INTERNATIONAL ATOMIC ENERGY AGENCY .

e ——

@3 UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION -—R—'-
INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS "

I.C.T.P, P.O. BOX 586, 34100 TRIESTE, ITALY, CABLE: CENTRATOM TRIESTE |/

H4.SMR/942-22

Third Workshop on
3D Modelling of Seismic Waves Generation
Propagation and their Inversion

4 - 15 November 1996

Upper Mantle Anisotropy from
Surface Wave Studies

Jean-Paul Montagner

Institut Universitaire de France
Institute de Physique du Globe
Paris, France

MAIN BUILDING STRADA COSTIERA. 11 TEL. 2240111 TELEFAX 224163 TELEX 460192 ADRIATICO GUEST HOUSE VIA GRIGNANO, 9 TEL.224241 TELEFAX 224533 TELEX 460449
MICROPROCESSOR LAB. V1A BEIRUT. 31 TEL. 224471 TELEFAX 224600 TELEX 460392 GALILEO GuesT HousE VIABEIRUT. 7  TEL.2240311 TELEFAX 2240310 TELEX 460392



Upper Mantle Anisotropy from Surface Wave Studies

Jean-Paul Montagner
Institut Universitaire de France
Département de Sismologie CNRS URA 195
Institut de Physique du Globe - Paris - France

November 5, 1996

Trieste
International Centre for Theoretical Physics
3rd Workshop on Three-Dimensional Modelling of Seismic Waves

Generation,
Propagation, and their Inversion '



Introduction

I- Surface waves- normal modes
Presentation of surface waves

Importance of anisotropy

First order perturbation theory

II- Tomography of velocity and anisotropy
Forward problem

Inverse problem

III- Applications of anisotropy tomography

Global scale: mantle convection
(plate motion, continental root, flow pattern, detection of plumes, ...)

Regional scale: Tibet
(relationship with tectonics...)

Petrology

IV- Future Prospectives



Abstract

With the Increasing quality of selsmograms provided by modern digital networks
(GDSN, IDA, GEOSCOPE, IRIS), it will be possible in the future to obtain a whole
family of reliable tomographic models, including Vp, Vs seismic wave velocity, anisotropic

and anelastic parameters, Some applications of the anisotropic tomography are also pre-
sented.

1 Introduction

Ten years ago, the first global tomographic models were published ( Woodhouse and Dziewon-
ski, 1984; Dziewonski, 1984; Clayton and Comer, 1983; Nakanishi and Anderson, 1984; Nataf,
Nakanishi and Anderson, 1984, 1986). Since that time, many new tomographic models were
published, and a large family of techniques was made available. This important progress was
made possible by the extensive use of computers which can handle very large datasets and by
the availability of good quality digital selsmograms recorded by seismic networks such as the
International Deployment of accelerometers (Agnew et al., 1976}, the Global Digital Seismo-
graph Network (Peterson et al., 1977) and more recently GEOSCOPE (Romanowicz et al.,
1984) and IRIS (Smith, 1986). However, most of tomographic techniques only make use of
the phase information in selsmograms and very few of the amplitude, even when one works
on seismic waveform ( Woodhouse and Dziewonski, 1984). We will show in this paper, from a

theoretical and practical point of view, why it is much easier to explain the phase of seismic
signals than amplitude,

ber of data and by more general parameterizations, now including anisotropy (Radial anisotropy
in Nataf et ql. (1986); general slight anisotropy in Montagner and Tanimoto (1990, 1991) and
to a less extent anelasticity (Tenimoto, 19893 Romanowicz, 1991; Roult et al., 1991), but there
is still a major step to perform, in taking a complete account of amplitude anomalies in the
most general case. There were some attempts to do so op global scale (Tanimoto, 1984b; Wonyg,
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The reader is referred to other authors when the generalization of this simple case is available.
Finally, the practical implementation of the inverse problem is presented as well as how one can
take account of errors on data and how to calculate the resolution and a posterior: covariance
functions of parameters.

2 Presentation of surface waves and normal modes



3 An anisotropic Earth

3.1 Seismic anisotropy at all scales

The evidence of anisotropy is steadily growing during the last 30 years. It turns out that it
is present at all scales. Different geophysical fields are involved in the investigation of the
manifestations of anisotropy of Earth materials, mineral physics and geology for the study of
the microscopic scale, and seismologists for scales larger than typically one kilometer. The
different observations related to anisotropy, at different scales will be briefly reviewed.

o Microscopic scale.

The different minerals present in the upper mantle are anisotropic ( Peselnick et al., 1974). The
main constituent, olivine, is strongly anisotropic; the difference of velocity between the fast
axis and the slow axis is larger than 20%. Other important constituents such as orthopyroxene
or clinopyroxene are anisotropic as well (> 10%) (see for example Christensen and Lundquist,
1982 and Anderson, 1989, for a review). Some other constituents such as garnet display a cubic

crystallographic structure which presents a small anisotropy. Consequently, the petrological

models which are assemblages of different minerals are less anisotropic than pure olivine. The

amount of anisotropy is largely dependent on the percentage of these different minerals aad on

the mechanisms which will align the crystallographic axes according to preferred orientations.

For example, the anisotropy of the pyrolitic model, mainly composed of olivine ( Ringwood,

1975) and orthopyroxene, will depend on the relative orientation of their crystallographic axes

(Christensen and Lundquist, 1982). However, through the mechanisms of lattice preferred

orientation, its anisotropy can be larger than 10 % (Montagner and Anderson, 1989a). For

competing petrological models such as piclogite (Anderson and Bass, 1984, 1986), where the

percentage of olivine is smaller, and of garnet larger, the amount of anisotropy will be smaller

(about 5%).

As depth is increasing, the minerals will undergo phase transformations. It is now widely rec-

ognized that with increasing pressure and temperature, the crystallographic structure evolves

towards a more closely packed structure, more isotropic, such as cubic structure. For example,

olivine transforms towards S-spinel and then 7¥-spinel in the upper transition zone (400-660km

of depth) and towards perovskite and magnesiowustite in the lower mantle. The ideal struc-

ture of perovskite is cubic, but can display some important distortion, which can induce some
anisotropy at least in the uppermost lower mantle. Therefore, at microscopic scales, we can con-
clude that earth materials in the upper mantle are strongly anisotropic, but that the anisotropy
tends to decrease as depth is increasing.

At slightly larger scales, the scale of rock samples, several studies of anisotropy were under-
taken. Dunite, which is also pure olivine displays a large anisotropy (Peselnick and Nicolas,
1978). Moreover, this anisotropy is coherent in whole massifs of ophiolites over several tens
of kilometers ( Nicolas, 1993; Vauchez and Nicolas, 1991). At larger wavelengths, anisotropy is
also present and can be investigated from seismic observations.

o Macroscopic scale:

Difterent and independent seismic datasets make evident that the effect of anisotropy is not
negligible for explaining the propagation of seismic waves inside the Earth.

