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SOURCE MECHANISM OF EARTHQUAKES FROM SEISMIC WAVES

Agustin Udlas and Elisa Buforn

Dpto de Geoffsica, Universidad Complutense, Madrid

1. SQURCE MODELS OF EARTHQUAKES

1.l. Kinematic and dynamic models

Once it was accepted that the mechanism of an earthquake is
that of a fracture of the material of the earth crust, a quest was
started to search for adequate mathematical and physical models or
representations of the source, in such a way, that the elastic
displacements can be derived from them. These scurce models or
representation are defined by a small number of parameters., One
can, then, for a particular earthquake determine these parameters
from the observed -elastic displacement field, that is. from the
abserved seismic waves recorded in seismograms. The fracture
phenomenon can, in general, be considered from two  different
points of view: Kkinematic or dynamic (Aki and Richards, 1980;
Udias, 1991). The Kinematic models  are those that assume th
characteristics of the slip or displacement discontinuity at th
fault plane. These models are relatively simple and the elastic
displacement radiation field can be dérived from them. The dynamic
models present a much more difficult problem. They try to relate
the fracture process to the stress conditions and the material
properties at the source region.

1.2 Point source equivalent forces

The firslrapgge_r that proposed a mathematical representation
for the model of the source of an earthquake is that of Nakang
{1923) who based his work an that of Love (1920} and Lamb (1904),
Nakapg _tried to find a modél"tl’@_‘t‘ would produce a quadrantal
distribution of compressions and '\Qlatations for the first
impulses of P waves. His models consist on__ sets of _forces acting

at a point of a homogeneaus isotropic medium and he calculaged the

displacement” field onding to them. Among the models he

studied . two, the single couple, and the double couple without
moment had a long history. Honda and other Jjapanese authors
developed Nakano’s ideas (Honda 1962) . He calls these two systems
the type [ and type Il force systems and, following Sezawa and
Kanai (1932} expressed the displacement field in  sphericatl
coordinates. Point source force models were alsa developed by
Russian seismologists leaded by Keylis-Borok that developed
several other source types (Keylis-Borok et al., 1957).
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All these formulations have in common that they view the mode|
of the source of an earthquake as a system of forces, mainly
couples, acting at a point. From them, the displacements for the
seismic waves can be deduced. The equation of motion for the
elastic displacements in an infinite, homogeneous, medium for
forces F acting at a point, using tensor notation, is

Cuu uk.lj * FI = pﬁl (n

Where C:m are the elastic constants and p the density of the

medium. The indexes after the commas represent derivatives with
respect to the space coordinates and repeated indexes are summed.
The point farce F can be considered as the Ilimit of a distribution
of forces acting on a volume V., as it is shrunk to a paint,

Flttl = lim F(1.€) dv 2
vao v '
In .the simplest case, equation [11) is solved for a single farce
acting in  a particular direction _  Anp expression for the

displacements v caused by a force in the i direction can he

written in the form (Knopoff and Gilbert, 1960)
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Where ¥, are the direction cosines of the line from the source

to the observation Point, r  the distance and « and B the

velacities of the P and § waves. The index j defines the direction
of the force.

The dependence on time of the force must be specified. This can
be a harmonic function or, more realistically, some kind of
impulsive  function, such  as a Heaviside step  function. The
solution can be Separated into two parts ., the far-field and the
near-field. The former correspond to the displacements far away
from the source . and contains only the part wijth the lowest
inverse power of the distance, the first two terms of (1.3). This
part of the solution is used in the studies of the source from
observations at teleseismic distances. Near-field displacements
include alse the third term  of (L.3). The solutions  for the

infinite, homogeneous medium enly give the displacements of the P
and S waves,

From the displacements duel to a force, those due to a couple
of forces can be derived. [f uI are the displacements produced by

a force acting aleng the X, axis, those for a single couple in

the XX plane with forces alang the X, axis, are

U] = l.llz (1.4

and for a double couple | with the farces acting along the axes )(I
and x
2

u = u + oy (1.5

Displacements dye to other combinations of forces can be deduced
in a similar manner.

The two models of point forces that became mare widely used to
represent the source of an earthquake, were the single and doubie
couple, since both of them give a quadrant distribution of
tompressions and dilatations for P waves, in agreement with the
observations (Fig. 1.1). The double couple system is equivalent 19
forces of compression and tensional character ar 4s degrees of the
couples (Fig 1.2). The relation between these models and the
physical problem of a fault was at first rather qualitative.
Wrongly, the single couple wasg thought by some authors to

represent the motion of the two sides of a fault. The fault plane
would, then, correspond to the plane normal to that containing the
forces. In the case of the double couple model, there are two
possibilities for the fault plane.

The controversy about which of the two models best represents
the source of an earthquake was to be solved comparing the
theoretical and observed radiation patterns of seismic waves. Both
models give the same radiation pattern for P waves, but not for
the S waves (Fig 1.1). As related by Stauder {1962), early studijes
by Russian seismologists, using the patterns of first motions of
SV and SH waves seemed 1o have proved the adequacy of the
single-couple model, although the results of the direction of the
S waves presented by Honda agreed with the double-couple model. At
that time, the problem seemed to be caused by the poor quality of
the seismic data. In the 1960's, after the establishment of the
WWSSN  stations, good quatity, long period $ wave data showed
abundant evidence in favor of an agreement with the expected
radiation pattern of the double-couple source ( Khattri, 1973).

The point source force models were also used to calculate the
radiation pattern of surface waves that could, in this way., also
be used in the retrieval of the saurce parameters. The first work
in this direction seems to be that of Yanovskaya (1958) who
calculated the response of a layer over a half-space to Love and
Rayleigh waves, for single forces and couples. Ben-Menahem and
Harkrider (1964), Harkrider (1964) and Sajtq {1967} calculated the
radiation patterns for surface waves, Love and Rayleigh in a [)at
stratified earth for buried point sources of single and double
couple type. They gave the radiation patterns for amplitudes and
phases corresponding  to  different depths  of  focus and for
different periods.

Generally, the paint source force model js used 1o calculate
only the orientatjon of the source. |In the case of the
double-couple (DC) model, this is given by the unit vectors in the

direction of each couple (N and Y axes) Because of the

orthogonality condition only three parameters are necessary to

represent the orientation of the source, namely, ¥, E)x. dby.
x

where ¢ and B8 are spherical coordinates measured from north and
vertical downward . For the equivalent P and T system , the source
parameters are #T, GT, Op -The two normal planes to the plane

containing the forces are the two possible faujt planes. The
orientation of the fault plane is given by the angles ¢, & A,
strike, dip and rake or slip  of the motion on each plane (Fig.
1.3). Many methods for the determination of the focal mechanism
are based on thig simple mode] and provide these three parameters.
The double couple (DC) point  source is still a good first
approximation to the source of an earthquake when observed at the
far field with tow frequency waves.




1.3. Kinematic modeis. Dislocations

The physical model of a fault as the source of an earthquake
led to the application of results from dislocation theory to
this  procblem. The earljest ideas on elastic dislocations were
proposed by Volterra (2907) and tater developed by Nabarro
(1951).  Applications to the representation of the source of
earthquakes were first made by Vvedenskaya (1956, 1959) who
considered that the formation of a rupture, or displacement
discontinuity in the focus led to an instantaneous removal of
stresses over the fault surface, She developed the displacement
fields due to several types of faults. The problem was also
treated by Steketee (1958), Knepoff and Gilbert (1960} and
Maruyama (1963, 1966) wheo also showed the equivalence between
dislocations and body forces. This problem was solved in a more
general form by Burridge and Knopoff (1964). They used a
representation theorem in terms of the Green's runction that had
been introduced by the previous work of de Hoop (1958) and has,
since, become the standard way tc present the equations of the
displacement field |p source  mechanism  studies. The Green’s
function in elastodynamics represents the displacements
correspending to  a  unit  force in  an arbitrary  orientation
impulsive in space and time. For an infinite, homogeneous medium,
the Greer's function G” is given by equation (1.3), substituting

F(t) for &t), the Dirac's delta function.

A dislocation is an interpal surface across which there s
some  kind of discontinuity in displacement or stress. Let us
consider the case in which the medium is infinite, there are no
body forces, and across and internal surface ¥ there is continuity
of  stress and a discontinuity  of displacements, given by
Aul(El.l], which is wusually called the slip of the fault (Fig.

L4) Using the representation thecrem in terms of the Green’s
function, the displacements ul(xj.t) for any point of the medium

can be written in the form

ulx 1) = j er BUlE . TIC G (X ,UE .1l n(E) dS
n —w T i s ijkl nk,l s = i s

(1.6}

Where n} s the unit vector normal at each point of the surface T

C”kI the elastic constants of the medium and G“ the

nk,
derivatives of the Green's function. For a shear dislocation in an
isotropic medium, if the slip is in a constant direction given by
the unit vector I|' equation (1.6) becomes

t = I d'rJ- pdulln +1n)gG ds (1.7)
1) )i kl,)
- I

This expression gives the elastic displacements at any point of
the medium, in terms of the slip on the fault plane ¥ and the
Green's function. The orientation of the source is Eiven by that
of the wunit vectors li and ni - Since in (L.7) we can

interchange these twa vectors with the same result for u_. this

means that there are twg perpendicular faults that resuit in the
same displacement field. This ambiguity is inherent to the problem
itsell. A shear dislocation has been shown to be equivalent to a
distribution of double-couple point  forces on the fault plane
(Burridge and  Knopoflf, 1964), [n equation  {1.7), the time
dependence of slip must be specified, often a step  leaviside
function is used. If the displacements uooare observed at large

distance compared with the fault dimensions and for large wave
lengths, 1the source may be considered as a point, and the
displacerments are given by the time convolution of the slip
function with the derivatives of the Green function. For the point
source approximation a pure shear dislocation is equivalent ta a
double-couple (Fig. i.2).

