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1988) or search for the shortest path on 4 graph which approximates all possible ray paths emanating from a given source
(Moser 1991}. The bending method has recently been further developed by Moser. Nolet & Snieder (1992). In order to use the
full potential of the steadily increasing data sets it is important to have an efficient method for tracing rays in heterogeneous
media.

This is especially important in traveltime tomography. When one hnearizes the inverse problem for this case on¢ can use
Fermat's theorem, which implies that one can use the rays of the reference medium and assume that the observed traveltimes
are due to slowness perturbations along the unperturbed ray (¢.g. Nolet 1987). In reality the inverse problem is non-linear,
because the slowness perturbations perturb the rays themselves. The true rays are curves along which the traveltime is a
minimum. This means that if one uses the rays in the reference medium for the inversion, rather than the true rays, that one
overestimates the time needed for the propagation from the source to the receiver. In order to obtain a fit of the observed
traveltimes one will obtain a velocity model that is too fast. This means that neglecting the non-linearity of the inverse problem
leads to a bias in the reconstructed model.

The fact that a linearized approach has been relatively successful in traveltime tomography indicates that the effects of ray
pending on the inversion may not be too dramatic. In fact. a radially stratified earth accounts for a large amount for the
slowness variations within the earth. This suggests that perturbation theory could be used to account for the effect of the
slowness perturbation on the ray positions and the traveltimes. It is shown by Snieder. {1990, 1991) how oneé can set up an

inversion method based on a perturbation expansion of the forward problem. The theory presented here could be used for this.
The use of perturbation methods in ray theory is not new. The equations of dynamic ray tracing can be cast in a

Hamiltonian form. Perturbation methods for Hamiltonian systems are well developed, and a number of authors have used this
to develop a perturbation theory for ray tracing problems (Chapman 1985; Wunsch 1987; Farra & Madariaga 1987, Farra,
Virieux & Madariaga 1989; Vineux 1991). As an alternative 10 Hamiltonian perturbation theory, one can also apply
perturbation theory directly to the equation of kinematic ray tracing (Moore 1991). In the jargon of classical mechanics this
corresponds to a Lagrangian formulation of the perturbation theory. It is a priori not evident that the different perturbation
methods lead to the same result. Furthermore, if one sets up a perturbation problem in two different coordinate systems that
are related through a non-lincar iransformation, then perturbation theory in general leads to different physical results in the
two formulations.

Another ambiguity in setting up a perturbation treatment is the choice of the independent parameter and the employed
coordinate system. Wunsch (1987) uses the horizontal distance of a ray as independent parameter and solves for the depth of a
ray. Farra & Madariaga (1987) use the distance along the unperturbed ray as independent parameter and employ ray
coordinates. In later studies Farra et al. (1989) and Virieux (1991) use Cartesian coordinates. Moore (1991) uses the distance
along the perturbed ray as independent parameter. This last choice leads to conceptual problems since the independent
parameter depends on the ray perturbation itself, which is a serious inconsistency in the theory. The approach of Moore (1991)
also has the disadvantage that in two-point ray tracing the receiver is not at a known position of the independent coordinate
since the arc length of a perturbed ray joining a given source and receiver is not known a priori.

Treating ray perturbation theory with a Hamiltonian formalism has the advantage that the derivations are algebraically
simple, and that one can change relatively easy from one coordinate system to another. However, the derivation of the
perturbation equations from a Hamiltonian formalism gives little physical insight and it is often not trivial to derive the
conditions of validity for Hamiltonian perturbation theory. In contrast to thi,, Lagrangian perturbation theory gives direct
physical insight because the Lagrangian is the traveltime, and the Euler-Lagrange equation is the equation of kinematic ray
tracing. The disadvantage of Lagrangian perturbation theory over Hamiltonian perturbation methods is that the algebra usually
is more complicated, and that the algebra has to be redone whenever one changes to a new coordinate system.