From a seismological point of view, the evidence that the upper mantle is anisotropic is steadily
growing resulting from an increased number of observations implying anisotropy. The early
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evidence was the discrepancy between Rayleigh and Love wave dispersion (Anderson, 1961; Ak
and Kaminuma, 1963) and the azimuthal dependence of P, velocities (Hess, 1964). Azimuthal
variations are now well documented for different areas in the world for body waves and surface
waves.

Body waves:

For body waves, this kind of informations results from the investigation of the splitting in
teleseismic shear waves such as SKS (Vinnik et al., 1984; 1989a,b; 1991; 1992), ScS [Ando,
1984; Fukao, 1984) and S (Ando and Ishikawa, 1982; Bowman and Ando, 1987). These waves
are shown to provide an excellent lateral resolution, if we restrict to the deep upper mantle (i.e.
below crust). And among these different observations, the splitting information derived from
SKS is the less ambiguous and has been extensively used in teleseismic anisotropy investigations
(Silver and Chan, 1988; Vinnik et al., 1989a,b; Ansel and Nataf, 1989...). The drawback of this
technique is that it is almost impossible to locate at depth the anisotropic area.

Surface waves:

Surface waves are also well suited for investigating upper mantle anisotropy. Two kinds of
observable anisotropy can be considered. The first one results from the well-known discrepancy
between Love and Rayleigh waves (Aki and Kaminuna, 1961; Anderson, 1961). The so-called
"polarization” anisotropy or radial anisotropy. In order to remove this discrepancy, it is nec-
essary consider a transversely isotropic model with a vertical symmetry axis. This kind of
anisotropy is characterized by 5 anisotropic parameters plus density { Anderson, 1961). How-
ever, Levshin and Ratnikova (1984) showed that lateral heterogeneity can lead to a
Rayleigh-Love discrepancy and that we must be cautious about the interpretation
of this discrepancy in terms of anisotropic model. (On a global scale, Nataf et al.
(1984; 1986) have derived by the simultaneous inversion of Rayleigh and Love wave
dispersion, the geographical distributions of S-wave anisotropy at different depths
assuming transverse isotropy with vertical symmetry axis.

The second kind of observable anisotropy is the azimuthal anisotropy which was
directly derived from the azimuthal variation of phase velocity. It was observed
for the first time on surface waves by Forsyth (1975) in Nazca plate. Since these
pioneering studies, global and regional models have been derived for both kinds //
of anisotropy (Mitchell and Yu, 1980; Montagrer, 1985). Tanimoto and Anderson {1985)
obtained a global distribution of the Rayleigh wave azimuthal anisotropy at dif-
ferent periods. On a regional scale, several tomographic investigations report the
existence of azimuthal anisotropy in the Indian Ocean (Montagner, 1986a), in the
Pacific ocean (Suetsugu and Nakanishi, 1987; Nishimura and Forsyth, 1987, 1988) and
in Africa (Hadiouche et al., 1988). Lévéque and Cara (1985), Cara and Lévéque (1988)
used higher mode data to display anisotropy under the Pacific Ocean and North
America down to at least 300km. L

However, the ”polarization” anisotropy (or radial anisotropy) and the azimuthal
anisotropy are two different manifestations of a same phenomenon, the anisotropy
of the upper mantle. Montagner and Nataf (1986) derived a technique which makes
it possible to explain simultaneously these two forms of seismically observable
anisotropy. The principles of this technique will be described in section 2.5, for
the most general case of anisotropy (at the condition that it is small). The method
can be slightly simplified by introducing only one symmetry axis (7 independent



anisotropic Parameters) and it was coined ”Vectorial tomography” (Montagner and
Nataf, 1988). It was applied to the investigation of the Indian Ocean (Montagner
and Jobert, 1988). Moreover, they showed that, Paradexically, in order to explain
their data in the Indian Ocean, a parameterization with anisotropy requires less
parameters than a Parameterization with only isotropic terms. Therefore, contrar-
ily to body waves, surface waves enable to locate at depth anisotropy but, so far,

Finally, anisotropy has not only an effect on the phase of seismograms, but also an
effect on its amplitude. Due to the coupling between surface wave modes, one of
the less ambiguous effect is the fact that Love waves can be present on the vertical
and the radial component (Park and Yy, 1993).

Therefore, there is no doubt on the existence of anisotropy and it cannot be con-

axis) of minerals. There must be in addition an efficient strain field, with a long
wavelength coherency, for spatial wavelengths Ag such that As > X (where ) is
the wavelength of the wave under consideration). This kind of condition is usually
encountered in tectonically active areas.

Several questions arise:

anisotropy, radial anisotropy and azimuthal anisotropy?
* How can it be related to body wave anisotropy?

3.2 First order perturbation theory

The basic equation which governs the displacement u(r,t) is the elasto-dynamic
equation ( Woodhouse and Dahlen , 1978):

dzu,-

Po— =Zo'ij.j+f3i+fE£ (1)
J

fsi et fg; represent respectively the whole ensemble of applied internal and external
forces. Generally, by neglecting advection terms, this equation is written:

is a linear relationship between oi; and the strain tensor i+ i = T Dinen (+
terms related to the inijtjal stress). ',y is a 4*-order tensor. By using the different



symmetry conditions ;5 = T'jiy = Tijix = Tiij, it is easily shown that the tensor I
has 21 independent elastic moduli.

Let us assume that the solution u(r,t) of the equation is known for a reference
Earth model M,, with its corresponding operator L.

poduu(r,t) = Lou(r,t) (3)

In the simple plane case (fundamental modes, no coupling between branches of
Rayleigh and Love waves), the frequency shift, for a constant wavenumber £ can
be rewritten:

1 (k|ET T EJk)

% (KK) )

6w|k = -
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IMPORTANCE OF ANISOTROPY

It is present at all scales.
It is the rule not the exception
« Microscopic scale
« Macroscopic scale
Body waves
Surface waves

Mechanisms of preferred orientation

Anisotropy is not a second order effect

o
1>~



Olivine and orthoi
velocities for the 1
olivine g-¢ plane a

(ﬂ!\hrson , 1931)

22

A



01.0

0.8

0.6

LA |

T

.10 1 1 L ! i 1 ! 1
0 40 80 120 160 200 240 280 320

AZIMUTH W

360

Azimuthal anisotropy of Pn waves in the Pacific upper mantle.
Deviations are from the mean velocity of 8.159 km/s. Data
points from seismic-refraction results of Morris and others
(1969). The curve is the velocity measured in the laboratory for
samples from the Bay of Islands ophiolite (Christensen and Salis-
bury, 1979).