For a point shear dislocation with slip  Au depending on
time, the far field for the P and 5 waves in an infinite
homogeneous medium is given by

P S
. !
u = N ¥yrnl +«anl a0 - ) 1.8
k dnpa’r f}k 1) ) ) o
5 S
- r
U= ry -3 l3in| + nllaait - 2y (1.9}
k 4"pﬂzr ik [ I Y N 3

Where S is the area of the dislocation, u the shear modulus, and
7, the direction cosines of the line from the source to the

observation point at a distance r. It is Wmportant to notice that
the displacements y depend on the slip velocity A4 and pot on the
slip itself. The source ceases to radiate energy when A = 0.

The  representation theorem can  also be  applied to
distributions of body forces over a valume Vv in the form,




-]
u(x ,t) = J‘ dt I FIE 116 (x,1; E .t) dv (t.10)
n 3 - v s LU 3

In  this form, the equivaient body forces ctan be found for
different kinds of dislecations. in equations  (1.6) and (1.10)
homogeneous initial ang external boundary conditions are assumed.
This representation of the displacement fjeld is  very usefu]
since it allows a rapid calculation of the displacements for a
variety of source types and orientaticns once the Green's function
has been determined for a particular medium.

1.4, Determination of source mechanism parameters

Seismoiogical methods lor the determination of the parameters
that define the mechanism of earthquakes are based on the analysis
of observations of seismic waves. In general, this leads to an
inverse problem: given a set of abservations, the values of a set
of source parameters are sought which best fit the observations.
The parameters depend on the madel used 1o represent the mechanism
of the source. In this way, the methods to determine the source
parameters are based on the devefopment of the theory of the
Source representation. The direct problem, that is, the equations
that gives the elastic displacements field corresponding to a
given source model, must be lirst solved. Since the seismic waves
Must propagate from the soyrce to the point of observation through
the earth, its structure must be known in advance, The fact that
our knowledge of the properties of the propagating medium s
always imperfect, imposes certain limits to our knowledge of the
source. Which characteristics of the seismic signal under study
are due to the source and which are due to the medium is 3 problem
always present. |In general, there is a trade-off between the
details of the source that are sought and the details of the
structure of the medium that must be assumed to be known.
models  of  the source, cohserved at lang
frequencies, are little affected by the propagating effects. Onp
the contrary, the complex models observed at near distances and at

high frequencies are moere affected by the structure of the earth
crust,

Simple
distance and low

L5 Signs of first motions of P-waves

The first methods to study the source mechanis
were  based on  the observations of the compressional  or
dilatational nature of the first impulse of the P-waves. Because
af the simplicity of thisg type of data, these methods are still

m of earthquakes

widely used. One of the first indications that there may‘ be a
connection between this type of observations and Fhe mcch.amsrfxlof
earthquakes was made by Walker in (912, The f':rsE to .ldent:ﬁcd
the quadrant distribution of compressicns and .dllatatlons was
Shida in 1917 ( Kawasumi, 1937). The Ffirst working m.ethod was
developed by Byerly in 1928. He accepted Reid's elastic rebognd
theory and used the theoretical results of Nakano (1923), assuming
a single couple of forces as the source model. To reduce the
observations to a homogeneous medium, he introduced the_concept of
extended positions. The method consists in the separation of the
regions of compressions and dilatations by two orthogonal nodal
planes, the fault plane and the auxiliary plane. Thg problem was
solved In a graphical way, plotting the observations at their
extended positions on a ¢ gographic  projection, with the
anticenter as the pole. On thié"projgction, the .nodal plar_les
preject as circles. From this representation, the strikes anq dips
of the two nodal planes can be determined. From -t-hg‘ @ethod itself,
one cannot identify the fault plane from the auxiliary pla_ne.
Byerly's method, known as the fault~ptane solution, was 'rapjdly
adopted as a standard method for the study of the mechanism of
earthquakes

Independently of Byeriy's work, studies of the mechaniqm of
earthquakes using first-motion data were also pursued in lJapan and
Europe. An important contribution from these two groups 1s_tho use
of the focal sphere. The foca} sphere js used to project ghe
observations to points on the surface of a sphere of unit radius
and homogeneous material around the focus simplifying the solut!()n
of the problem. Ritsema (1955), based on early work ‘.ny Kllrllng
(1942), was the first to carry out the complete determination of
the fault-plane solution using the Wuiff-net projection of the
focal sphere. In Japan, the focal sphere was initially usedl to
represent the results of the analysis performed on geographlcal
maps, and later to plot the data and solve the problem using a
Schmidt egual-area stereographic projection (Honda, 19{)2) In the
Soviet Union , since the middle 1950, seismologists usu‘ a
Wulff-net projection of the focal sphere to plot firs.l motion
polarities of P, SV and SH waves and their corresponding nodgl
lines (Keylis-Borok, 1956}. Another projection used by SlauderA is
the central projection, where the nodal planes project as straight
lines (Stauder, 1962). The equivalence of the different
representations and projections was shown by Scheidegger [1957)

1.6 Geometry of the source

The orientation of the slip on a fault plane is given by the
unit vectors n (nermat to the fault) and 1 (direction of slip) or
by the angles ¢, & y A (Fig. 1.3}

¢ = Azimuth of the trace of the fault plane, measured from 0  to

360° clockwise from North, so that the dip falls to the right




hand,

8 = Dip of the fault plane from  0° 1o 90°, measured from the
horizental

A = slip angle from -180° 1o 180° from the horizontal o the
direction of the slip on the fault plane, in such a way that the
dlp falls on the right hand of the azimuth.

The relation between the system of axes of the forceg (double
couple) X, Y, Z, with the principal axes of stresses P,T, z
are (Buforn, 1985},

a, 1Y 2
Bx =g 2 (Lil)
T, o}
@ 12z
¥ (1.12)
rsy =B (- :
0
Ty

Where B js the matrix of the direction cosines of the axes T, p,
Z.

T
8 = “pn BP n (1.13)
4

Due to the orthogonality of the axes only three angies are
needed to define the orientation of each axis:for example, BT, @T
¥ QP' or of a plane & ¥ X The relation between thege
parameters are

P = @x +n/2
3 = Bx (1.14)
. Cos By
A = sen”
sen Qx

To correct for the heterogeneities of the earth, observations
are projected on to the surface of the focal sphere. Each point of
observation {station} projected tracing hack along the seismic ray
to the focus, where jrg position s given by the polar angles ihy

¢ (Fig. L5),

ih: Incidence angle at e focus, measured from the vertical
-
downward from o to 180

from 0 to 360°.

Determination of the incidence angle in the focysg (take-off
angle) depends on  the earth structure. For large (teleseismic)
distances (A > igop km), ih can be determined from the travel-time

curve. For a focus gt depth h the relation is

h dt
Seni = —_——— {115)
h
™y da

Determination is usually done by computer brograms that
determine ih from the Jelfreys-Builen tables. In the case of short

distances (A < 000 kmJ, determination of ih implies the knowledge

of crustal and upper mantle models for the particular region. One
type of mode) recommended s ope formed by linear gradjents of
velocity., For these models ih varies ip continuoys form with

distance, [p the models of layers with constant velocity jh has

discontinuitjes,




Once the observations are projected on the surface of the
focal sphere, the method consists jp separating them into four
quadrants of alternating compressions and dilatations with two
orthogonal planes. The solution of the problem may be dene in
graphic or numerical form, Graphic solutions may be done using a
stereographic net or representing it on the screen of a computer.

1.7 Graphic methods

The data for the graphic solution of the problem are for each
station P wave Polarities, dilatations Or compressions, azimuth
from the epicenter to the station and incidence angle in the focus
or take-off angle . The solution is made on a stereographic
Projection of the foca) sphere (Schmide or Wulff net). Generally,
the lower hemisphere of the focal sphere is projected (0 =x ih =

90 ! Tor this reason the upgoing rays “h > 90°) must be projected
on the lower hemisphere

(1.16)

Each station js located on the focal sphere in the following
manner: the azimuth ¢ jg measured from North clockwise, and the
take-of f angle ih from the vertical downward, that s from the

center of the projection. At each station, a different symbol g
used, a black circle for compressions and a white one o a
triangle for dilatatjons, [n Figure 1.6, the Following stations
are represented.

Stati .

tation ¢ |h P
STl 40 60 D
5T2 120 30 C
ST3 212 50 ]
sT4 310 80 C

Once all observations are situated on the prejection of the
facal sphere, compressions and dilatations are scparated by one of
the great circles of the net, this is calied the plane A. This
circle is drawn and its pole, that js the X axis is located. The
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pole is located at 90° normal to the plane A (Fig. 1.6} The second
Plane, plane B, must pass through the pole of the plane A, X aXis
and separate the compressions and dilatations in four alternating
quadrants. The pole of the Plane B must fall on the plane A, so
that the two planes are orthogonal. The 2 axis (null axis) ig
located at the intersection of the two planes. The axes of
Pressure and Tension (P and T) are Iocateg at a great circle that
passes through the axes X and Y and at 45 from them. The T axis
is located at the compressions quadrant and the P axis at the
dilatations quadrant (Fig. 1.6} Once the planes A and B, and the
axes X, Y, Z, P and T are located the angles ¢ azimuth, & dip and
A slip, for each of the two planes and for each of the fjve axes
the angles & and @ are measured. The values corresponding to the
solution of Figure 1.6 are:

1 ]
P 20 BZ
T 126 40

The orientation of planes A and B is given by the angles ¢. s,
A which are obtained from the prejection in the following Form:

¢ : Azimuth is measured from 0 to 360, from North clockwise to
the intersection of the plane  with the horizontal (limit of the
net) which has the dip of the plane to the right.

& ¢ dip measured from QO to 90 from the horizontal (from the limit

of the net toward the center! at 90" from ¢.

A : Slip mesured from -i80 10 180 frem the horizontai starting at
the azimuth ¢ along the plane to the pale of the other plane (in
plane A to Y axis and in plane B to X axis). The angle is positive
if  the center of the projection  fails on  the compressional
quadrant (reverse fault) negative if it falls on the dilatational
quadrant (normal fault).