The aim of this paper is to present a perturbation solution of the equation of kinematic ray tracing which is conceptuatly
simple. In contrast 1o earlier perturbation methods, the theory leads to an explicit expression for the traveltime that is correct
to second order in the slowness perturbation. The theory leads to equations that can be applied well to extremely large data
sets, because the problem can be set up in such a way that the perturbations in the ray position and traveltimes can be reduced
to vector operations. Two dimensionless numbers are derived that give an indication whether the method is applicable to a
certain problem.

This paper has a tutorial flavour and is completely self-contained. Since the perturbation theory is applied directly to the
equation of kinematic ray tracing, rather than to Hamilton’s equations, oneé can understand how the perturbation in the
slowness affects the ray positions and the traveltimes. In Section 2 general expressions are derived for the perturbation of the
traveltime, and it is established under which conditions one can obtain the second-order traveltime perturbation from the
first-order ray deflection. The equation of kinematic ray tracing is perturbed in Section 3. A transformation to ray coordinates,
as shown in Section 4, simplifies this expression considerably. All expressions needed to make the transformation to ray
coordinates are derived. The relation with the Frenet equations is shown in Appendix A. In Section 5, the second-order
wraveltime perturbation is related in three alternative ways to the ray perturbation derived in ray coordinates. Dimensionless
qumbers are derived in Section 6 which indicate whether the perturbation theory can be applied to a specific probiem. In
Section 7 the equations for the ray perturbation are simplified for the important case of a stratified reference medium. The
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theory 15 illustrated with several examples. In Section & the theory i1s applied to a model with a linear velocity gradient for
which the exact solution is known in closed form. The theary 1s applied in Section 9 to rays propagating through a model of the
earth’s mantle that is perturbed by quasi-random slowness fluctuations. The effect of slowness discontinuities is introduced in a
heuristic way in Section 10 for the case of a two-layer model. In Section 11 it is shown in a more rigorous way how t.he theory
can be adapted in order 1o handle plane discontinuities in the reference slowness and/or the slowness perturbation. Flna.lly, the
application to rays propagating through a mantle mode) where both the reference slowness and the slowness perturbation are

discontinuous at the 670 discontinuity is shown in Section 12,

2 PERTURBATION THEORY FOR TRAVELTIMES

In geometrical optics, a ray is defined as a curve along which the traveltime is stationary. The Euler-Lagrange equation
corresponding to this variational problem is the equation of kinematic ray tracing

d dr)
“{uL)=vu, (1)
ds (“d; “
where the slowness is given by u(r), s is the arc length along the ray and r is the position vector. Suppose that the slowness can
be wnitten as a reference slowness ug(r) and a perturbation eu,(r)

u(r) = uolr) + eu,(r). 2)
The reference slowness uy(r) may for instance denote the slowness in a fat layered earth model, and the perturbation £u,(r)
may denote laterai variations in the slowness. The parameter ¢ is used for bookkeeping purposes and facilitates a systematic

perturbation approach of the ray tracing problem. It is assumed momentarily that u,(r) and u,(r) are continuous functions of
the space coordinates, but there are no further restrictions,

The case where the slowness is perturbed is relevant for two-point ray tracing problems. In paraxial ray tracing one
perturbs the initial conditions of the ray, and one may or may not perturb the slowness too, depending on the application. For
paraxial ray tracing problems with a fixed slowness one may simply set u; =0 in ensuing expressions.

