20 .0.19 0.19  -0.0% 0.06 0.26 -0.80 -0.80 -0.63  -0.30 -3.03
55E 0.09 0.24 0.07 0.89 0.08 0.00 0.50 0.1§ -0.E1 0.22 -1.53  .0.089 Q.00
556 -0.12 .44 0.48 0.02 0.94 0.98 0.77  -0.41 0.34 0.15 -1.13 0.48 0.82
65 0.44 0.98 -0.61 -0.92 -0.28 .1,%4 -1.00 0.48 042 0.34 107 o128 -3.32




Table 5d, degree 8 self-coupling interaction coefficient estimates

mult. r_-g re cé im cé Te cg im cg Te cg im c'g re r:g im t:; re cg im cg Te cg im cg re c; im c; re z:g im cg
058 0.48 -0.38 -0.23  -0.48 -0.08  -0.82 0.10 0.35 -0.73 -0.28 0.13 0.14 001 0.36 0.06 0.50 -0.54
05y 0.47 -0.02 0.14 0.FT 0.14 0.26 -0.09 0.01 01l 0.03 0.06 -0.07 0.01 0.12 0.03 .47 -0.08
nSho 0.38 0.]0 0.47 092 085 012 -0.28 0.00 -0.12 0.22 -6.38 -0.30 -0.23 0.68 -0.06 D.28 -1.05
nS11 -0.24 Q.11 .15 -2.14 0.44 1.88 0.5 -0.19 0.28 1.21 0.08 -D.4l -0.70 L.74 -1.12  -L.53 -0.40
0512 2.07 .66 -0.46 .50 -1.02  -0.95 -0.51 -0.38 177 0.03 -0.21 -1.09 .14 0.92 -3.28 0.35 -1.895
0S1a 1.59 0.48 -0.62 L.7% 1.22 0,09 -0.5L  .0.27 -1.70 -0.75 D48 -1.34 -0.70 0.86 -0.25  -0.84 -1.23
0514 0.03 .40 Q.74 -1.33 -0.07 0.27 0.13 -0.91 -1.49 0.05 -0.35 0.7 -1.54 1.45 -0.62 0.53 -0.62
nSis 0.04 1.28 -1.35 1.00 0.16 0.23 -¢.41  -0.49 2,34 0.17 0.42 221 -1.72 0.93 -0.65 0.10 0,55
8516 013 0.38 -1.94 LM 0.3% 0.14 0.01 0.56 -1.49 G.00 092 -2.69 -1.68 0.59 -1 0.02 -0.61
oSy 019 1.13 0.32 2.9 0.18 0.22 0.37 147 -1.8% .0.49 003 -0.84 -1.13 L.10 .88 0.06 -1.52
T L.31 -i.29 -1.28 3y 0.04 1.32 L17 -2.94 -0.82 -0.63 L.14 3.60 -0.19 .71 -0.156 .99 -2.67
'L 0.26 1.47 1.29  -3.68 0.50 -0.08 037 -1.38 -3.01 0.91 .32 -2.04 -1.38 2,35 -0.51  -0.75 -1.51