For the solution of Figure |6, these values are:

¢ I3 A
plane A 146 50 35
plane B 260 64 134

The graphic determination can be also made in an interactive
manner on the screen of a computer. Data needed are the same as in
the case of the manual solution. For this purpose Buforn (1994)
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has written a useful program. Station data [ ¢ jh' *loor 1) (4]

compressions, -| dilations) are entered in the €omputer or read in

planes A ang g The program adjust the orthogona!ity of axes ang
planes. The Program draws the Planes on the Screen and caleulate
the score or the solution lproportion of correct data), Examining
the solution on the screen ang the value of the scare, new values
for for the orientation of aXeS or planes are given until the

1.8 Numerica) methods

With the advent of computers, the question sggp arose of
applying humerical methods to the fault-plane prablem. The first
warkable formulation of the problem Was  presented by
(1961). The solutien g given by the orientation of the source
which correspond tg g maximum probability of correct readings. The
function to be maximized jg

N 1

= );,l log 5[ I+ er‘f(Ul/al sgn UI sgn RL I

Where U‘ are the theoretical and Rl the observeq amplitudes of p

waves ang @, a constant that represents the noise |evel. The

antipodal plane of the epicenter. The problem Was reformulateg by
Kasahara {1963) using  spherical coordinates in the focal sphere
weights for the stations and a method of successiy
from an initial solution. The basic ideas of Knopoff ang Kasahara
were used in a computer program developed hy Wickens ang Hodgson
(1967) in a modified way. Thig Program was yged eXtensively in the
Dominion Observatory (Canada) ip 2 reevaluation of the fauit-plane
solutions for the period 1927 to 1962,

A probabilistic formulation of the protlem Was proposed by
Keilis-Borok et al. {(1972) USINg 3 maximum tikelihood method. 1t
® is the Probability of 4 correct reading with Fespect to the

expected sign uk from a given soyrce orientation, the likehoed

function jg given by

L= T on to vz LR (1.18)

« IS a function of the three angles that define the orientarion

of the source. Maximum likelihoad estimates of these Parameters
are Tound by the Mmaximization of L.

A very usefy| numerical methog Wwas developed by Briilinger,
Udias and Bojt (1980) and Udias and Buforn (1988, In this methog
the Probability of reading a Compression is 4

iven as a function of
the expected amplitude of the P waves Alg,8,1)

T o= prob(‘f‘= 1l =5 . ukzylelalw.a,).l) (1.19)

Where 5 has valueg between ¢ and 1/2 apd represents reading
Srrors and ¢(A) s the cumylatjve error  function. The likelihood
function g similar  tq €Xpression (}.1g) substituting a by ¥y

which are now the observey values of
r!‘t by the exXpression (113}, The method gives the standarg

of the Parameters of the solution. ap example of 4 Numerical
solution Tound using thig method g given in figure 1.7 This
method has peen extended by Buforn ang Udias (1984) to yse also

An extension of the probiem to consider rayy
for groups of earthquakes in the Same area was a)gq Fresented by
Brillinger gt al. {1980, In  this case the probability  or a
correct reading js g funection of the expected amplitudes of the p
waves and the likelihood function i Written in the form

plane sulutions

MN] 1
L=]:le:_llog ;11—[2::”‘—11Y”‘1 (1 20)

Where M oo the number of earthquakes and Nl the number o

observationg in each earthquake, nlk the probabjlity of reading a

compression at station k from shock i | apg Yik the observations



of P wave polarities at station k from shock i.
solutions the method permits the separation of the s
groups, each with the same regional mechanism.

For group
hocks  into
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2. SEISMIC MOMENT TENSOR

A very important concept in the formulation of the theory of
the earthquake source is the seismic moment tensor. The seismic
moment tensor was first proposed by Gilbert (1970) defining it as
the integral over the focal volume of the stress drop, in such a
way, that the body forces can be derived from it. The meaning of
the moment tensor was clarified by Backus and Muleahy {1976) who
pointed out to certain confusions in the original formulation,
They related the moment tensor to the stress glut or difference
between the elastje stresses and the trye physical stresses. In
other words, it represents the jinelastic strain in the source;
that is, the internal Stress necessary ta cancel the strain
produced by internal non linear processes (Madariaga, 1983).
Geller (1976) showed the relation of the moment tensor to body
forces and the expressions of the elastic displacement field (n
terms of the Green's function, according 1o the formulation of
Burridge and Knopoff (1964).

2.1 Definition

The moment tensor MIJ can be expressed as the integrai of the
moment tenser density rrllJ over the source volume, or the source

surface. The equivalent body forces per unit valume can be shown
to be related to the moment tensor in the form

f = -m 2.1

In this way, the moment tenser can represent very general types aof

force models. The components of M” cerresponds to cauples of

ferces which for j = Jo they have the arm in the same direction as
the forces and for | = i, perpendicular to them (Fig.2.1). A
combination of the resultant 9 couples may represent any type of
point source.

For homogeneous initial and boundary conditions, the elastic
displacement field for a volume source, in terms of the Green's
function, can be writren in the form

Y = J dTJ m G dv (2.2}
— ¥ 1} ki)

For a surface, the expression is



-]
= (2.
u J._m drt ,[Z m’J Gki.] ds 3

In equation (2.2}, mu represents the moment tensor density per

unit  volume, while in (2.3) Fepresents the density per unit
surface. For 4 displacement dislocation such as ip (1.6) in ap
isotropic medium, allowing for changes g volume, the moment
tensor density ig given by

m =r\Aunl:50-uAu(nl+nlJ (2.4)
1 Kkl i) N

Where ni and 1J are the upijt Vectors in the direction normal

to the fagylt surface I  apg in the direction of the slip Ay, The
Part of (2.4, corresponding 15 ; - J. represents changes ip
volume. [f n and l] are perpendicuiar, the EXPression represents

4 pure shear dislocation anpg is given by
m. = pu duin) +nj) 2.5}
1) 1) 1

In thig expression, m m + ml_‘ = 0, which is the condition

1 22
for a moment tenser withoyt changes in volume,

For the rar field, at large distances from the source and for
fow frequencies, the point source approximation jg valid and the
displacements may be written in the form

- -
uo= MiJ G""} {2.6)

where the star represents the time convelution ang MIJ is the
integral of rnjJ over the source volume. The resulting expressions
for the far field of the p and S waves are

(2.7

-1 .
s r
T e S8 )y M (.- -1 (2.
] 4r:p,‘33r q E Wty 5]

For a pure shear distocation, equival

ent to g dOllbIE*('OUDIE ),
Mlj(t} is given by

M (1) < M ini nllrit) (2.9
1 0o 1

M‘J IS the scajar seismic moment and f(t} the S0Urce time function

Since the displaceineqt field (2.7) apd (2.8) depends o the
derivative af the moment tensor, the term SOuUrce time
applied to the derivative of Tit),

fime
function g

The scalar moment tensor was [irst introduced by Aki L5366}
for a shear dislocation ip the form

2.0

ip over the fauly surface,

its area. He alsg made
the first determination of the seismic Mmoment fpr the Niigata
€arthquake of 1964, using long perjod surface wavyeg and found |t
consistent with field observations of graund rupture,

Since Mmoments are conserved, MU is SYmmetric apng in general

has ¢ independent elements. pyg eigenvalyes T

T, O, are real
FA

and, jn the general  cage, have differens values. The
eigenvectors are orthogona) and represent the
intermediate, and |east Mmoment (P, B,T). for a

change o volume, the moment tensor jg Purely
trace is zerg

three

source with pgo net
deviatoric and jts

LA LA 9 =0 (2.1])

for a pure shear ray)¢ or a DC source, the cigenvales are
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F =M, T, =0, ¢ =_-y (2.12)

This condition implies that the determinant of M is zerg,
1)

2.2 Partition of moment tensor

In the general case, MIJ is a genera] Symmetric tensor and can

be separated into an isotropic (change in volume) and a deviatoric
part.

(2.13

There is good evidence that earthquakes
with no net-changes p volumae, However, g deviatoric moment
tensor, ip Beneral, does ppt correspond 1o a  pure DC  (double
couple or shear fracture] source, For this reason, the deviatoric
tensar can be divided into a DC part and another part that ig not
DC (NDC), Thus a general moment tensor is divided into three parts

~ 150 oc NOC
M=Mm MU LM (2,14}

The non-DC Part may assuyme several forms, A non-DC
Source was proposed by Randall and Knoporff (1970) which was caljed
the compensateq linear vector dipole (CLVD). Physically | this

medel represents a sudden change in the rigidity at the source
The moment eigenvalues are

deviatoric

eparation can be done jn many
tensers from observations of

a  minor double—couple or in what hag been called the best
doubie-couple. Strelitz ((1989) has shown that most séparations can
be reduced to the sum of DC + cLvD source components,
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1so nc cLYD
M=M + M + M

(2.16)

The presence of non-pC Compenents in the moment tensor obtained
from seismic observations may alsc be attributed tg heterogeneity
and/or anisotropy in the source region. However, this may be also
due to errors jn the observations or in the earth models used in
the inversion and not necessarily to  source effects (Sipkin,
1986),

The first order moment tensors are related ¢ poin! sourges.
If the characteristics of extended sources are to be described ip
terms of moment tensor distributions, higher order moments must be
used. The first order will define the center of gravity of the
source, the second the characteristic size of the source, etc. Ip
practice determining higher  order moments  is  a  complicated
Process. A point source at a known location and origin time js
defined by a first order moment tensor and  specified by six
parameters. If the location and origin time are not known, the
source is defined by 10 parameters. An extended source can be
represented by second order moment tensor including the time and
space derivatives, wijth 20 parameters related to the location,
orientation, rise time.  spatial extent and  rupture velocity
{Doornbos, 1983),