L b=

]
9 100
T T
- 100
e 5004
1o
] R
- 107
- 5004
15 - 3G LT 31
1986 146. 19 34 40 00 1988 122. 23. % 0 00
550 Evanl 2 baz + 2.3 SSB Event 22 bozr + 1981

. Two enmplu of SKS splitting observations at station SSB
(anee) The particle motion plots corresponding to the transverse (T) and
radial (R) components are given for each case.
Eveat (2) occurred on May 26, 1986 at 19h 06mn 15.9 sec in the Fidji Tonga
area (depth 538 km, epicentral distance 154.59),
Event (22) occurred on May 1, 1988 at 23 hours 06mn and 30.7 sec in the

Sandwich Island region (depth 114 km, epicental distance 104 6% . From
Vinnik et al., 1989,

‘ - Qlttgvcr




M

W
BOLABIZATION ANISOTBOPY

T
0/

.\0
a

>
—_~ Ne \0

2 00000

N s o e
>' o i 10 1 1 i

= 100 200 300 400 pepth
> {km)

Fig. 11. Variation of polarization anisotropy with the age of the
sea floor and with depth.

(Montagren, 1985)

Ro’\c'ljk —3 VSV \7)

L,OU'L, —p Vs“ (')

- A ‘ ‘ , A 3
,_l.\r\ an 1892 ["')p\c_ “‘&C\Lu.m \/SV (‘.r"); \/SH\t )
| 25



A

Vq = Vﬂo*" X, Cu QW‘%) ofF grﬁod T

LY
PYN N NN Ny T

(b)

FIGURE 15.12

(a) Azimuthal anisotropy of 200- Raylcigh waves. The map includes cos 26, sin 20 and
/= 1.2and 3 terms. The lines indicate the fast phase velocity direction. The length of the
lines is proportional to the anisotropy (Tanimoto and Anderson. 1984). (b) Flow lines at
260 km depth for the upper-mantle kinematic flow mode] of Hager and O"Conneil ¢ 1979),
The model includes 3 low-¥iscosity channel (10" poises) in the upper mantle.

£

1

-Ttﬂt"‘"'\\’\‘-.“‘-'!'-‘"‘ ). N!‘d@.ﬁvﬂom (a2 )



Ag

INSTRUMENT COUNTS(x10°)

INSTRUMENT COUNTS(x10°)

O w0 @& 0 O
I

0 0 = =N WO

O
S5
O
5
O
5
O

Data for Philippine Event(6/14/90)

STATION PAS

START:

O.00HRS, DURATION:

4 .20HRS

1
- G2
Transverse
Radial

N t%\?};{(r)\}»?gi%%

. Vertical
e ?o‘l’%l!%z‘fb\cﬂﬁi?%}%

1 1 i i 1 1 L J |
0.0 1.0 2.0 3.0 4 .0
STATION ANMO START: 0. 00HRS., DURATION: 4 OOHRS

Transverse

Vertical

L. 1

4.0

.7%



First Order f?trfw’:a'}'im Theo

(hoh d‘;"‘\tl‘gh (A-K) ";
L —s %'y § 3
1) 275 =2, o Shp |

(19 [ A, &:.) )(n
“‘58) { m

dn t i+ T O

(1o 2-Yo 2 <Y | S‘L » 6(8¢Y)
<‘Jn\‘jn> s"rz'

R")h) " - .:: Z <__y':ﬁ\sy‘|‘a:1> .
‘3 ," ™K Yﬂ—x:h ‘j”\

'Plam case

£ S E .
2 — 1( S Atrain oP'.ro-’for : Ed: %(v.”urvvzt

v s Jashic Yanger

(W), = <y | BT ScBlup
k <“““h>

d-‘ iot J t ik B 9

ﬁu ug d2



P&\’si ca.l m!auin,

X! $ ¢
k‘tnt‘hc {nq.r;y K= i (U\ = Ji(‘d “

"Portnhs" ,a*min {nor:,

W= 4 £} Gty §,

L T .
C‘JL’ - Q;}” + SQ.JL) =y dw- <u|E § E)uy
- S\Q}) >
dK = /-:'L(
dIK 2 dw

Iv\ *‘k {o’lo\v'm? S\ijh = 73*.,



1 Plane Case

In this section, we will follow the same approach as Montagner and Nataf (1986} for calculating
éwli. Let us consider the propagation of the fundamental modes ofLove and Rayleigh waves in

x (North)
Figure 1: Definition of the Cartesian coordi-
(\‘I' nate system (z,y, z) used in the calculations.
¥ is the azimuth with respect to North of the
— v (East) wavevector.

Fo(z). In that medium, the two cases of Love and Rayleigh wave dispersion can be successively
considered.

The unperturbed Love wave displacement is of the form:

—W(z)sinW¥
u(r,t) = ( W(z)cos ¥ ) exp(i[k(z cos ¥ + ysin V) — wt)) (1)
0

where W(z) is the scalar depth eigenfunction for Love waves, k is the horizontal wave number,
and ¥ is the azimuth of the wave number k measured clockwise from the North.
The unperturbed Rayleigh wave displacement is of the form:

V(z)cos ¥
u(r,t) = ( V(z)sin ¥ ) exp(t(k(z cos ¥ + ysin V) — wt)) (2)
W(z)

where V(2) and U/ (2) are the scalar depth eigenfunctions for Rayleigh waves. The associated
strain tensor ¢(r,t) is defined by:

€ii{r,t) = 1/2(u;; + Uj) (3)

where | j denotes the differentiation with respect to the j-th coordinate. The medium is per-
turbed from Ty(2) to To(2) + 4(z), where 7(z) is small compared to T'o(2) but quite general

3o



in the sense that there i1s no assumption on the kind of anisotropy. This means that we are
in the approximation where we can still consider quasi-Love modes and quasi-Rayleigh modes
(Crampin, 1984). From Rayleigh’s principle, the first order perturbation 6C(k) in phase velocity
dispersion is (Smith and Dahlen, 1973, 1975):

C fo Yijki€ij€
50 k — [4] JriS1y Skl
(k) 2w? [5° pouku;dzdz (4)

where u; and ¢,;; are the displacement and the strain for the unperturbed half-space and the
asterisk denotes complex conjugation.

'sThe equation (..) is completely equivalent to equation (..). For a given wavenumber £, %lk =
e

Now because of the symmetry of the tensors 4(z) and ¢, we use the simplified index notation ¢;;
and ¢; for the elements v;;x; and ¢;;, but we must take account of the number n;; of coefficients
vi;jut for each ¢;;. The simplified index notation for the elastic tensor 7y is defined in a
coordinate system (z,, z2,23) by:

ifi=j= p=1i
ifk=I1= qg=k
fifj= p=9—i—j
ifk#£l= g=9—k—1

(5)

Yijki —F Cpq

This kind of transformation enables to relate the 4** order tensor I (3x3x3x3) to a matrix ¢
(6x6). The same simplified index notation can be applied to the components of the strain tensor
¢;j, transforming the 2™ order tensor ¢ (3x3) into a vector with 6 components. However, it is
necessary to be careful, because to a given c,, corresponds several 7;j, therefore ;5 must be
replaced by ny,cpe, Where n, is the number of vi;u giving the same ¢p,. Therefore, the equation
(..) expressing Rayleigh’s principle can be rewritten as:

C Joo 2ij M Cis€i€s

5C(k) = 1dz (6)

20?57 pouruidz

We detail only the calculations for Love waves.
o Love waves.
By using previous expressions for u(r,t) and ¢;(r,t), the various expressions of strain are:

(¢ = =icos¥sinW.kW
€ = icos¥sinU.kW
€3 = 0 )

W €4 = 1/2cosW.W' (7)
es = —1/2sin¥.W

| 66 = 1/2(cos® ¥ — sin? ) kW

where W' = ‘—ig{-. In table 1, the different terms n;;c;;€;€; are given. We note that when Cij€i€;
is a purely imaginary complex, its contribution to 6C(k, ¥) is null. When all the contributions
are summmed, the different terms cos ¥* sin ' present are such that k + ! is even, which is not
surprising in the light of the reciprocity principle. Therefore, each term can be developed as a
Fourier series in ¥ with only even terms. Finally it 1s found:
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Ok 9) =g [T @KW (o1 + e — 2e1s + deag] 4 W (cu + css)
+ cos 2lIl.W’2[é-(c44 — ¢s5)] — sin 20. W %¢,q
— cos 4lIJ.k2W2[§(cu + €22 — 2¢15 — degg)) (8)
+ sin 4‘P.k2W7'[%(c26 — c18)}

In the particular case of a transversely isotropic medium with vertical symmetry axis (also
named radial anisotropy), we have: €11 = €2 = 8A, ¢33 = 6C, ¢;5 = 8(A—2N), ¢)3 = c23 = 6F,
€ = Cs55 = 8L, cgg = §N and €U = Cu =05 = €5 = 15 = g5 = 0, where we have used
the classical notations of Takeuchi and Saito. The azimuthal terms vanish and the previous
equation (..} reduces to:

1
2C1 Ly

Therefore, the same expresions as Takeuchi and Saito (1972, p. 268) are found in the case of
radial anisotropy. By keeping only the constant term of equation (..), which corresponds to the
averaging over azimuth ¥,one obtains an equivalent transversely isotropic model with vertical
symmetry axis by setting:

ON = %(Cn + ¢32) — %CIZ + %Css

6L = %(C« + css)

If we call C; the elastic coefficients of the total elastic tensor, we can set:

N = PVSZH = gl(Cu + Cyy) — 41012 + %Ces

L=pVE = H(Cu + Cs5)

According to equation (..), the first order perturbation in Love wave phase velocity 6CL(k, )
can then be expressed as:

§CyL(k, ¥) =

o0 w2
/ d{W?SN + —6L)d: (9)
1}

6Cr(k, W) = 2o (F [L1(k) + L3(k) cos 20 + Ly(k) sin 2 + La(k)cos 4 + L5(k)sin4® (10)
oL
where
Lo(k) = [ pW2d
Ly(k) = & [ (W2N + %6114,

)
)

Ly(k) = 5 J5° —Go(% )dz
) =13 15" —G (% )dz

L(k) = £ /= _ £, weg,
¢ Rayleigh waves.

The same procedure holds for Rayleigh wave phase velocity perturbation 6CRr , starting from
the displacement given previously (Montagner and Nataf, 1986).

1

§Cr(k, W) = TONDS

[Ri(k) + Ry(k) cos 20 4 Ra(k)sin 20 4 Ry(k) cos 40 + Rs(k)sin4 ¥ (11)
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where

Bo(k) = f° p(U? + V¥)dz

Bi(k) = 55 [5* V2 8A + 57.6C + 2V §F + (X~ U)2.6L)dz

Ra(k) = 55 [5°[V2B. + X H + (X~ UP.G.)dz

Ry(k) = 7= [o° V2B, + Y H, + (Y~ 1)2.G,)dz

Ry(k) = %fom E.Vid:

Rs(k) = %fow E,Vidz
The 13 depth-functions A,C, F, L, N, BB, H,H,,G,.,G,, E,,E, are linear combinations of
the elastic coefficients Ci; and are explicitly given as follows:

Constant term ( 0 ¥ -azimuthal term: independent of azimuth)

A=pViy =HCn +Cn) + Ciz + 1Cs
C=pVE =Cay

F=2(Cis+ Cap)

L=pV& = 1(Cu + Css)

N = pViy = §(Cri + Cn) - O+ 1Ces

2 ¥ -azimuthal term:

cos 2W sin 2V
B = %(Cn —Ca2) B, = Cie + Co
Gc = ?(055 - C44) Gs = CS4
He = 3(Ca — Ca) H,=Cy
4 ¥ -azimuthal term:
cos 4 sin4¥

E.=3{(Ch + Cp) - 01— 1C E, = }(Ci6 — Ca¢)

where indices 1 and 2 refer to horizontal coordinates (1: North; 2: East) and index 3 refers to
vertical coordinate. p is the density, Vg, Vpy are respectively horizontal and vertical P-wave
velocities, Vsy, Vsy horizontal and vertical S-wave velocities.

If we consider the constant terms L, and Ry, five independent combinations of the C;; are
involved. They correspond to the case of a transversely isotropic medium with a vertical sym-
metry axis (or radial anisotropy) after averaging over all azimuths. The elastic coefficients of
this kind of medium were defined by Love (1927) and Takeuchi and Saito (1972). It is also
recalled that A,C, L, N can be retrieved from measurements of the P- and S- wave velocities
propagating perpendicular or parallel to the axis of symmetry. Some of the previous combina-
tions were already derived in the expressions that describe the azimuthal dependence of body
waves (see Crampin ef al. (1984) for example) in a weakly anisotropic medium.

pVE = A+ B.cos2W + Bysin2¥ + E_ cos4¥ + F, sin 4
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pVi =N — E.cos4W¥ — E, sin 4@

stzR =L+ G, cos2¥ 4 G, sin 20

Therefore, the equations (--) and (..) define the forward problem in the framework of a first
order perturbation theory. We will see in the next section how to solve the inverse problem.
That means that, ideally, surface waves have the ability for providing 13 elastic parameters,

first displayed by Montagner and Nataf (1986). They are sufficient to describe the two seismi-
cally observable effects of anisotropy on surface waves, the "polarization” anisotropy (Schiue
and Knopoff, 1977) and the azimuthal anisotropy (Forsyth, 1975).

In conclusion, the 0- term corresponds to the average over all azimuths and involves 5 inde-

the radial and azimutha] anisotropy of surface waves, These partial derivatives can be easily
calculated by using a radial anisotropic medium, such as the one used in PREM (Dziewonski
and Anderson, 1981). The corresponding kernels for the fundamental mode are detailed and
their variation at depth was discussed in Montegner and Nataf (1986). They are shown in
figures 2 for Love and Rayleigh waves at 2 different periods.

T and R stand respectively for toroidal and spheroidal modes. The partial derivatives of the
eigenperiod o7} with respect to parameter p, %% are computed for a spherical Earth but, they
can easily be converted into phase velocity partial derivatives by using:

Dziewonski (1982), the influence of P-waves (through parameters A and C) can be very large in
an anisotropic medium, The influence of density is also very large for Love and Rayleigh waves,

L
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but as shown by Takeuchi and Saito (1972), it 1s largely decreased when seismic velocities
are inverted for, instead of elastic moduli and density. According to equations (..} and (..)
any azimuthal term 8C, appearing in these equations, can be related to the different elastic
anisotropic parameters defined as linear combinations of elastic moduli:

2 C e dC dz
) =) — — Opi —
( CQ‘)T ; U a (ap )kpp_'r:l P Ah
where Ah is the normalizing thickness for the partial derivatives and n, the number of param-
eters.