Let a ray in the reference medium Ug(r) be denoted by ry(s,), where Sy is the arc length along this reference ray. The ray
in the perturbed medium is a non-linear function of the slowness perturbation. Except in the vicinity of caustics, the ray
perturbation can be expanded in a regular perturbation series

F(So) = ro(5p) + £X,(50) + Ey(s) + - - - -

The ray perturbation is parametrized with the arc length along the reference ray. Perturbations in the ray position along the
reference ray are irrelevant because these perturbations don’t change the position of the ray. Therefore without loss of
generality the ray perturbations can be restricted to the plane perpendicular to the direction of the reference ray

(r,-k)=0 for i=1. €))
The derivative along the reference ray is denoted with a dot:

. dF

F=—0] 5
ds, (5)

In two-point ray tracing the perturbed ray joins the source and receiver of the reference ray; the ray perturbation therefore

vanishes at the endpoints of the ray

L0 =r(S%=0 for i=1 (two-point ray tracing), (&)
where the source is at location 5y =0 and the unperturbed ray has total arc length S,. Since 5o measures the arc length along the
reference ray ry(s,), the vector i, is of unit length:

dr,

[1]
The deflection of the ray due to the slowness perturbation has the effect that the perturbed ray has a different arc length than
the unperturbed ray. By inserting (3) in the relation ‘

() = (o)
3so/ \dsy dsg

and by using (4) and (7) one finds after some algebra that to second order

d
=1 el 1) + G 1) - Yo 1)+ (- i), ®)
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and its reciprocal expression

35, N

=1-¢(f, 1)~ 52[%“’\ s %(i‘(,- i'l): + “'n‘i':)]-
as

Note that Moore (1991) ignores the distinction between the unperturbed and the perturbed arc length. In that case the O(#)
and O(¢%) terms in (8) and (9) are ignored and the resulting perturbation scheme is not consistent.

Now consider the traveltime T

T= Iu[r(s)]ds. (10}

The perturbation in the slowness and the tay position has two effects. First, the perturbed ray samples different regions than
the unperturbed ray. By inserting (3) into (2) and performing a Taylor expansion of &g and i, about r,, one finds that to
second order

u(r) = uglry) + e (g} + 10 Vuo(ro)] + €71, - Vay(rg) + ler VW) + 12 Vu o)l (11)
In this expression the symbol *’ denotes a double contraction. Second. the perturbation of the ray path leads to a perturbed arc
length. Using ds = 35/ 3s, dsy, and (11) in {10) this leads with (B)toa perturbation expansion of the traveitime

T=T,+¢T, + 2T, + O(€’), (12}

where
S0

o [ o) ds, (13a)
%0

7y = [ )+ (5~ )+ G o] i (13b)
® iy L Uo ., .

= J; ('z_(n “hy) - e} ()~ B + [y + (1 Vu)(io 1) +{r Yu,) + 350 YV} + (ry - Vug) + (¥~ i’:)“n) ds,, (13¢)

where it is understood that the slowness and its derivatives are to be evaluated on the reference ray ry{Sa)
The expressions for the first- and second-order traveltime perturbation can be simplified by using the fact that ry{sg) is @
ray in the reference medium. Consider the following integral:

Su .
I= j (& - Fuo) + (o £l dscr (14)

where E(s,) is an arbitrary vector function along the reference ray which at the endpoints of the reference ray is perpendicular
to the reference ray

(E+ £o)(0) = (§ - Fo)(S0) = 0. : (13)

It foltows from (1) that the reference ray satisfies

Vig = Ugiy + (fo " Yiko)fo- (16)
In deriving this it is used that
dF .
‘-is_o"—‘(l'ﬂ‘vf:). (17)
Using integration by parts and the condition (15) one may derive the general result
So S %
[y o= = |l o) dsg [ (o T E k) o (18)
0
By inserting (16) and (18) in (14) one finds
J:“ (& - Vuo) + (ko §)uo) dso =0- (19)
Using this expression in (13b, c), the first- and second-order traveltime perturbation have the simplified form
So
= J u,(¥o) dso, (20a)
0
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S0
I =f (%] (£, -1,)— 329“'1 Th) + [ty +Ar, - Fu {1y + (r - Vi) + ey :VVu(,)) ds;. (20b)

(8]

Eguation (19) is nothing but Fermat's theorem. It has the consequence that the first-order traveltime perturbation is the
integral of the slowness perturbation along the reference ray (see 20a). This expression forms the basis of linearized
tomographic inversions. Another consequence of Fermat's theorem (19} is that the second-order traveitime perturbation does
not depend on the second-order ray perturbation r, (see 20b). This means that in order to obtain expressions of the traveltime
perturbation which are correct to second order, it suffices to know the ray perturbation to first order. For this reason, only the

first-order ray perturbation ts derived in this paper.