0 S9p 0.46 1.80 0.97 2.62 0.17 0.83 0.78 1.84 -85 -0.09 a.1¢  -2.20 -1.70 0.14 -0.82 0.61 -3.47
0521 0.79 1.75 0.29 .2.81 -0.21 L.86 3.57 -3.03 1.98 .81 016  .1.07 -2.48 0.46 181 0.64 -2.08
oTio 9.25 0.44 0.14 .30 4.14  -0.28 0.32 0.00 0.28 .0.70 9.20 0.15 0.26 7.32 0.46 0.00 -0.24
LY AT 5.32 3.94 3.44 202 2.56 3.13 3.44 0.28 -1.21 .0.12 0.80 -2.88 0.81 1.39 -1.67 2.03 2.5
aTie -1.30 6.02 .15 -586 3.20 0.74 -3.44  -0.44 -0.50  -0.29 962 117 -4.39 D21 -4.95 1.0t 0.33
aTir -L.70 1.51 .77 -4.21 -1.84 1,19 0.12 -2.78 -1.685 -2.19 2.63 -2.78 -6.46 2.54 Q.00 0.91 212
AT 4.95 0.t9 0.57 5.50 -0.04 1.70 0.43 0.13 4.09 0.12 -2 4.45 -3.25 1.95 2,56 1.49 -0.75
0Tig 2.01 3.93 2.26 5.24 -3.45 4.4] 1.28 3.74 -1.01 1.33 5.52 -5.26 -1.38 L.08 -0.09 0.42 -1.73
0Tz0 742 1.4 -5.13 3.52 -3.71 3.70 .19 -0.24 3.75 0.1% -0.72 1.63 -5.95 0.86 5.03 0.89 -0.02
nToy 1.00 6.59 5,20 -5.76 .25 -l.30 1.14 -3.89 -2.83  0.81 -0.67  -1.90 -1.39 Q82 077 -1.02 0.82
y S 0.91 a8l 0.17 0.26 .22 081 0.15 0.88 -0.68 1.60 0.01 -0.58 -0.40 0.51 -0.05 L.18 0.38
138 0.7 748 0.37 0.10 -0.16 0.45 0.09 0.44 -0.74 J.14 0.31 041t -0.26 .20 0.85 L.80 -0.83
159 0.72 -1.01 0.06 0.25 2.57 -1.61 -0.22 1.13 022 078 0.22  -0.54 0.14  -D.10 0.32 1.44 -1.65
2510 -1.50 0.44 0.59% -3.04 0.38 0.90 .85 -1.52 -1.40 0.39 0.33 Q.13 -0.65 -0.66 0.72 1.65 -1.00
2513 | -0.58 0.08 1,07 -1.95% -1.96  -0.87 1.34  -1.56 3.99 0.45 1.37 .0.52 -3.18  -2.22 1.90 1.58 -1.74
ey -0.04 017 0.02 0.03 -0.26 0.25 0.08 0.56 0.08 .30 0.1i -0.01 0.39 -0.43 0.00 -¢.38 .41
554 -0.13 0.06 0.78 0.63 0.22 0.34 -0.15  -0.08 -0.51  -0.46 0.42 3.01 -0.74 -0.46 0.16 .97 -0.23