2.3. Moment tensor inversjon

Since the earliest formulation of the selsmic moment tensor by
Gilbert (1970} |, ¢ became apparent that the displacements o the
seismic waves are a linear combination of the elements of the
momeat tensor and those of the derivatives of the Green function
(2.6).  This linearity was first used by Gilbert {1973) Tor
calculating tensor elements from sejsmic wave observations. This
problem is known as moment tensor inversion. The problem of moment
tensor inversjon €an be considered jn various parts, First the
inversion of first order moment tensor, time independent and time
dependent and secondly to the preblem  of higher order maoment
tensors. The most common problem refers to the inversion of first
order time independent moment tensors. This problem s important
becayse they describe, in a first order approximation, the
equivalent forces of @ general point source. As it was explained
in part z., they correspond to a very general type of source of
which  the ghear dislocation js a particular  case. If o
restrictions are imposed the inversion of the moment tensor will
provide knowledge not onily of the orientation of the source, but
also of the type of source.
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The problem of moment tengop inversion can be treated ip the
time or frequency domain, The far fielg displacement for 4 point
source can be cXpressed in the time domain a5 a convolution of the
derivatives of the Green function witk the seismic moment tensor

L]

= - (2.17)
s o< [ O 0 0 M () g

and in the t‘rcquency domain as the product of their Fourjer
transforms

- 2.18)
U tw) G, (@) M () i

It is | then, possible p both caseg to obtain by linear inversion
the Components of MU. Since the moment tensor g 2 symmetrie

tensor  only gy of its nipe elements are different. | no
restrictions are imposed | the source js of genera| type and may
have a component  of volume change. This is  the isotropic
tomponent. If this component js 2ero, imposing the condition

Mo+ M . nm = Q (2.19}

With this condition, the tensor s Purely deviataric and the
independent elements are only five, This s 3 linear condition,
and therefore doeg het affect the linearity of the probiem, If the
condition that the  source corresponds to g shear dislocation
(douhle-coup!e) is imposed, that js, that the determinant is Zero,
the problem is no longer tinear.

In general, the derivative of the Green's function lej have

27 different <omponents, However, for a4 purely deviatorjc source,
only 8 selected combinations are needed, For eXample, the gy
displaccmcnts, observed at an azimuth ¢ from the s0urce can be

expressed in the form
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k

U = _I/Z(Gu.z + sz'llsmzct (M” + M_)
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+ (Gn,z’ Gn-‘) cos2¢ M12 - (Guz,:‘ Gu:,1)5m¢ M:a

+ [GHZ,J + G”‘]} cosg M23 (2.20)

If the orientation of the mechanjsm does not Vary with time, then

We can separate the source time function r)
M (t) = iy flt) =y fit) (2.21)
13 i) oy

In equationg (2.17) ang 12.18} from a set of observations Y,
We can determipe the mechanism defined by MIJ il we know the
derivativeg of the Green function lej also callad the eXcitation

functions of the medium whose elements depend on the Eartp mode|
used, For thig Purpose we have 1o solve in thege Wo equationg for
o We write them in matrix form

c
H

]
=

(2.22)

where U is a vectar of  dimensign N (number of observations}
M(6) has dimension ¢ the ¢ different Components of the moment
tensor) apg GIN x ) is a matrix of dimensicn Nx&.  Ip the
frequency domain [2.18), the fquation cap be Writter
frequcncyA The relation is linear fror the real apg the imaginary
parts of UI « For the modulus | the relation jg fon-~linear ang it

Must be solved through a proper lineariza[ion. If the real and
imaginary Parts of the Spectrum are used | for Stations ang M
frequencies there are 2NM equations 1g e solved rop the ¢

generally used, the problem jg overdetermined. The & ¢omponents of
M redyce 05 if we introduce the condition of that there are no
changes of volume,
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M+M +M =g (2.23)
1 22 33

Since according to (2.17) and 2.18) we have N equations with 6
unknown, the system ig over determined and may be solved by least
squares. The solution may be written in the
form

M=(G"6)"'6"u(2.24) Ma(GTG; 6Ty 12.24)

Also using Lanczos generalized inverse matrjx

v u (2.25)

Where A is a diagonal matrix formed by the eigenvalues of G, B the
matrix formed by theT eigenvectors of G and ¥ the matrix formed by
the eigenvectors of G'.

This form of solving the inverse problem has sometimes many
difficulties due to the ill conditioned nature of the matrix G.
For this reason, the problem is often solved in the direct form,
given values of M ang calcutating U.  The error js defined as the
difference between the observed and calcylated values of U. The
solution is found as the value of M that gives a minimum error in
the least square sense. Because of the influence of the depth of
the focus h, this Parameter is also introduced in the problem as
an unknown together with the S components of M.

Data used are the displacements of internal, surface waves or
free oscillations. The inversion can be done in the time (2.21) or
frequency domain (2.22}. 1n all Cases, we must have in mind that
both equations represent the ground displacements, so that the
Seismograms must be corrected Previously for the instrument
response,  Regarding the Green functions, they must be calculated
for a given theoretical Farth model. The simplest one is that of
an infinite, homogeneaus, isotropic medjum. They become more
complicated as we complicate the model. The functions depend on
the relative position of the observation point with respect tq the
focus  (hypocenter). For  teleseismic distances  standard Earth
models may be ysed. For regional distances local models of the
crust and upper mantle must be yseq.

In figure 2.2, the focal mechanism obtained from the inversion
of the moment tensor using internal waves together with the best
DC component. The cemponents of the moment tensor are the
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following,

The percentage of rnon-DC component in the solution is 14.38 7.
This is a large amount and it means that the source cannot be
considered as a pure shear fracture. This characteristic of the
source is lost in other methods where the DC character of the
source is assumed from the starting point.

The first procedure for moment tensor inversion was proposed for
free  oscillations data by  Gilbert and Dziewonski (1975).
Mendiguren (1977) presented the inversion of surface waves,  He
used a linear inversion of the real and imaginary parts of the
spectra of Rayleigh and Love waves and a linearized procedure for
the non-linear problem  of the amplitude spectra. The method
provides also a fast way to determine the source depth. Some
problems invoived in the linear inversion were pointed out by
Patton and Aki (1981). Kanamori and Given (1981) presented a
method using the spectra of long period (180 1o 350 <) Rayleigh
and Love waves. They pointed out that for shallow sources, the
determination of certain components of the moment tensor !Mn and
Mn) becomes very difficult. To overcome this difficulty, they
introduced certain constraints, One of them is to Torce these two
components to be equal to zero. This js equivalent to force the
mechanism to be a pure strike-slip on a vertical fault or a pure
dip-slip on a fault dipping 45 degrees. This may provide a very
useful first approximation. Since the solution was not forced to
be a double-couple source, it is separated into a major and a
minor double-couples.

Romanowicz (1982) Proposed a two steps method for moment
tensor inversion in the frequency domain. The first step,
independent of depth and azimuth solves for 5M unknowns from the
total of 2MN equations. The second step uses 5M  equations to
solve for  the 5 unknowns {5 components of deviatoric moment
tensor} for different valyes of the depth. The minimum error
selects the value of depth and the corresponding value of the
moment tensor,
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Stump and Johnson (1977 presented the first inversion of body
waves in the time domaijn. They applied the method to synthetic
data and made use of the Lapczes generalized inverse matrix. Body
Waves were also ysed in the inversion of the moment tensor by
Strelitz (1978), Amplitudes of teleseismic body wavas were used by
Fitch et a). (1980} to ¢stimate the elements of the seismic moment
tensor. Sipkin (1982) useq , method based on multichanne] signal
enhancement jp the time domain. Using recursion techniques, the
elements of the moment tensor are solved for, ag the optimum
multichanne] signa]—enhanccmcm filter. In a second approach a
multichanne| vector decanvolution is used jn which a sget of
fliters ig computed which, whep convolved with the data yield time
averages of the elements of the moment rate tensor. These methods
€an be applied tp 2 variety of data of teleseismic ang local
earthquakes. Sipkin's method g applied in 4 Foutine form ¢
sufflciemly large earthquakes by the U5 Geological Survey. Many
other methods have beep derived 1o cbtain the elements of the
seismic moment tensor, for ¢xample, the ope presented by Pearce
and Rogers (1989} that uses the ampiitude ratios of P, PP and sp.
A different approach is flo]lgweq by Vasco ang Johnson (1990) who
have devised a8 method of extreme models in the inversion of moment
tensors to test how universa| is the double-couple model and the
presence af isotropic components.

A possible source of error ip the determination of the seismic
moment tensor js the misslocation of the hypocenter. Dziewonski et
al. (1981 considered  that the  vajyes given by hypocentra}
dcterminations from first arrival timesg may not be adequate for
the determination of the seismic moment tensor, They Proposed that
the coordinates of the focus and the origin  time must  be
determined at the same time that the elements of the moment
tensor. This location of the focus does ROt correspond to the
iniliating point  of rupture, buy tg the centroiq of the source
area. The method js called the inversion of the centrojd moment
tensor {CMT). The method uses the body wave portion of the
seismogram and is  solved in the time domain, computing the
synthetjc Seismograms by superposition of normal modes ang using a
non-linear least-squares inversion, This  methed is actually ygeq
in a routipe basis for large carthquakes using data from digital
stations by the Harvard Universily group and reported in bulletins
and periodic publications.
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3. SOURCE DIMENSIONS

3.1. Source time function

The first dimension that can be introduced in the
representation of the source is that related to its dependence on
time. As has been mentioned, the temporal dependence of the source
can be represented by the source time function f(t). For a
dislocation model, this function represent the time dependence of
the non-elastic displacement or slip at the source Au(E,t). If the
time dependence is the same at all points of the fault

ault) = au f(t) 3.1

As was shown in (2.7) and (2.8), the displacements of the elastic
waves at observation points away from the source depend on the
derivative of the displacement at the source Ad(t), that js, the

rate of slip or velocity of the displacement of each point of the
source. This means that the radiati

at the fault, Because of this reason, the term source time
function is usually given to the derivative of f(1).