Note that in the derivation it is not used that the ray perturbation vanishes at the endpoints of the ray, but that it is onty
required that (15) is satisfied. Since the wavefront is perpendicular to the ray, this expression states that Fermat's theorem is
valid when the endpoint of the ray is perturbed along the wavefront of the reference ray. This means that (20b) is not only
applicable to two-point ray tracing problems, but also to perturbed paraxial rays provided one works in a coordinate system

where (15) is satisfied.

3 FIRST-ORDER PERTURBATION THEORY FOR THE RAY DEFLECTION

The first-order ray deflection can be derived by applying a perturbation analysis to the equation of kinematic ray tracing (1).
With (17) this equation can be written as

dr  sdr dr
—+ (2 Vu) S =
) (G v) 3= @1)

In evaiuating the derivatives in this expression one should take into account that the derivative aiong the perturbed ray and the
unperturbed ray are different:

d s, d @)

with 3s,/3s given by (9). For the gradient of the slowness one finds with (2), (3) and a Tayior expansion that
Vu(r) = Vaeg(ng) + e[ Vi, (rp) + 1y - VVI4(r,)]. (23)
Inserting (11), (22) and (23) in (21), and differentiating carefully, leads to a linear differential equation for r,:
Uoky = ok, * ko) — ten(Fy - ) ) — 2u(Eg £, )o + () * Viag)bg — 2(kq - £, )i » Vito)ip + Folifor, :VVug) + iy (fp - Vi)
*+ (0 - Vgt —ry - VW, = Vo, — (k- Vu, iy — uyi,, (24)

where it is understood that the slowness and its derivatives are to be evaluated on the reference ray.
Equation (24) contains a large number of terms, but it is possible to simplify this expression considerably. The second
denvatives f, can be eliminated by writing (16) in the form

. 1 . .
= ;" [Vuo— (o - Vug)ig]. (25)
(4]
Differentiating (4), using (25) to eliminate ¥, and invoking the orthogonality of r, and £, gives
A 1
(Fy - #g) = ——(r, - V). (26)
Ug
Inserting (25) and (26} in (24) leads after some algebra to
- Lo L 1 . , , .
gk, — tnlky * 1)), + 1, (R, - Vug) + u— (ry « Vieg)[3Vu,, — 2(i, - Vueo)io] = [(¢, - VVu,) — (For, 1 VVu)ig)
0
u ) und.
- unV(—l) - uo[r‘, - v(—')]rﬂ. @n
o Up
It follows that the slowness perturbation affects the first-order ray deflection only through the gradient of the relative slowness
perturbation V(u,/u,). Indeed, one finds from (1) that multiplying the slowness with a constant [u{r)— Cu(r)] leaves the rays
unaffected. For such a perturbation u,(r) = (C — Dug(r), hence V(u;/ug) =0 and the ray perturbation vanishes.

Because of the orthogonality condition (4), only the component of the ray deflection perpendicular to the reference ray is
relevant. For an arbitrary vector § the component perpendicuiar to the reference ray may be denoted by

§.=§— (k- §)o. (28)
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where it is used that i, is of unit length {see 7). Using the definition (28) gives

3w, — 2ty Vughty = 3V _ o+ (f * Vuo)lo- (29)

Since r, is perpendicular to the reference ray one has

{r,-&)=1(r,-§.) (30)

From the definition (28). and the relations (26) and (30) it follows that

B=1,, '51; (r, - Vagdiy. (31)

Using (29) and (31) in (27) gives with the definition (28):

gy, + (o * Vo), +ul (5, - Vi)V . g — (£, - TV, =u0VL(5i). (32)
o

Note from this expression that we only need the perpendicular components of r, and ¥,.