——



Table Se, degrees 2,4 cross-coupling interaction coefficient estimates

pair

[1]
2

i
re 62

imcj.l,l T

2
ECI

; 2 0
1M o Cq

re c; im c; Te cq  imcy re ci

3

2

im ci re c: im c:

153-35)
0510 01
0511-0Th2
0517-0T18
051g-0T20
0520-0T21
0511257

0.39
LaT
1713
2.57
5.68
6.08

-0.11
0.78
1.66
1.51
2.40
.96

Q.19
S
1.33
-1.07
-2.83

-0.81

1.35
1.82
1.98
2.65

-1.08 312

-0.06 -0.06

-1.47

0.52

0.43

L.44 0.91

-1.67  -0.51
LT

-0.04 D.16

0.72 2.09
0.27 1.50
1.15 -1.35

0.08 0.31

-0.93 -0.60
1.26 0.23
0.49 -0.13

0.26
0.28
-1.81

4.07

Table 5f, degree 6 cross-coupling interaction coefficient estimates

0.20 -0.14 9.07

-1.20 0.41 -0.40
-1.08 .40 1.86
-0.60 0.32 0.64

pair

[1]
‘g

1
re Cg m Cs

re e§ im cg 23 cg im cg re ea im c;

]
re cg

im cg

re cg im cg

Table 5g, degrees 1,3 cross-coupling

oTiz-257
pf11-287 | 0.9
-0.50
-1.51

0817251
0Tz2a-0%19

-2.00

L 09

-0.06 -2.44

1 0.06

0.74 0.97
0.75 0.43

0.18 .45 2,68 0.16 -1.48 1.06
0.09 1.94  -0.48 -0.93 -1.43 0.91
1.89 4.08 0.48 3.31 0.55 2.47
1.3 -1.61 034 -0.79 100 1.44

0.40
1,18
2.81
-0.70

3.03
-0.60
-L.67
-3.44

-0.28 -0.33
L.11 0.52
1.28 -0.21
1.64 1.22

interaction coefficient estimates

pair c? re clL im c{ cg re c§ im cé re cg im cg re cg im cg

155-254 {044 130 040 265 1.28 -0.73 002 132 O0.18 -0.69

15625 | 045 1.70 040 305 088 120 002 182 039 .0.79

651 2Tq { 0.36 007 .2.50 255 046 -1.85 .1.65 0.19 .2.33 -i.68
Table 5h, degree 5 cross-coupling interaction coefficient estimates
pair cg re cé im cé Te cg im cg re r:g im cg re cg im c; re cg im cg
155254 | 014 017 009 -0.28 053 .0.07 018 021 050 038 011
156285 | 0.11 092 002 096 0.13 .0.37 -0.12 0,20 029 041  0.45
259-0514 | 580 149 060 406 130 063 099 -1.56 .3.59 0.34 -0.19
3Sg-a8a | 1.26 178 033 140 0.3F -1.26 093 -162 046 1.04 0.08
454,Tg | -3.95 100 048 0.6 095 -1.15 063 072 0.25 0.18 417
5542Ts |-3.61 019 ©.47 064 146 096 1.66 -0.38 -0.64 192 132
Table 5i, degree 7 cross-coupling interaction coefficient estimates

pair eg re u::.llr im c# re c?, im cg Te C?r im cg re c; im c; re r:?. im c? re cg im c? = cg im c;
358-8653 0.74 -0.29 -0.49 3.39 0.40 06.33 -¢.09 -0.19 -0.53 0.08 0.19 0.38 -0.59  -1.04 -1.36
4541w | -3.20 0.26 2.34 038 -9 -0.30 07 -1.17 2.00 0.30 .56 0.17 1.96 .0.05 -0.43
554 2Ty 0.60 -0.80 -0.28 0.79 -0.15 2.15 -0.66 .0.18 1.25 0,06 0.00 -0.72 0.06 -0.59 -0.11




Table 6: Effect on HSNR Misfits of degrees > 4 and coupling

target HSNR MR HSNR amp misfit (%) HSNR phase misfit (°)
muliiplets degrees 0-4  degrees ()-gax degrees 0-4  degrees (-suyy degrees 0-4  degrees 0-sg,,
058 .20 13 5.0 4.5 4.1 3.5
15k .19 .06 1.5 0.7 5.1 2.8
254 18 12 11.8 7.9 3.7 2.0
0S20-0731-2513 .37 31 15.5 13.7 8.8 6.6
only Coriolis  all estimated  only Coriolis  all estimated only Coriolis  all estimated
coupling coupling coupling coupling coupling coupling
2855-18% {a) .29 .10 15.0 25 7.6 2.5
55527y (a) .32 13 8.8 4.7 8.8 3.1
0T20-05:8 .39 31 15.8 13.8 9.5 7.9
355-453 (a) .26 .10 10.1 6.1 9.9 5.6
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Figure 3

correlation confidence comparisons of mantle vs models

soiid: MK12_WM13 to S16B30
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Figure 4

A ; input interaction coefficients of Coriolis coupled synthetics

O : spectral fitting estimates (no coupling

employed)
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Figure 6

sta= GUA chn= VGZ event= 34160 _NBolivia time window= 5-83 hours
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Figure 8
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Figure 11
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Figure 12: Plate A
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estimates : Figure 12: Plate B
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Figure 12: Plate C
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Figure 13

synthetic misfits for 0T13-0S12
1217 records, additive noise only
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