The simplest type of source time function if the Heaviside
step function

flt} = H{T} {:o; t<o (3.2)
=], t>0

This function does not introduce any time dimensions as the
motion at the source occurs instantaneously from zero ta jts
maximum value at time t = 0. The derivative of the Hit) function
is the Dirac delta function &(t). According to (1.8) and (1.9),
the wave displacements ult) will have in this case an impulsive
farm with this time dependence.

More realistic is to introduce 3 time 1, called the rige time,
that takes for the displacement to reach from zero to jts maximum
value. This is the first way in which a dimension is assigned to
the source. This time dimension may be considered even for point

sources. The simplest function used in this case is a linear
increase from 0 to T,
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awl o ocreq
Bult) = ¥ 2.3)

fu t>r

In this case, 8u increases linearly from zero to its maximum value
in the time 1. The discontinous nrature of this function can be
avoided using an exponential dependency

Ault) = Au HIL) (] - ¢ VT (3.41

In this case fu(t) = 0.634u. In these two cases (0} = 0. However,

we are more interested in the behaviour of f(t), and in both cases
for t = O, this is not Zero, but there is a jump in velocity.
(Fig.3.1}. One way to to avoid this probtem is to use a function

such that both (1) and f{t) are zero at t = 0. This function can
be approximated using for f(t) a triangular function. The form of

the pulses of the seismic waves is the same as that of f(t) with a
time width that depends on the rise time (Fig.3.2)

o ; t <0
. avt/t 0 <t<trs?
anlt) = 13.5)
-Av t/t T/72<t<T
0 1t >0
As  we will ses later, this function is generally used for

modelization of wave forms. The form of the wave pulses are also
triangular with a width depending on the rise time I we want to
introduce the duration of the process at the source keeping the

point source approximation, we can make f{t) to have a trapezoidal
shape with a total duration equal to T (Fig.3.3).

In  conclusion, the time dimension in the source may be
introduced by an appropiate choice of the source time function
even if the source is kept to be punctual. This introduces  new
parameters such as the rise time and time duyration. The wave

27




the sejsmic source mugt include besides |t orientation. itg shape
and dimens; nNs. One of the firs: relations betwean seismig waves
and the dimensions of the source Was  estahlighed by Jeffreys
(1931) whe Proposed 4 Mmodel of the source ag 4 spherica| cavity
with uniform tensions applied on its surface. 4 similar mode] wag
also Proposed by Nishimura {1937} and later by Scholte {1962) with

a distrl’bution of stresses over the surface of 4 sphere of finite
radiys,

Volume sources haye fittje relation With the physical maodel of
a faylt, More realisgtjc Mmodels stary with the consideration of
elastic Qislocationg of  finjte dimensions. Burridge and Knopoff
(1964) Studied the cyge of Propagating dislocationg CVer a certain
finjte fength ang showed jig equivalence to Propagating doub)e
couples, Previous o thisg WOrk, Ben Menahem (1961, 1962)
determineq solutions for surface ang body waves from extended
SCUrces, consisting ip POINt  forces of  the single  apg double
couple type Bropagating jp one direction with 5 finite velocity
V. The model of the faylr g & rectangular fault of finite length

can be isolateq bY meang of the directivity function, ratio of the
spectraj amplitydesg radiated from the S0urce  jp opposjte
directions. /

introduceq by Berckhemer (1962} for a circular fracture that
Propagates from g center, showing “the; Inflvence ip the width
of  the seismic pulse. Later, Berckh:%r and  Jjacqp {1968)

radiatiop from Several models of rectangular fauits with fracture
initiatr’ng A a  point and Propagating Unilaterally and
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The radiation of p Waves in the far field, from a simple
Fectangular fay)t (Fig. 3.4), can be written in the form

H Ry n.1) )
uoo= 1 L€ v -8 ) 4 (1.6
| ¥ a

3
‘npar

Where R(z'.nl.tl) is the radiation Pattern of 4 Point soyrce as ip

eXpression {1.8), constant rop T if r is Very large in
comparisen With the dimensiong of the source.[If jp the Course of
Propagation . the fracture moves  with velocity v along he
length of the faylt L, the integra) can be written in the form

Lo ro g [
Dfo du[t-;—;(cosﬂ-‘:l]df (3.7

For the timc—dependence of Ay, the function (3.4) jg used (Bep
Menahem ang Toksse, 1963).

In this case, taking the Fourjer transform ang S¥aiuating (he
integra] we obtaineg for the SPectrum of the displacements

gy - 20 LD Ry n 1) —— iy ellora v X ng)
1 3 7.n,. I+ jur X
Anpe (3.8

where x ¢ Biven by

wl, a
X=5;(cose~;l 13.9)

In equation (3.8) the dimensiong of the source introgyce the
factglr sin X x and the existence of rise time the factor (1
wr} " Therefore, the  spectra amplitudes have the

form. For Jow frequencies 3w tends 10 zerg the
amplitudeg tend 1o 3 canstant vajye For vajueg of w larger than a
certain valys ”: . the $pectral amplitudes decreage as 47?2 (Fig.

3.5 The Properties of the spectra| amplitudeg and phagas for
body ang Surface wayes radiated fpgp, Propagating Sources over ,
finite fault areq are the bagig for the determination of the
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parameters which define the dimensions of the souyrce. These models
introduce the following five parameters: L the fault length: D the

fault width; v the rupture velocity; Au  the permanent slip apd
T the rise time.

3.4 Corner frequency and dimensions

A different approach to the problem of fracture over an
extended fault was presented by Brune {1970). He models the
earthquake dislocation as a tangential stress pulse applied to the
interior of a dislocation surface . The pulse jg applied
instantaneously over the whole fault surface, neglecting fauit
Propagation effects. He described the near and far field
displacement in the time and frequency domain. The spectrum has a
flat part for low frequencies and decays as  w ° for frequencies
larger than a particular value U, calied the “corner frequency”

(fig. 3.5). This result agrees with the previous work by Aki
(1967).  The corner  frequency is inverse proportional to  the
dimensions of the source. According to Brune the radius of the

circular fracture is related 1o the corner frequency of the
spectrum of S waves by

2.21 R
(3.10)
W

[

Savage (1972) calculated the corner frequencies for P and § waves
for a model of a rectangular fault of length L and width D and
a rupture velocity v = Q.9 B, with the follawing result

L7 @
/i - o (3.11)
<
38 g
YLD = g (3.12)
w

According to these expressions, the corner freqguency of the S
waves is higher than that of the P waves, The opposite result is
found from the model of $Sato and Hirasawa (1973) and Molnar et al.
(1973). According to Madariaga (i977), the form of the Spectra
with a decay as 2 beyond the corper frequency is a general
Property common to the targe part of fracture models. However, the
relation between the corner frequency and the fault dimensions
depends on the details of the model assumed for the sodrce, in
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particular on the stopping mechanism.

3.5. Seismic moment and stress drop

As can be seen from equation (3.8), the displacements of
selsmic waves are proporticnal to the scalar seismic moment Mo =p

4u 5. This parameter can, then, be accurately determined from the
observed seismic waves. |t represents also a better measyrement
of the size of an earthquake than the magnitude and  can l?e
related to the stress drop at the source. The stress drop de s
the difference between the shear stresses at the fault before and
after the occurrence of an earthquake. For a circular fault of
radius a, the relation between the seismic moment and the stressg
drop is

M= % a’ Ar (3.13)

In logarithm form the retation between the stress drop, the source
area and the seismic moment for a circular fauit is given by
(Kanamori and Anderson, 1975}

3 16 do

log M = _2 log S + log ( VY (3.14)

For a constant g, log S is proportional to log M0 (Fig. 3.6). As

an aver'a'ge. observations agree with this proportionality with
slope 3/2 for moderate and large earthquakes. The stress drop may
be considered constant with values ranging from 1 to !0 MPa {10 to
100 bars). This result was also found by Aki (1972). Larger values
of stress drop seem to correspond to intraplate than to interplate
earthquakes.

Seismic moment can be also related to magnitude, assuming an
empirical relation between magnitude and energy. Using' the
Gutenberg-Richter relation for Ms . this relation is (Kanamori and

Anderson (1975)

31



3
s - ; (3.1
Log Mo 2 Ms log (neru} + 1.8 5)

3.5 Nucleation, Propagation ang stop.

The complete pbrocess  gf fractyre Propagatjon from g
kinematicaj point of view Must inclyde the description of its
nucleatijon, Spreading  ang Stopping. Savage (1966) studied (he
effects on the seismic signal of the initiation and Stopping  of
the ruptyre. The Problem wag more fully consideragd by Sato and
Hirasawa (1973) and Molnar et 4 (1973). In these models, the
slip Ay wag specified, jp such a way, that jt comes to g3 stop,
when the limit of the fault js reached. The phase generated by the
stopping of the Fupture wag called by Savage the "slopping
Phase" The relative importance of the initiating ang Stopping
phases ig different according to 1he mode! assumed for the slip.