Table 1: Calculation of the various c;;e€;¢; for Love waves, with the simplified index notation.
a=-cos¥; f=sin¥

n|i Cij €i€;
111 ot BEETW?
1|22 cppa® B W?
1133 0

2| 12 —e1pa? BREPW?
2|13 0

2123 0

4|14 cla( —ia?g). 2
4|15 ers(ia?B).
4 | 16 | cie(—aB)(a? — B7). 22
4|24 o —ia?B)
4125 eos(—ia ). L
4126 claB)(a? — B7).EHZ
4|34 0

4135 0

436 0

4|44 c44a"’.“:2
8145 c45(—aﬂ).v—V;

8 | 46 | ce(—ia)(a? — 7). 22K
4|55 ess 2. 2"

8 | 56 c56(iﬂ)(az-ﬁ2).k—%%
4]66| cesla® — B2).EH

Therefore, we have shown that it is possible to calculate the effect of a general slight anisotropy
on the phase of surface waves. The effect of anisotropy on the amplitude of waves is much more
complex and makes it necessary to take account of coupling with other modes. However, it
can be calculated by using the expression of displacement given by equation (..). We will now
show how to implement such a theory from a practical point of view, and design a tomographic
technique in order to invert for the 13 different anisotropic parameters, which arise as well in
the plane case as in the spherical case.
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Local phase velocity C at/point r, y azimuth along the ray.

C (0,y)=A o((o)-l-A 1{®)cos QyHA z(m)sm (2\|!)+A 3((o)cos (4yHA 4(co)sm (4\|I)
0 ‘P

l 2V l | Wy |
pVi= A Be Bs Ec Es
V= C

Hc Hs
Vg = t) T — Gs)

PVsh = Ec Es
Tomographic Technique:

dC (T 0.,9) = IHB_ op(r.0.¢) + IT op(r.0.0) + - - - =>3B(r,0,9), 5p(r .0.9)
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3 Tomography of anisotropy

3.1 Forward problem

We must make the following hypotheses: let us assume that a data space d and a parameter
Space p can be defined. We also assume that a theory exists, which enables to define functional
g relating d and p such that:

d = g(p), where d is the set of data (which samples the data space), and p the set of parameters.
The next point is now how to define both spaces.

look for the anisotropy of this area, it will be necessary to have anywhere a very good azimuthal
coverage. We can either take the seismogram u(t), and try to directly match the waveform in

the time domain, or work in the Fourier domain, by separating phase and amplitude on each
coimponent:

consuming. When working in Fourier domain, different time windows can be considered and

The use of higher mode wavetrain and the separation of overtones is much more difficult. The
first attempts were performed by Nolet (1975). Cara (1978), Okal and Bong-Jo (1985) and Dost
(1990) by applying a spatial filtering method. Different techniques based on waveform inversion

% LY,



of fundamental and higher-mode surface waves were also designed in the following years (Lerner-
Lam, 1983; Nolet, 1990; Lévéque et al., 1991). Unfortunately, all these techniques can only be
applied to areas where dense arrays of seismic stations are present, i.e. in North America and
Europe. By using a set of seismograms either recorded in one station but corresponding to
several earthquakes located in a small source area, Stutzmann and Montagner (1993) showed
how to separate the different higher modes. This technique might be easily applied as well,
to seismograms originating from one seismic source recorded in an array of stations. Since it
is necessary to fit higher mode wave packet, it is shown that it is necessary to recalculate the
eigenfunctions at each iteration of the inversion process. We will only detail the technique
which was designed for fitting the fundamental mode wavetrain and the reader is referred for
example to Stutzmann end Montagner (1993, 1994) for recovering the higher mode dispersion
properties.
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Figure 3: An example of data seismogram (top) and synthetic seismogram, obtained by normal
mode summation. The bottom 4 figures corresponds to monomode synthetic seismograms,
calculated for PREM. The maximum of amplitude for each mode is reported on the left. The
seismogram was recorded in the GEOSCOPE station of Wushi (China). It corresponds to
a Japan earthquake (date: 92/08/29, time: 19:19:11.4, lat: 33.40N., long: 138.09E, depth=
309km).

We take advantage of the fact that, according to the Fermat's principle, the phase velocity
perturbation is only dependent to second order on path perturbations, whereas amplitude
perturbation are dependent, at first order, to these perturbations. That is completely equivalent
to the simple case described in section 2.3 where the eigenfrequency perturbation can be easily
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computed by using the corresponding eigenfuntion (equation 11) whereas the calculation of
amplitude perturbation Decessitates to take account of the coupling with other modes (equation

The phase is a more robust observable than the amplitude. The amplitude A(w) depends
in a complex manner upor seismic moment tensor, attenuation, scattering, focusing effects,
station calibration and Dear-recerver structure whereas the phase ¢(w) is readily related to
lateral heterogeneities of seismic velocity and anisotropies. The next section will detail how it
s possible to separate these different effects op amplitude in order to obtain attenuation.

surements) along paths:
d = {5}

matrix (discrete case} of data C;. When data d; are independent, C, is diagonal and its elements
are the square of the errors on data g, .

The phase of a selsmogram at time ¢ js decomposed as follows: ¢ = k.r + @), where k is the

wave vector, ¢y is the initja] phase which can be decomposed as follows: b0 = bo+ds+¢;, ds is
the initial source Phase, 4y is related to the number of polar phase shifts, ¢ is the instrumental

¢(r)=g%+¢o+¢s+¢, (39)
or
6= ws (40)

® large angular order ¢ 2> L. but not too large because we know that at periods smaller thag
30s, the scattering problems can be very important (Snieder, 1988a,b; Friederich et al., 1994).
From a practical point of view, that means that we work in the period range 50s. < T < 300s.
® geometrical optics approximation:

If Xis the wavelength of the surface wave at period T, and Ag the spatial wavelength of
heterogeneity: As>A=CT = A52-2,000k .

¢ slight anisotropy and heterogeneity: L« 1. According to Smith and Dahlen (1973) for
the plane case (equations 3] and 32 of section 2.5) and equation 37 in the section 2.6 for the

spherical case (RS, 1988), the loca} phase velocity can be decomposed as a Fourier series of the
azimuth .

8C(T, 8, ;
-—-——___.( o ?) = Ao+ 4 cos 2V + Az sin2¥ + A, cos 49 + Aqsin4¥ (41)

And every azimutha) term A, can be related to a set of anisotropic parameters pi.
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A A 2 13 Rds fe|(p;3C\ &pi(F) .
— = - : — —— ] ——Fcos(2;¥
C(T) ~ Co(T) I |G (cap; kel
pdC\ A ..o ] dz "
+(C'3p.')j ‘_ sin(27 W) AR (42}

Following the approach of Snieder (this issue), that means that we consider that the perturba-
tion is at the same time smooth and weak.