4 THE TRANSFORMATION TO RAY COORDINATES

Expression (32) is considerably simpler than the original perturbation equation (24). Nevertheless, it is not the most convenient
form to use in numerical computations. First, the simplicity of equation (32) is deceptive, because the relation between the
perpendicular components of r, and its derivatives is in general not trivial. For example, in general one has (dr,/dsg), #
dr, , /ds, because the direction £, of the unperturbed ray varies with 5,. Second, the first-order ray deflection r, is a 3-D vector.
However, the constraint (4) reduces the number of independent components of r, by one, s0 that (32) should be solved under
the constraint (4). These complications are. both handled when a transformation to ray coordinates is made. An additional
advantage of using ray coordinates is that the condition (15) for the validity of Fermat's theorem is automaticaily satisfied.
Consider two mutually orthogonal unit vectors §, and §j, that are orthogonal to the reference ray. This implies that

@ -4)= (§ o) = (- To) = 0, (33
and with (7)
(@ §)=(G @) =(-H)=1 (34)

The direction i, of the reference ray changes along the reference ray, so that the unit vectors §; also change direction along the
reference ray: §; = §,(so). Since the ray perturbation is perpendicylar to the reference ray, it can be expanded as

= ¢, + 921 (35)

It is the aim of this section to convert the differential equation (32) to a differential equation for the components 4, and q,.
In order to do so one needs the derivatives of the unit vectors §,. Since the basis (@, G2, iy) is orthonormal, one can
expand §q, as

=@+ (& @) + (@) - T)io- (36)
The vectors §, are normalized, it follows by differentiation of (34) that
(4, 'fll)=(élz'€]z)=0- (3N

The quantity (§, - §,) describes the rotation of the unit vectors §, and §; along the reference ray. This quantity is completely
arbitrary, since one is free in choosing the direction of the unit vector @, in any direction within the plane perpendicular to the
reference ray. This choice may vary along the reference ray. Denote the rotation rate of the unit vectors §, and §; along the
reference ray by Q(so):

(Q; * §z2) = Q(s0)- (38)

In order to find the term (§, - fo) in (36). differentiate the expression (§; - Io} = 0 with respect 10 5o, and eliminate ¥, with (25);
this gives

. 1

(§ + By = —— (@ - VHo)- (39
Uy

Note that (§; - Viep) is nothing but the derivative of u, in the normal direction §;,. Inserting (37). (38) and (39) in (36) one finds

x P R .
4, = Qd, - — (§, - Vugio. (40a)

g
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A simular expression follows for g.. By differentiating the first term of (33) one finds that

(ql'ﬁ2)=‘(ﬁr'flﬂ- (41)

s0 that q, is given by

. ! )

q- = -4, -— (@ Vuy),. (40b)
u

It is convenient 10 use the summation convention for summing over the two unit vectors 4, and §, and their related
components, Let £, denote the second-order Levi-Cevita tensor:

£ = €5,=10), 2= —g4, =1 (42)

The expressions (40a} and (40b) can then be written as

2 PO .

q =Q¢4, - @, Vug)i, (43)
1]

It is shown in Appendix A how equation (43) is related to the Frenet equations. The second derivative of §; follows by
diﬁcrentiating (43) and eliminating ¥, with {25) and §, with (43); this gives

. PO - . .
Q= —sz + inf T ;-2- (qi : V“O)(q; * V“n)'l, + at,, (44)
"

where a, is used 1o represent the coefficient of the f, terms and where we have expanded the vector Vu, using
Vi, = (Vu,, - l"h)'"]; +(Vu, - qz)“iz + (Vu,, - Fo)E,,.