In the simplest case, for 4 circular fayjy of radiys 3 and

displacement 8u  constapt over the entire fault surface, thjg may
be represented by
du ip) = ay HIt - pryvy ) lipg - a) (3.16)

Propagation In the center of the rayly P = 0, the faults starts at
time t = 0, in an instantaneous way from 9 o Au. For a value P <
3, Au is zero until 1 = PV, at thjs time arrives the fractyre
front that travels wijth velocity v, ap the horder of the fracture
P = a, the mation Stop (Aw = O, ror P > a) (Fig, 3.7). For a point
at a distance r above the center of the fracture, ap approximation
of the displacemcnts of P waves jg

ulr .t} = 25 Ay vip - E); vit - 5y a <
v o

(2.17)
uflr,t)

it
(=]

L
Q&
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The displacemants have 5 discontinuity that Corresponds tq the
time ¢t . WY o+ g According to our approximation this time
corresponds 1o the arriva) to the observation point to (he signal
from the $top of the fracture a¢ the border p = a} This arrjya)
is called the stopping phasge. After thig phase the displacement is

280 and  thare is ap impulgive increase  jn velocity

and
acceleration,

The theory of Propagating dislocations over a finite area has
been aigo applied 1o the study of the near field displacements by
Aki  (1968), Haske]| (1969) ang other authors, using numerical
integrations. A Comparison gf the pear field motion for severa)

different kinematic Models of faulting cap be found jp Anderson
and Richards (1975),

1.6 Modelling of seismic Waves

Displacements of seismijc waves ag observed in 3 selsmogram
wit) in 4 Particular Seismic station are the resul of 3
canvolution of the displacement at the focus y(y) with atlenuation
effects ajong  the path  Qit) ang the  instrument response ()

wfl]:i‘!tl'O(t)'u(tl 13.18)

Since ) is 4 known function and Qt} for teleseismjc
distances a4 > 30°J can be approximated by a linear Operator
Fit, T Q) which satisfieg that  T,9 = for p waves ang T g = 4
for s waves, the time dependence of the seismic source
obtained from u(t). In this way, the methods of seismjc wav
madelling ajlow the determination of the source time function,

can he
e form

The method of maodeiling the forms of the Waves consists jp the
calculation of theoretica| seismograms from models of the source
defined by its scalar seismic moment, orientatign of  the
dislocation and the source time funetjon. The COMmparison between
the theoretica] and observed scismograms permits 1o adjust  (he
values of the Parameters thae define the seismic sCurce,

Using 4 point source corresponding 1o a shear dislocatiop
{DC), the vertical component of the p waves at 5 distance A,

in
spherical earth of radius a, may

& Written as

a3
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P [
u =

P
RO{&,i Jgiae (i W(t-r/a) (3.19
4"‘,“33 h z 0 !

Where p is the density, « the P wave velocity, RP(@.i) the
h

radiation pattern for direct P waves which
relative orientation of the ray leaving the focus with respect to
source geometry (ih-—- take off angle at the focus) . El3) the

geometrical spreading of the wave front, ¢ {i ] the free surface
z 0

is a function of the

effect (i°= incidence angle at the station) and f{t-r/a) the

source time fupction (Deschamps et al.. 1980). Here the source

time function f(t) represent the time dependence of the slip
velocity Ad(t).

sP that arrive at the station a short
Thus, we must modify expression (3.15),

M

_ 0 . [3
u = (a) c ¢ i -
4“phu3rh g <, lo) {R [0,1hJ f(t tp) +

3 . PP
PR ) VT ret 1 R o g o b
. o)t RO 1 gy e

(3.20)
The First term correspond to the direct P w
: ave, the second to the
pP and the third to the sP waves. [n this expression P y R are

the normalized radiation patterns for the P and SV mation, For the

PP and sp waves, the rays leave the source in ugward direction and
correspond to take-off angles equal to #-j . 'F and %% are the
n

: the free surface for an incident P anpd
s the arrival time of P. that js (r/a)
tPP ¥ tsp those of the PP y sP waves. These two
given by

reflection coefficients at
5 and reflected Pp. i
P

last terms are
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2 h cos i
t =1+ h (3.21}
PP a
h
cos j cos |
t =t + h + ] (3.22)
SP P B a
h h

From these equations we can calculate the theoretical
displacements of the P \waves u (t] for each station, that
z

correspond to the sum of the\ihre; arrivals, namely, P, pP and sP
(Fig.3.9).  Depending on the depth'-of the focus h. the time
intervals between these arrivals vary. ‘For. larger depths the
intervals are longer and the aspect of the waves' is more complex.
The obtained displacements uft) must  be convolved with the
response of the instrument 1{t) and the attenuation factor of the .
medium Q(t), before we can compare the theoretical with the
observed seismograms.

In practice, there are several computer programs to carry out
the madelization (Deschamps et al., 1980:; Heimberger, 19&3;
Nabelek, 1984). The technique that will be described corresponds
ta the method developed by eschamps et al. (1980).

For each station, data used (limited to epicentral distances
between 30  and 90°) are :The wave form of the vertical component
of P (numerical sampled amplitudes given in cm), the take-off
angle at the focus ih. the azimuth ® and the incidence angle at

the station iu' initial values of the orientation of the fault

plane ¢, 3 y 2, depth of the focus b and of the source time
function f(t} (usually of a triangular or a trapezoidal form).
From these initial parameters starts the modelling process: First
the theoretical seismogram is calculated for one station. This
selsmogram is compared with the observed. Using an iterative
procedure the source parameters ¢. 8. A, h and f(t) are changed
S0 that the best agreement possible is found between the
theoretical and observed seismograms, The solution found for the
first station is wused for the other stations. By successive
trials, a solution is found that adjust best to the greater number
af stations. In this way, the depth of the focus h, and
orientation of the fauit plane, ¢, 5, A are corrected from the
initial values {found from other methods such as arrival times and
P wave polarities). Simple wave forms indicate surface shocks in
very homogeneous media with a simple source, while complex wave
forms may be due to deep focus, heterogeneous media or complex
sources. An example of the ambiguity between the complexity of the
source and the depth of the focus is shown in Figure 3.10. In this
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figure the P waves in the same statione have been modeiled using a
simple source at a depth of 40 km and a complex source at a depth
of 12 km. As can be seen, the effect g almost the same.

v

since for this case the crustal and upper mantle stryucture has a
great influence. The problem consists in separating correctly the
effect of the source form the effect of the propagation in the

needed for each region that jn MOSt  cases are not available
(Helmberger y Engen, 1980, Koch, 199); Sileny et al., [9972).

3.7. Empirical Green functions

To solve the problem proposed by the lack of knowledge about
the detailed structure of the Propagating medijum, the method of
the use of empirical Green functions has been  proposed. This
method is based on the use of waves from earthquakes of smajf
magnitude a5 empirical Green functions, ip order to mode}
earthquakes of greater magnitude with the same hypocenter, 1t g
assumed that the waves from the smajl earthquake include alf the
effects of 1he Propagating medium ang therefore are good
approximations to the actizal Greep function, since its source may
be considered approximately as a delta function (Muelier, 1985;
Frankel Y Kanamorij, 1983; Franke! et al., 1986;  Mori ¥ Frankel,
1990).

at the same station, for twe earthquakes with the Same hypocenter
and different magnitudes. As we have seen, the seismogram is the
result of 3 convolution of the displacement field generated at
the source u{t), the Propagating medium Q(t) and the instrument
response lit). The |ast two are the same for the two shocks.

wl(t) =1t} = Q1) * u|(t)

(3.23)
wz(t)

It * Qrey » u,ft)

and in the frequency domaln
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wl[u) = Ho) Qlw) ul(u]
{3.24)
wz(w) = ) Qlw) uzfu]

If the two earthquakes have the same mechanism, the radiatjon
pattern is the same. The difference between the two signals js
only due to the source time function, If the corner frequency of
the smaller shock s Ereater than the Fange of fr
which we are interested, we ¢an consider the waves of the smaller
shock as generated by a Dirac delta function. The quotient of the
seismograms ip the frequency domain wl(m) and wzlwl in the

frequency domain is the transform of the source time function of
the larger shock.

wl(w] ullul
—G"ZTJ] = ——UTJ— = Flw) 13.25)

If we take the inverse Fourjer transform of Fiw) we obtain the
source time function fit) of the earthquake of larger magnitude,
From thijs function we can  determine the seismic  momen: by
calculating the area under the cyrye and the dimensions of the
source from the time width or duration of the source function
{Mori y Frankel, 1990).

Data needed for the application of this method are pair gof
seismograms  in the  same station  from earthquakes  with
approximately the same hypocenter and mechanism and a difference
in magnitude of at least one ang maximum 2.5 upjtg The Fourier
transform of the twe signals must pe caleulated, thep We make the
quotient and take the inverse transform. The cbtainad signal which
represent the source function s filtered. An  example of this
method g shown ip Figure a1 The 1wo earthquakes have
magnitudes 3.2 and 4.5 The seismograms for each shock, thejr
spectra and jts quotient  are shown, The source time  function
obtained has a duration of 0 5¢ 5.

This  method allows  alsg to  deteet the directivity effects
shown in differences of the signals observed at different stations
for the same carthquake, Inspite of these differences 1he area
under the signal which is a measure of the size of the shock must
be the same in all stations.

This method |s of great interest for the study of earthquakes
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at regional distances, since it Permils to separate the $ource and
Propagation effects. For this range of distances this jg the only
way to correct for the Propagation in g very heterogeneous medium
that never is known with sufficient detaii. These shortcomings

difficult the application at thege distances the application of
the modelling of wave forms,

3.8 Spectral analysis

As we have Seen, the spectra of seismic waves depend on the
dimensions of the source. For a great variety of models consisting
on a fracture on a finite fault area, the shape of the spectrum
has the same characteristics. These are: 5 flat or constant level
of the amplityde Spectrum for the |ow frequencies and a decay,
generally, proportional to W, starting at the corner frequency
w (Fig. 3.5). The value of spectrat amplitudes at the flat part

is proportional tg the seismic moment and the corner frequency to
the inverse of the faujt dimensions. jt jsg possibie, them, 10

determine thege lwWa parameters of the saurce from the seismic wave
spectra.,

The seismic moment can be obtajn from body waves at te]

eseismic
distances using the equation,

no 4npv?a explwr le }

I
M= T EAT O T R — (3.26)
0 gla c|(1° R(¢,5, 2, xh)

Where QD is the spectra) amplitude at the f£ja¢ part of the

spectrum of P or g waves, p the density at the focal region, v,

the velocity of P or $ waves also at the focal region, a the

radius of (he earth,  g(A) the geometrical spreading, the
€Xponential function represents the attenuation of the medivm (Q =
Guality  rfactor), cl(iol the effect of the free  surface ang
R(e&.é,/\,ih) the radiation pattern. For regional distances asgla)

may be substityted for r the distance along the ray.