Parameter space: p(r)

Again, it is quite important to thoroughly think of the structure of the parameter space. First of
all, it is necessary to define how many physical parameters can be inverted for, in the framework
of the theory that is considered. For example, if it is assumed that the Earth is elastic, laterally
heterogeneous but isotropic, we can only invert for 3 independent physical parameters, Vp, Vs
and density p, or the elastic moduli A, 4 plus density p. In a transversely isotropic medium
with a vertical symmetry axis (Anderson, 1961; Takeuchi and Saito, 1972), the number of
independent physical parameters is now 6 (5 elastic moduli + density). In the most general
case of a slight anisotropy, we can invert for 14 physical parameters (13 combinations of elastic
moduli + density). Therefore, the number of "physical” parameters p; is dependent on the
underlying theory which is used for explaining the dataset.

Once the number of ”physical” independent parameters is defined, we must be able to define
how many ”spatial” parameters are necessary to describe the 3D distributions pi(r, 8, ¢). That
is a difficult problem because the number of "spatial” parameters which can be solved from the
dataset is not necessarily sufficient to provide a correct description of pi(r,8,¢). In any case,
it is necessary to assess the range of possible variations for p;(r, 8, ¢) in order to provide some
bounds on the parameter space. This is done through a covariance function of parameters in
the continuous case (or a covariance matrix in the discrete case). These a priori constraints can
be provided by other fields of geosciences, geology, mineral physics, geochemistry, geodynamics,
numerical modeling...

Consequently, a tomographic technique must not be restricted to the inversion of parameters
p = {pi(r,0,¢)} that are searched for, but must include the calculation of the final covariance
function (or matrix) of parameters C,. That means that the correct interpretation of tomo-
graphic models is contingent to the resclution and the errors of the final parameters and is
largely dependent on the resolving power of data ( Backus and Gilbert, 1967, 1968, 1970).
Finally, the functional ¢ which expresses the theory relating the data space to the parameter
space is also subject to uncertainty. In order to be completely consistent, it should be necessary
to be able to define the domain of validity of the theory and to assess the error or associated

with the theory. Tarantola and Valetie (1982) showed that the error ot is simply added to the
error on data oy.

3.2 Inverse problem

The equation (42) expressing the first order perturbation theory of the forward problem can be
simply written:

= §



d=Gp

where G is a matrix (or a linear operator) composed of Fréchet derivatives of d with respect to
p- which has the dimensions ng X 1, (number of data x number of parameters). This matrix
usually is not square and many different techniques in the past have been used for inverting G.
In any case, the inverse problem will consist in finding an inverse for the functional ¢, that we
will write g-1, notwithstanding the way it is obtained. Different strategies can be followed to
invert for the 3D-models p(r). This point can be illustrated by presenting 2 different approaches,
respectively coined 1-step and 2-step inversions,

¢ One step inversion: The €quation (42) is directly used for retrieving é%ﬂ

p=g7Yd) (43)

The inverse problem cons;sts In obtaining the geographical distributions of the local phase
(or group velocity) and their azimuthal terms at different periods. This step is often named
regionalization. The forward problem is obtained by combining equations (39) and (40):

A MR wds
C(T) */s C(T,6,¢)
It can be formally written:
4= gi(p;) (44)
And the inverse problem by:
P =gy'(d) (45)

The first parameter Space is defined by parameters m = {6C(T,8, #)}, and its q posteriori
covariance function Ch, -

Second step: Inversion at depth of local phase velocity and azimuthal anisotropy terms.

The data d; used in this second step are the fipa] parameters p (T, 8, ¢) determined by the first
step and the covariance functjop of data is C; = Cpi- For example, the forward problem for
Love waves in the plane case is given by equation (31) and in the spherical case by equation (38).
The second parameter SPace p; is defined by the 13 elastic parameters (+eventually density)
p2 = {pi(r, 8, ¢),i€(1, 14]} derived in section 2.5 | and jts 4 postertor: covariance function C,.
The forward and inverse problems can be formally written:

=}



di = p1 = gx(p2) = p2 = §; ' (1) (46)
By combining equations (44), (45) and {46), both steps give:

d=giog(p) > p=§; 0g;'d (47)
It can be demonstrated that both approaches are equivalent ( Montagner, 1986b) if vertical and
horizontal variations are decoupled, and if we take care to take for the second step Cy, = CP!;.M:'
In the second approach, we save space memory by solving, firstly a 2D-problem, and then a

1D-problem. :

For the 2-step approach, the general procedure can be summarized as follows:

e Extraction of 3-component data seismograms, calculation of synthetic seismograms for
a given path between epicenter S and receiver R.

U

o Calculation of average phase velocity between S and R, C(T, S — R) at different periods
T, for Rayleigh and Love waves.

4 Continuous Regionalization
0 Ai(T,8, ¢), i€[1,5] for Rayleigh and Love waves.

|} Inversion at depth.
»A,C,F,L,N,B..B,,G.,G,,H.,H, E. E,

To solve both inverse problems, different algorithms can be used. We detail in appendix C the
particular technique of Montagner (1986b) based on the algorithm of Tarantola and Valette
(1982). The choice of the parameterization is also very important and different possibilities can
be considered:

e Discrete basis of functions:

For a giobal study, the natural basis is composed of the spherical harmonics function for the
lateral variations in #, ¢. For the radial variations, polynomial expansions can be used (see for
example Dziewonski and Woodhouse, (1987) for Tshebyshev polynomials). Another possibility
is to divide the Earth into cells of various size according to the resolution we can expect from the
path coverage. The cell decomposition is valid as well for global investigations as for regional
studies.

¢ Continuous function p{r):

In that case, we directly invert for the function p. However, the number of parameters is then
infinite and it is necessary to define a covariance function of parameters C,,(r,r') in order to
reduce the number of independent parameters. For the lateral variations in 8, ¢, we can make
use of a Von Mises distribution (Fisher, 1953; Montagner, 1986b) for initial parameters po(r):

cos A, —1
IE

cor

Cro(r,7") = ay(r)a,(r') exp

where L., is the correlation factor defining the smoothness of the final model. This kind of
distribution is well suited for studies on a sphere and is asymptotically equivalent to a Gaussian

]



distribution when L., « 9r. Then the covariance function of Parameters redyces to:
2.1
! !
Cpo(ra r) = ap(r)ap(r )exP T Torz
cor

In that case, L., is named the angular correlation length.
When different azimuthal termsg distributions are searched for, it js possible to define cross-
correlated covariance functions of parameters Cy, ., (r, '), but it can be assumed that the dif-
ferent terms of the Fourier expansion ip azimuth are independent and these terms can be taken

Corpa(ri, ri) = Op10p2 (o1 o €
Where Cp1,2; S the correlation between physical parameters P and p; inferred for instance from
different Petrological models (Montagner qnd Anderson, 1989a) and I, Ly, are the radial
correlation lengths which enable to smooth the inverse mode].
It is interesting to note, that the loca] resolution of parameters is imposed by both the corre-
lation length and the Path coverage, contrarily to the Backus-Gilbert (1967, 1968) approach,
which primarily depends op the path coverage. But the effect of 5 damping factor in order to
smooth the solutjon. i equivalent to the introduction of a simple covariance function. When

the correlation length is chosen very small, the algorithms of Backus-Gilbert (1968, 1970) and
Tarantola- Valette (1982) are quite similar,

3.3 Practical implementation.

This complete 2-step procedure was implemented for making different regional and global stud-

les. From petrological and mineralogical considerations, Montagner and Nataf (1988} and Mon-

tagner and Anderson (1989a,b) showed that the predominant terms of phase velocity azimuthal

expansion are the 0-¥ and 2-¥ for Rayleigh waves, and 0-¥ and 4-¥ for Love waves. Montagner
and Nataf ( 1988) showed that the best resolved Parameters are [ = pVE, N = PVéy and G,

G, E., E, which respectively express the azimuthal variations of Vv and Vsy.