In order to convert (32) to ray coordinates it is necessary to cxpress the derivatjves £, and ¥, in the components g, and their
derivatives. It follows from the definition (28) that for any vector &

Ei = (ﬁ, * 5)@. (45)
Differentiate (35} with respect to s, and use (43) to give

. . . 1 n .
h=1(q, - Qe,q,)§ ~ 9@, - Vig)k, (46)
(1]
Differentiate this €Xpression once more with respect to s,,; with (45) one finds that
. . - "
i;l 1= (q: - qul' - 2QE£;Q; - qu‘h)q‘ - ;_1 (qr N V“u)('lj * V“(J)‘L‘Ir (47)
1]

Insert (46) and (47) in (32). and take the inner product of the resulting expression with the unit vectors §, and §.. Using the
identities

2 1
VYW, - — (Vuo)(Vu,) = ~uiVv — (48)
Uy Uy
and
Lo . d .
kog; + (ky + Vu,)g, =Z;; (uog;) (49)
ore finds after some algebra that the components q, satisfy
d(u 7)) — w2t +u2(“-vv-l-) = 2u,Qe g i(u Q)e.q. = u i v(“‘) 50
s, 0q; s g, 94, : “y q; s €y, ds, 0 9 = UgQ, WA (50)

This equation needs to be supplemented with two boundary conditions. For twe-point ray tracing these are given by
440)=g,(8) =0 {two-point ray tracing); (51)

for initial value ray tracing one prescribes ¢.(0) and ¢,(0).

The system (50) for the ray perturbation constitutes pair of coupled linear second-order differentia| equations and may
be solved efficiently using a variety of standard numerical techniques (see Press ef af 1986). After discretization, (50) with the
appropriate boundary conditions can be reduced to a linear system of equations, where only the main diagonal and four other
bands of the involved matrix have non-zero elements. For the important application of layered reference media (see Section 7
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Figure 1. Paraxial rays that are parallel to the reference ray at point 4 for several values of the transverse curvature of the velocity

§5: VV(1/1,).

the equations for ¢, and g decouple, and the resulting matrix system is tridiagonal. Such a system can be solved extremely
efficiently (e.g. Press et al. 1986).

Alternatively, one can solve (50) using a Green's function G{(sy, §) which satisfies

d . 1 . d
= (uoG,) — oG, + u%(ii,iik .yY —-)G,q = Qe Gy~ (4o Eu Gy = 8,;8(50 =5, (52)
ds, Uy dsy

with appropriate boundary conditions. For example, the solution of (50) subject to the boundary condition (51) for two-point
ray tracing is given by

So

q.(50) = J; G50, s)[uoq, . V(E-l)](s) ds (two-point ray tracing). (53)
o

This representation of the solution may be useful when one wants to compute the ray deflection for a very large number of

rays. In that case one can compute the Green's function G,(s,, §) once and store this function in tabulated form. The

numerical computation of the solution (53) can then be reduced to efficient array processing operations. This may be useful in

very large-scale tomographic inversions where one wants to take ray bending effects into account.

Equation (50) is a second-order differential equation for the ray deflection which bears a remarkable resemblance to the
equation of motion of a particle in classical mechanics. When one considers ug as the mass of a particle, then uug; denotes the
momentum. When s is associated with time, then the first term in (50) is the time derivative of the momentum, which is
present in Newton’s law. The terms containing Q in (50) can be associated respectively with the centrifugal force and the
Coriolis force which operate because of the rotation of the coordinate system (&, o) around the reference ray. The term with
d(u,Q)/ds, is due to the variation in the rate of rotation along the reference ray. The right-hand side of {50) is equivalent to
the external forces in Newton's law. This term is proportional to the gradient of the relative slowness perturbation. The term
ui(§4,: VV1/ugq, arises because of the change in direction of the reference ray. It acts in (50) as a linear restoring force that
forces the ray deflection towards the reference ray or repels the perturbed ray from the reference ray depending on the term
(@4, : VV1/uy). This effect can be understood as foliows. Consider momentarily a 2-D medium in which in a certain region the
reference velocity increases linearly with depth (§§:VV1/ug) =0 and where the slowness perturbation vanishes. Consider a
perturbed ray that at a certain position A has a finite displacement from the reference ray and that runs parallel to the
reference ray at that point (see Fig. 1). In that case the reference ray and the perturbed ray are concentric circles, and the ray
displacement g is constant. One sees in (50) that for this reference medium the linear restoring force vanishes because
VYV1/u,=0. Now consider the same situation, but let the velocity increase faster than linear with depth: (§§:VV1/ug)>0. In
that case the perturbed ray is curved more strongly than the reference ray (see Fig. 1), which means that the perturbed ray is
attracted towards the reference ray. For a medium where the velocity increases siower than linear with depth (§q:VV1/u) <0
the reference ray has a smaller curvature than in the case of a constant velocity gradient, and the perturbed ray is effectively
repelled from the reference ray. This behaviour is described by the linear restoring force in equation (50).