The radius of a circular fault (Brune's model )

can  be
calculated from the corner frequency f
<

38

2.34 B

r= R (3.27)
¢

For a rectangular fault (Haskell's model) we obtajn from the
corner frequency the product of the tength L by the width D of the
fault

From the values of MU and the dimensions r o L and D, other

Farameters of the fault such as the stress drop Ae¢ and the average
displacement &y can be determined,

= ° (3.29)
be = ETT
M
&= 0 13.30)
us

Where 5 is the fault area and u the shear or rigidity modulus at
the focal region

Data needed for these calculations are digital recordings of P

or 5 waves and the response furction of the instrumem. The
observed signal wit) is transformed to the frequency domain Wiw)

transfer  function. Usually  the digital seismographs  record
velocities of ground motion, If these are given by s(t) lobs;rved
seismogram), they can be written in time and frequency domain as

s(t)I=T(t)® v(y) (3.31})

slwl=Tlw)e(w) (3.32)

Where T(t) is the response or transfer function of the instrument
for velocity ground motion v(t]. The ground displacement glt) can
be obtained by integration,

a9




gty = [ yip) dt {3.33)
glw) = — (3.34)
ay
- - - 1
s(w) = T(w} j w glw) (3.35) 1
Te t

Therefore, in the rrcquency domain the ground displacemens is
given by

- ;(u) (3.36)

glop = 29

Tl(uJ
FIG. 3.1

Where TI(uJ is the instrument transfer of Fesponse functjop for

displacements. Although the data are velocities g determine the
spectra] amplitudes for djsplacements, We Mmust use this transfer
Tunction. Usualiy transfer functions are given a5 quotients of

polynomiat form, specifying the poles ang Zeros. For £Xample fgor 4
Streckeisen broad band instrument

T = 22 niG . (3.37)
! = - Zihrr - ¢
Q Q

w= 2 qar

Where f = 0.0027g 1, h =077 6 <04, 10" countssem st

Once the Spectrum has been correcteqd by the instrument, we canp
calculate the values of Qo and . |n Figure 312 the p wave
c
Fecorded - jn shert perigqg instrument of vertical component jg
shown, together with the  amplitude spectrum corrected for the
instrument Fesponse. In the spectrum the values of ﬂa and § are
<

aiso shown.
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4.DYNAMIC MODELS AND SOURCE COMPLEXITIES

4.1. Dynamic models

The kinematic models of the source mechanism of earthquakes
are based on the assumption of a certain function of space and
time for the slip ﬂu(ik,t? over the fault area., The form of the

fault surface and the velocity with which Au moves, that is, the
velocity of fracture propagation must aiso be assumed in the
model. The latter may be constant or variable over the fault.
Depending on the model, the slip takes its maximum value at each
point of the fault, either instantaneously or after a certain rise
time as the fracture [ront propagates. The slip is also made 1o
start at a certain point, propagate through the fault area and
finally stop at its border. From these models, the displacement
radiaticon u[xl,!] at the near and far field can be derived . From

the physical point of view, the kinematic medels  have many
shortcomings and inconsistencies. In fact, in them, near the
borders of the flault there is interpenetration of matter, the
strain energy drop is unbounded and the stress drop is infinite
{Madariaga, 1976). To obtain more physically realistic models, one
must proceed to establish dynamic models in which the slip s
derived from the state of stresses and the strength of the
material at the source region

4.2. Stress drop and fault slip

The general problem of dynamic models is based on the idea of
crack formation and propagation in a prestressed medium. The
mechanism of an earthquake is considered as a shear rupture that
nucleates at a certain point of the fault and propagates at a
certain velocity and Tfinally stops at its border. Inside the
crack, the shear stress drops from its initial value n‘oto a final

value, defined as the frictional stress r.rr. The driving siress of

the fracture is, then, the stress drop 8¢ or difference hetween
the initial and residual values.

(4] F (4.1]

The dynamic prablem relates the displacement of the fault Au with
the stress drop A¢. The simplest relation is that of the static
solution, that for a total stress drop (o‘r = @) in a ecircular

Tault gives

4]




olp) = p>a {4.3)

Expressions (4.2) and (4.3} introduced yg in the dynamic problem.
The stip ay js not assumed 3¢ in the kinematic models, byt results
from the stregg drop Ae over the fault area (Fig.3.1a}. The stress
drop on the faylt modifies the state of stresses outside the
fault, dccumulating stresses npear the border (Fig  3.1h). This
creates 3 singularity where stresses become infinjte.

The relation of A0 with the average value AL s

au = 7‘—22_ Ao (4.4)

From this éxpression we cap derive 3 relation between the scalar
seismic moment and the stress drop

Mo = l—g a’ ae (4.5

For this case We can also write for the energy spent during the
Process in a fault of area $

E=Aydcs (4.6}
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=2 (4.7)
o

If the stress drop is got total, there wip be a residua; energy
lost by friction ER. and  the tgtg] energy, according tg (4.5},

will be

E=f + =8US (A + o {4.8)
S R F

These simple relations show how we relate the displacement Au at
the fault wjth the stress drop Ag, fraction of the stregseg acting
at the soyurce region that js respensible for the displacement.

4.3 Crack or fracture Propagatijon

The use or crack modelg far the dynamics of the saurce of
earthquakes wag initiatly Proposed by Kostrov (19661 The physics
of cracks can be traced back to the early work op the formatian of
cracks ip crystals and meta)s by  Grifrith (1921), Starr (1928)
Iewin {1948)  apng Orowan (1952). Kostrov (1966)  1aig the
foundationg of the dynamic problem for earthquake sources and
Tound eXpressicns far the slip inside the crack anpgd siresses
outside, borh on  the crack plane. Burridge (1969) extended
Kostrov's work using a numerijcal technique 1o study finite shear
cracks with 3 fixed velocity or rupture,

To study  the propagation of shear  cracks and  their
displacement fields for two dimensional models, twg maodes of shear
fracture are considered antiplane ang inpiane (Fig. 4.2). In the
antiplane mode, the slip along the surface of the crack is
Perpendicular g the direction of Propagation of the ruptyre
front. 1n this case, only SH motion g radiated. |, the inplane
mode, the slip is in the same direction as the ruptyre Propagation
and P ang SV mation e generated. |p the three-d:’mensional

problem, both modes appear at differem place  aroung the fayls
boundar—y.

The simplest cage of crack Propagation jg that or steady
Erowth at copstant rupture velocity in ap homogeneous medium. |n

this cage the crack propagates indefinitely. The growth of the
crack is ensured by 5 finite energy flow into the tupture frant.

*lx) = K gx oy (3.9)
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Aulx) = v [Hy) - 2 {4.10)

Where 1(t) is the Position of the crack tip

( ‘ . K is the i
stress intensity factor and V the yoamic

dynamic velogity intensity
‘ tp G, used to create new
n the processes in the breakdown

(4.11)

Where v js the veloc

ity of rupture pro agation. F i
cracks, K and V are rejat pior - or antiplane

ed by the expression

"
K o= — (- gyt

2y {4.12)

where 4 is the rigidity and B . the shear wave velocity.

. The naturai fracture criterion dema
inte the crack tip be equal
unit surface of new fracture.

nds that the energy flow
to the energy required to create g

In  this case, if the crack starts at a
sy.mmetrically. without stopping,
this case, there is 3 simple rel
terms of the shear stress drop Ao

peint  and growths
we have a circular crack. For
ation for the shear stip Au in
that drives the rupture process

Ao 22
A R 2,172
ulr,t) M Clv) (va* - Y s r< vt (4.13)

Where Civ} is approximately unity for the wh

vclocityl range. The circular sell -similar
useful since jt permits to study

ole subsonic rupture
shear crack s very
many properties of crack tnodels.

If the slip slip velocit
: X ¥y and stress near the rupture fro,
) city nt
f}:—: cxal:med (Fig. 4.3), it is found that the slip velocity inside
ol r:r:-act andr the stress oytside become infinite as they approach

UPture front. For britt]e fracture wh

b ) ere the material i
:}tthe:_ broken or continuous, with no transition zone , this is th:
t:-aua'l?n ( Kostrov ang Das, 988) To avold this singularity, a
nsition zone ahead of the crack tip must be considered. in t-his
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zone there {s an interaction of the material immediately ahead of
the rupture front.

Barenblatt (1959) proposed a model with a transition zone that
he called the cohesive zone, where cohesive forces act, opposing
the crack sliding. This idea was applied to seismological models
by Ida (1972) , Palmer and Rice (i973) and Andrews (1976} in the
slip weakening model. This mode! assumes that the shear stress on
the crack Is a function of the stip. Several theoretical models
have been proposed for the form of ol8u). In all of them, the
shear stress ¢ has a finite value for Au = O and drops to the
frictional stress for A&u larger than a critical value D (Fig.
4.4aj). In general, as slip [pcreases . the stress decreases from a
certain value below which the crack does not slip to the
frictional stress. In this model a breakdown zone of a certain
length d is created which corresponds to the length of the
cohesive zone along the crack front (Fig 4.4b}. The size of this
breakdown zone is thought to be very small compared to the overall
dimensions of earthquake faults. A major difficulty with these
models seems to be that the cohesive zane is not independent of
the rupture history.

4.4, Spontaneous rupture, nucleation and stopping

Complete models of earthquake occurrence must include the
entire  phenomenon of rupture, its initiation or nucleaticn,
propagation and stopping on the basis of the stress conditions and
material properties at the source region. The two determining
factor are , therefore, the tectonjc stresses derived finally from
the relative plate motions and the physical properties of the
racks at the fault zones.