Another important point emphasized by Montagner ang Jobert (1988) and Montagner and
Tanimoto 1991) is the importance of shallow layers (oceanic - continenta] crusts, bathymetry -
topography, sedimentary thicknesses...) on phase velocity. In order to avoid the deep structure
to be biased by ap Improper account of shallow layers, it is Decessary to correct phase velocity
Measurements along each path. This correction is not negligible, and contrarily to the common
belief, it tends to increase the amplitude of latera] heterogeneities below the crust (Montagner
and Tanimoto, 1991).

This technique has made it possible to simultaneously explain the "Rayleigh-Love discrepancy”
(Schlue and Anopoff. 1977) and the azimuhal anisotropy, firstly displayed in the Nazca plate
by Forsyth (1975). However, the main limitation of this technique applied to the fundamental
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1  Geophysical applications

The number of applications of seismic tomography is very large. Seismic tomography is the
most efficient approach to visualize, at the same time, seismic velocities and anisotropy het-
erogeneities, which can, in turn be related to temperature, petrological anomalies and flow
directions. Therefore, the different fields interested in seismic tomography are geodynamics,
gravimetry, geochemistry and tectonics. We will briefly review what kind of information can
be provided by tomographic models.

¢ Geodynamics

The most popular application of tomographic models is the understanding of mantle convection,
because seismic velocity anomalies can be converted, under some assumptions, into temperature
anomalies or into density anomalies. Since Hager et al. (1985), numerous studies have been
devoted to the correlation between 3D seismic velocity structure, the dynamic topography and
the geoid.

Actually, part of seismic anomalies are related to mineralogical heterogeneities, but these ones
are very difficult to assess. The main advantage of anisotropy measurements is to provide
principal directions of strain, which are related to flow directions (Anderson, 1989). Therefore,
the simultaneous use of seismic velocity and anisotropy makes it possible to spatially locate
temperature and petrological heterogeneities, and their directions of flow. Montagner and Nataf
(1988} present a method for inverting a local symmetry axis and Montagner and Jobert (1988)
have been able to plot the 3D-distribution of this axis in the Indian ocean. Montagner (1994)
presents what can seismic global tomographic tell us about mantle convection and what robust
features can be drawn from the different available models.

Most tomographic models agree, that down to about 300km, the deep structure is closely re-
lated to plate tectonics and continental distribution. An horizontal cross-section at 30 degree
north from model AUM (Montagner and Tanimoto, 1991) illustrates the most robust features
of the upper mantle models published so far. In this upper depth range, all plate boundaries
are slow: ridges and back-arc areas are slow, shields are fast and seismic velocity in oceanic
areas is increasing with the age of the seafloor. The amplitude of SV-wave azimuthal anisotropy
(G parameter) presents an average value of about 2% below oceanic areas (Figure 4b). It can
be noted a good correlation between seismic azimuthal anisotropy and plate velocity directions
given by Minster and Jordan (1978). As depth is increasing,the amplitude of heterogeneities
is rapidly decreasing, some trends tend to vanish, and some distinctive features come up: Fast
ridges are still slow but slow ridges are hardly visible and back-arc regions are no longer system-
atically slow. Large portions of fast ridges are offset with respect to their surface signatures.
Below 300km of depth, a high velocity body below western Pacific can be related to subducting
slabs.

In order to enable a quantitative comparison with other geophysical observables, tomographic
models are usually expanded in spherical harmonics according to:

Imaz m=l

f(r0,6) =3 > a(r)Y]"(8,¢)

=0 m=-{

where r, #, ¢ are the spherical coordinates at r and Y,"(6,¢) is the spherical harmonic of
angular order ¢ and azimuthal order m. Another important parameter is the power spectrum
Py(r), which provides the amplitude of anomalies at different degrees £ at different depths r.
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In the first 300-400km of depth, the power spectrum regularly decreages with decreasing wave-
length. This decrease can be described by 5 -1 law (Tanimoto, 1990).

At greater depth, in the transition zone, degree 2 (Masters et al., 1982) and to a less extent,
degree 6 distributions become predominant. It jg also found that degree 4 of radiaj anisotropy
(Roult et o, 1991; Montagner ang Tanimoto, 1991) is the most important degree for this param-
eter. A simple flow pattern with 2 upgoing and 2 downgoing large-scale flows can be mnvoked to
simply explain the Predominance of thege different degrees ( Montagner and Romanowz'cz, 1993).
Therefore, below the apparent complexity of plate tectonics, mantle convection is surprisingly
simply organized ip the transition zone, Between 400 and 1000km, these large-scale flows are
not independent from the circulation in the first 400km but are related to the most tectonically
active zones (fast ridges and slabs). This simple flow pattern, usually called degree 2 pattern,
is also present in the lower mantle byt offset with respect to the one in the transition zone.

However, the nature of the power Spectrum in the lower mantle is stil] subject of controversy
(Su and Dziewonski, 1992).

. Geochernistry

The major-element chemistry of basalts erupted at mid-ocean ridges ( MORB) is directly influ-
enced by the temperature of the mantle beneath. Since tomography can be used to map lateral
temperature variations on a global scale, it is possible to relate global co-variation between

instance, Humler et al. (1993) found a strong correlation between basalt chemistry and seismic
velocity at depths 100-170km, for lateral wavelengths of 1,000- 2,400km, supporting a common
thermal origin for the 2 types of signal. This kind of simple approach can be easily generalized
to other types of geochemical parameters and Humler et 4f, (in preparation) are applying it to
geochemical isotopic elements.