5§ THE SECOND-ORDER TRAVELTIME PERTURBATION

Once the ray deflection is known, one can compute the change in the traveltime due to the ray deflection by integrating the
slowness along the perturbed ray. However, it is possible to simplify expression (20b) for the second-order traveltime
perturbation. This leads to compact expressions for the bias in the traveitime that can be evaluated efficiently.

In order to simplify the second-order traveltime perturbation, insert (35) and (46) in (20b). Using

Ei€u = Bixs 54)
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with (48) one obtains an expression for T, in terms of the deflection g, in rav coordinates:
STy . Uy ;) . 1 . u, 55
T:_’=f“ [_29(;141 - “UQSUQ.‘L*?QYI'Q; _?qf‘l,(%q,:vvu_”‘) +“an .v(u_())q' dS(,. ( )

This expression can be simplified further by using equation (50) for the ray deflection. Multiply (50} with g,, sum over i and
integrate the result along the reference ray: this gives
S0

S d . . . 1. ] d _ PN (ﬂ 56
J; (q,dT0 (4og,) ~ uSq.q, + uf,(q,q,, VY u—u)q,qj - 2, QE,q,4, - ™ (u‘,Q)s,fq,q,) ds, = | wodd v t’) ds,. {56)
Now use that
E49:i9, = Eaqr g2+ €429, = 19, — 929, = 0. (57)
By changing dummy indices one finds
€444, = £i4,q; = —Eijqqu' (58)
Furthermore, using an integration by parts it follows that

oo g So .
f ‘?-d_T (4oq;) dsy = _J: ung,q; dso + [Uog,q, )" (59)
o 0 3
Inserting the resuits (57-59) in (56) gives

nd PP ) u ul 1 -1 . u ,
I ["Qq,-q,- —uldeq.q; + Q%4 -2 (‘AL‘AI; V¥ “")qeqf] dsg=— f usqq; - V(_]) ds, + [3u0q ) (60)
b L2 2 2 ay 2k u,

Using this in (55) leads to a compact expression for the second-order traveltime perturbation
1 S - ~ ul 1 « 150
f2! =5 Uoqq,; - V(—) dsy + [340q:4.]0" (61)
0 Uy

Because of (51) the boundary term u,q,4; vanishes for two-point ray tracing problems. Once the ray deflection g, is computed
one can determine the bias in the traveltime with the simple integral (61) along the reference ray.

Expression (61) contains both the ray defiection and the siowness perturbation. For some applications it may be
advantageous to have an expression for the second-order traveltime perturbation which contains either the ray deflection or the
slowness perturbation. The ray deflection g4, can be eliminated in a simpic way from (61) using the Green’s function. For
example, for two-point ray tracing one finds from (53) that

1 =% ~ Hy ~ iy , .
Ti=s | [ Guts 5wt 72 ) o) w92 )(5") s ds’ - (owo-point ray tracing) (62)
20 0 iy ty

where the Greens function G, (s. 5°) satisfies (52) with the boundary conditions (51). This expression is useful for analytical
computations where one specifies the slowness perturbation explicitly. If one has computed and stored the Green's function in
tabulated form, one can obtain the second-order traveltime perturbation from (62) by performing a double integral aiong the
reference ray. This computation can be reduced to efficient array-processing operations. In this way it may be possible to
incorporate second-order traveltime effects in very large-scale tomographic inversions.