To study the initiation and the spontaneous propagation of a
fracture, a failure or fracture criterion must be introduced. For
pure brittle fractures two criteria have been proposed (Kostrov
and Das, 1988). Griffith’s criterion states that in order to
¢reate new crack surface a certain amount of free surface energy
is required that must be supplied froem the surrounding medium
The specific amount of energy needed is assumed to be a material
constant. Irwin's criterion is formulated in terms of the stress
intensity factor. In order for the Ffracture 1o propagate the
stress intemsity factor must exceed a certain critical value This
criterion has been also formulated as a critical comparison of
shear stress with a static friction level. If a cohesion zone is
assumed to exist ahead of the crack tip, the failure criteria must
be somewhat modified.

In models of spontanecus crack propagation, the stress
distribution and the fracture criteria determine the motion of the
crack tip. The first of these models was presented by Kostrov
(1966) in analytical form for antiplane cracks in an infinite
medium. This work was extended also to in-plane cracks by Burridge
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(1969) applying numericaj methods. Andrews (1976) used a finite
differences technique 1o solve  the problem, introducing the
cohesive forces In the failure criterion, Madariaga (197¢) used
alse finite differences to study the probtem of a cireular shear
crack which growth at a Tixed velocity and stops suddenly. Das and
Aki (1977) used a fumerical technique to determine the probiem or
two-dimensiona) shear crack Propagation with 4 critical stress
Jump across the tip of the crack as the failure criterion.

The three-dimensional Problem has been solved by several
authors, such as Dag (1981}, Virieux and Madariaga (1982}, and Day
(1982) Using numerical methods.  For  most models the average
Fupture velocity is controlled by the normalized strength and the
complexity of the rupture process depends on the variations of
stress and strength distribution.

If the conditions of stress ang strength are homegenecus, once
a fracture has been initiated, will propagate inderinitely. In
a model, however, 3 track can be made to stop arbitrarily when the
rupture front reaches a certain limjt. For a circular crack, this
cah be made whep the crack reaches a certaip final radiyg
{Madariaga, 1976). The Stopping of rupture generates very strong
healing waves that Propagate inward frem the edge of the fault
that finally reduyce the siip velocity to zerg. A more realistjc
way to stop fracture Propagation js g assume an inhcmogeneoys

energy along the fault plane or limiting the prestressed region tg
a finite size. The crack stops whep the strength of the materjal
to be fractured is 100 high or the stress drop on the crack is too
fow,

4.5, Complexity of the source

The study or wave forms pgenerated by large earthquakes hag
shown that most of them are multiple events {Wyss ang Brune,
1967). That is the source is not a simple fracture with uniform
slip Propagating at constant velocity over 2 certain area. The
conditions over the fault surface carnot be homogcneous, even if
only for the Fequirement of tpe Fupture to stop at certain
limits. Field observatijons show that faulis Cross over 3 variety
of different kinds of rocks of different strength angd that the
fault surface changes directions at Some places. Il we want 1o
describe the physical process of the rupture at earthquakes, the
heterogenelty of the faulting process must, in spme way, be
mode|led, Also, the fair]y constant and relatively Jow values,
between 1 angd 10 MPa, obtained for the stregs dreps of earthquakes
of magnitude above 5 | reveal that thege MUst be average values
over the whole fault, since rocks may support much higher stresses
without fracturing. Observations the near figlg at  high
frequencies show very complex seismic signals, algg evidence of
complex processes at the source.
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Two models have besn pProposed tg explain this heterogeneny
and complexity of the Source, the barrjsr and the asperity mode;.
The barrier mode| Proposed by Dag and Aki (1977) and Akj (1979}
assumes that faulting  takes place  under uniform prestressed
conditions over the rault surface, byt with differences in the
strength. Regions of very high strength are called barriers since
they  wiji] impede the propagation of rupture, Actually | when
rupture arrjyeg at a barriar it may stop temporari]y and then
continue if ¢ ig 2 weak barrier, o remain unbrokep if it js 3
strong barrier. The stress will be released in the zopes that have
been ruptured and accumulate at the barriers left unbroken. Aftep
the tarthquake, the fault area has a heterogeneoys distribution of
stress (Fig. 4.5, The faulting Process consists, for this moded,
in  severa| fractures Separated by strong barriers, Large
earthquakes are, then, a superposition of several smaller events,
The barrierg feft unbroken may rupture later, giving origin to
aftershocks after the occurrence of the main event.

In the mode| af asperities, Proposed by Kanamori apg Stewart
{1978), the fault has a heterogeneoys distribution of high and |ow
Prestressed  zopes. Zones or Patches of high stress are called
asperities. Previousty to a large carthquake, the low strength
Zones of the fault ruptere producing smalt events, leaving only
the  asperjties, or  zones of high strength  where stresses  are
accumulated. Thege Zones break during the main shock, Complexi{y
of the Source s prodyceq by the successive Tupture of several
asperities.  After the Fupture of 4| the asperities, the siress
falls to 3 uniform, distribution over the fauyt (Fig. 4.5} This
model explaing the occurrence of foreshocks, but  cannot explain
the occurrence of aftershocks.

In the barrier model | ap earthquake jg 5 stress roughing
pracess, while jp the asperity moda) is a smoothing brocess, |p
both cases, howcver. earthquakes are  complex ruptures of
elememary patches, ejther of asperitieg or inter-barrier Zones, A
barrier model has been proposed by Papagcorgius and Aki (1983) in
which a Fectangular faulr g filled with circutar cracks . In gap
earthquake, these cracks rupture progressively leaving the space
between tham (barriers) unbroken. | this  mode] one  canp
distinguish between the “global stress drop”, estimated from the
total fault area, assuming a uniform stregs drop over the entire
fault, and the “loca) stress  drop", estimated from the maximym

and barriers through many repeated earthquakes may explain the
concept of characteristic =arthquakes ( Akj, 1984), The complexity
of the soyurce may be alsg considered ag the cause of departure
from self—similarity in  earthquakes. Self—sirnilarity implies that
the only parameter thyy regulates the earthquake PTocess is the
fault length. |, complex  sources the  scale length  of
he!erogeneities {barrier interval]. the dimensions of the cohesgiye
Zone and the fault~zone width that are related 1o secondary
features of the fault, such as branching. Stepping, ete,,  are
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important dominant factors (Aki, 1988).

Numerical models for complex sources have been applied by
Mikumo and Miyatake (1978) for a fault with  a  variable
distribution of friction and Day (1982} for fracture propagation
in a medium with a nonuniform  distribution of prestress. He
considers the case of fracture in a fault with one or more
asperities and the pressnce of friction. Das and Kostrov (1988)
consider models with both asperitias and barriers. They unify the
terminology calling barriers, the localized regions of the fault
which remain unbroken and asperities, those that rupture with a
high stress drop. After considering many models, they conclude
that the complexity of seismic radiation can be attributed ta the
inhomogeneity of stress  drop distribution over the fault, the
presence of barriers and of friction. 1t cannot be simply related
to the number or size of the asperities. Complexity of the source
may also be interpreted as caused hy the nen-planar geometry of
the fracture. Andrews (1989) warns that planar thinking have
dominated earthquake modeling and perhaps have led us astray. For
him the essentia} mechanism in modeling earthquakes is geometric
irregularity including fault-bends ang Tault-junctions.

4.6. Acceleration spectra

We have seen how the dimensions of the fracture affect the
Torm of the amplitude Spectra in the far field. Complexities of
the fracture process, however, are only observed in the high
frequencies observeq in the near field. High frequencies attenuate
very rapidly so that they are not observed in the far field. For
the low frequency observations the source model of 3 uniform
rupture over a certajn faylt area js adequate, but not sg fer the
high frequencies. They are affected by the irregularities ang
complexities of the source, such as changes in the fracture
propagation with stops and accelerations, existence of elementary
units  (asperities or barriers) that break progressively and
departures from planarity in the fault surface,

Regarding the displacement spectrum (Fig. 13.5), the spectrum
of  accelerations |s myltiplied by a factor of . s form,
therefore, depends on w® for the low frequencies, corresponding to
the flat part of the displacement spectrum, and is flat for
frequencies higher than the corner frequency . For higher
frequencies g certain maximum frequency w

max
approximately 10 Hz beyond which amplitudes decrease v

(Fig. 4.6). Tnis frequency is usually known as

appear at

ery rapidly
fw =

max max
anm“]. This frequency has been related to attenuations effacts

in the path o to source effects. [t is reasonable to think that
both effects take part.

The source effects that have been related to f are in the
max
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first place the minimum fracture dimension for elementary units c?t'
the fault (asperities or space between barriers). The source s
conceived in these models as formed by a group of elementary _umts
with a minimum dimension of about 200 m, that brcak' successively.
These units are easily associated to asperities. In this form f‘m.x

is a measure of the complexity of the fault. Aki (1988),

associates f with the dimensions of the cohesive zone d or
max

critical displacement D, in the form,

40 v
3 = ¥ (4.14)
max d urnCDr

Where v is the velocity of fracture propagation, o, the critical

stress, p the rigidity at the scurce and Civ) a r"u‘nctior} that for
subsonic fracture has a value near to unity. The dimension of the
cohesive zone may be between 100 m and | km. If v = 3 kms/s and d =
00 m, f = 10 Hz.

max

Some authors (Madariaga, 1989) introduced another frequtj:ncy
calied the “patch frequency” fp. lower than f‘m“ where there is a

change in the slope of the spectrum. This frequency is relz‘ned to
the inverse of the dimension of the subevent fracture units. An
earthquake is modelled by the rupture of one or several elementary
fractures or asperities {patches). For smalil earthq'uakes, rupture
of a single unit, the patch frequency coincides with tr'fc Cl?rner
frequency, while for lafger ones the patch f‘requgncy is  higher
than the corner frequency, but lower than the maximum frequency
(Fig. 4.6). In this model the maximum frequency may not represent
a source effect.

Source complexity and irregularity affects the radiation of
high frequencies and for this reason can only be detected by the
analysis of strong motion acceleration records from the near
field. We have only shown the effects in  amptitude spectra.
Complex models of the source are used to rnodel. the strong motion
records in a similar way as we showed the modelling of wave forms.
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