® Petrology

Seismic profiles have long been used to infer the mineralogy of the mantle ( Birch, 1952). The
competing petrological models for the upper mantle and transition zone are pyrolite ( Ringwood,
1975) and piclogite (Anderson and Bass, 1984, 1986). So far, the isotropic seismic velocities
can be explained down to 400km by a pyrolite model, but in the transition zone, indiffer-
ently by pyrolite or piclogite. Montagner and Anderson (1989a) Investigated the correlations
between anisotropic parameters for realistic mineralogical and Petrological models of the up-
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per mantle. They show that the anisotropic parameters involved in a radiallly anisotropic
medium A,C,F,L, N are strongly correlated but that the 8 other anisotropic parameters
B.,B,,G.,G,, H,, H, E., E, involved in azimuthal anisotropy are less correlated. These corre-
lations have been used in deriving a reference Earth model (ACY400, Montagner and Anderson,
1989b). However, a complete exploitation of 3D anisotropic tomographic models such as AUM
(Montagner and Tanimoto, 1991) has not yet been done. This kind of approach might provide
in the future some important constraints on mineralogy in the deep mantle.

e Tectonics

The scientific potential of anisotropy is enormous and still largely unexploited. We have seen so
far that the anisotropic parameters make it possible to map convection in the mantle. But only
deep anisotropy (below the crust) was considered and related to actual geodynamic processes.
The strain field near the surface is probably different from the deep one and could be also related
to the strain field prevailing during the setting of materials. This shallow anisotropy could be
very useful for understanding the strain field responsible for surficial tectonics. For example,
seismic anisotropy could be used for explaining geological observations, such as mountain range
building or more generally continental deformation. Such an application is attempted by Vinnik
et al. (1989a,b; 1992) and Silver and Chan (1988, 1991) by using anisotropy derived from SKS
splitting. Nicolas (1993) and Vauchez and Nicolas (1991) are now able relate the geometry of
orogenic areas and directions given by SKS-waves splitting. And some quantitative evaluation
of the contribution of crustal rocks to the shear-wave splitting is now possible (Barruol and
Mainprice, 1993).

All these examples show that isotropic seismic tomography is now widely used by the community
of Earth scientists and constitutes an invaluable source of information and inspiration but that
anisotropic tomography is still largely unexploited.

2 Conclusions

We have presented in this paper some basic first-order asymptotic theories which make it
possible to derive a whole family of tomographic models. It was shown that normal modes
and surface waves give access not only to isotropic parameters Vp and Vg, but to anisotropic
and anelastic parameters as well. It was also shown that the phase information can be more
easily interpreted in terms of structural parameters than the amplitude information. That is
the reason why seismologists primarily worked on the phase of seismograms rather than on
its amplitude. This fundamental distinction between phase and amplitude results from the
Fermat’s principle (or Rayleigh’s principle) which states that the propagation time (directly
related to phase) is stationary to second order with respect to path perturbations, contrarily to
the amplitude of waves. However, by making some simple assumptions, it is now possible to use
amplitude data in Fourier domain, for retrieving the first tomographic models of attenuation.
The next steps will consist in taking a simultaneous account of phase and amplitude of seismic
waves. By using new theoretical developments, it will be possible to calculate synthetic seis-
mograms in complex a priori laterally heterogeneous media and to make a direct comparison
with seismic waveform in time domain. And it will be possible to correctly assess the effect
of scattering on seismograms. Notwithstanding these theoretical improvements, it should be
desirable to increase the lateral resolution of tomographic models, firstly, by installing broad-
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band networks at smaljer scale (wavelengths smaller than’ 1000km), secondly by implementing
an ocean seismic network, which will provide a better Coverage of the whole Earth by seismic
waves.
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This technique has made it possible to simultaneously explain the "Rayleigh- Love discrepancy”
and the azimuhal anisotropy, firstly displayed in the Nazca plate by Forsyth (1975). However,
the main limitation of this technique applied to the fundamental mode of surface waves is that
the radial resolution is limited to the first 500km of the upper mantle. In order to go further,
it is necessary to use seismic waves sensitive to deeper structure. Multiple reflected S-waves or
higher modes of surface waves are good candidates for doing that. The first approach using
body waves obtained by normal mode summation was followed by Nolet and Kennett (1978),
Tanimoto (1990), Su and Dziewonski (1991, 1992) and Woodward and Masters (1991a,b). On
the other hand, Stutzmann and Montagner (1993, 1994) showed how to generalize this 2-step
tomographic technique to higher modes for retrieving the global structure down to 1500km in
the mantle.

APPENDIX: Practical description of a tomographic technique
To solve inverse problems defined in section 3.2, the algorithm of Tarantola and Valette (1982)

can be used:
P—Pa=(G'C;'G+CN)'G'Cr Y (d - g(p) + G(p — po)) (26)

where Cy 1s the covariance matrix of data, C, the covariance function of parameters p, and ¢
is the Frechet derivative of the operator g at point p(r).
This algorithm can be made more explicit by writing it in its integral form:

P(r) = po(r) + 1. 3 [ dr'Cpu(,1)Gi(X)(S )5 F (27)

with
S = Ca, +]V drydry Gi(r1)Cy, (r1,72) G;(r2)

and

Fi=dy=g,(p+ [ & Gy )}p(r") - por™))

This algorithm can be iterated and enables to solve slightly non-linear problems, which is the
case of the inversion at depth. In case of a large dataset, Montagner and Tanimoto (1990)
showed how to handle the inverse problem by making a series expansion of the inverse of
the matrix 5. One of the advantage of this technique is that it can be applied indifferently
to regional studies or global studies. In case of imperfect spatial coverage of the area under
investigation, it does not display ringing phenomena commonly observed when a spherical
harmonics expansion is used { Tanimoto, 1983).

The a posteriort covaniance function is given by:

Cp = Cpy — Cpo GT{(Cyy + GCpGTY'GCpy = (GTC4,G + Cpp) 7! (28)

For the spatial description of the parameter space p(r), either a discrete basis of functions or
a continuous function can be considered. In that case, Montagner (1986b) used a Von Mises
distribution ( Fisher, 1953) for the horizontal variations, of parameter po(r) and the a prior:
covariance function of parameters is given by:

cos App — 1
L'Z

cor

Cpolr,¥') = Up(r)o'p(r’) exp

b



where L., is the correlation length which will define the smoothness of the final model. This
kind of distribution is welj suited for studies on 3 sphere and is asymptotically equivalent to 5
Gaussian distributioy when L., < a (a radiys of the Earth). :
For the inversion at depth, since the number of physical parameters is very large (13), it is
more difficult to make this assumption, and the different terms of the covariance function of
Parameters C, betweep barameters p, and p, at radij i and r; can be defined as follows:

(ri=r))?

Cm,pz(ri: ri) = Tp1Tp26p, P € LT (29)

Where Co1.py 18 the correlation between physical parameters P1 and p, inferred for instance from
different Petrological models (Montagner and Anderson, 1989a) and L., L, are the radia

eters. For example Tanimoto and Anderson (1985) and Montagner and Jobert (1988)
showed that there is a trade-off between azimuthal terms and constant term in
case of a poor azimutha) coverage. For the inversion at depth Nataf et ol (1986)
display as wel] the trade-off between physical parameters Vpp, Vg, ¢, ¢ and 7 when
only Rayleigh and Love wave ( — VY-terms are used in the inversion process.
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APPLICATIONS OF ANISOTROPY
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ANISOTROPY
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AUM model XI: Radial cross-section -10 deg.
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