For completeness an cxpression is derived for T, which contains the ray defiection, but which does not contain the
slowness perturbation explicitly. This is achieved by eliminating the term Fuo.V(u,/u,)g, ds, from (55) using (60); this gives

2

So
n= [ [~ Fad+ we a0, - 220+ (24,99 L g | oo+ g ()
i}

As mentioned in Section 4, the differential equation for the ray deflection can be closely associated with the motion of a
particle in classical mechanics. This analogy can also be used for the second-order traveltime. As noted by Wunsch (1987) and
Farra and Madariaga (1987), one can consider the traveltime in ray tracing problems as the Lagrangian of an equivalent
problem in classical mechanics. (The basic connection is of course the variational principle of the action respectively the
traveitime.) The Lagrangian is the difference of the kinetic and the potential energy. One can see that expression (63) is indeed
of this form. The term ju,qg,§, denotes the change in the deflection formulated in ray coordinates (the velocity). The terms
containing L2 describe the change in ray defiection due to the rotation of the coordinate system along the reference ray. These
terms together describe the absolute rate of change in the ray deflection, and are equivalent to the kinetic energy in classical
mechanics, The last term within the integral in (63) can be associated with the potential energy due to the linear restoring force
term in (50).
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6 CONDITIONS FOR THE APPLICABILITY OF FIRST-ORDER PERTURBATION THEORY

When the slowness perturbation is large. the first-order perturbation method of this paper cannot be expected to give useful
resuits. In this section estimates for the domain of the applicability of the first-order ray perturbation theory are derived. First.
the change in the length of the ray induced by the perturbation may not be too severe, because the relations (8) and (9) are
oniy useful when \3s/ 35, — 1] << 1. This condition is satisfied when

Byl << 1. (64)

Furthermore a Taylor expansion of u, is used (up to order r, - Vu ), and of u, (up to order r,r, :¥Vu,}. Let u, vary on a
length-scale L, and let u, vary on a length-scale L. The truncated Taylor expansions represent the true slowness variations
with an acceptable accuracy only when

irl<«<L, and [r|<L. (65)

One can check the conditions (64} and (65) after one has computed the perturbed ray. and one can thus verify a posteriori
whether it was justified to use first-order perturbation theory.

This is not very satisfactory from the practical point of view, where one would like to know a priori whether the first-order
perturbation theory is sufficiently accurate. For this one needs to relate the slowness perturbation to the total ray deflection. As
a simple model. consider a homogenous reference slowness i, and let the slowness perturbation have a constant derivative
perpendicular to the reference ray: §-Vu,=u,/L. The solution of (50) for the ray deflection in the direction of the gradient of
the slowness perturbation is given by

qlsq) = -:,Z'“EI_LSn(Sn"SU)- {66)

The condition (64) implies that for the first-order theory to be valid one must have |3g/3s0l << 1. The angle between the
perturbed ray and the reference ray is largest for 5, = 0. Using this, the condition (64) implies that

1
€ =183y, (67)

2u,l

The ray deflection of the solution (66) is largest when 5, = S4/2. so that the condition r,| << L is satisfied when

lu, (S z
c ,=,___(_) &1 68
2 84, (68)

The simple model discussed here cannot be used to investigate the criterion |r,| < Lo, because u, is constant, However, for
most practical problems the slowness perturbation varies on a shorter length-scale than the reference slowness, so that the
condition |r,| << L usually ensures that Iry} << Ly

Note that the criteria (67) and (68) depend on two dimensioniess numbers; a factor u,/u, (which is usually small), and a
factor S,/L (which may be large). The first-order perturbation theory is only valid when the weakness of the relative slowness
perturbation (1 ,/u,) outweighs the factor S,/ L. The criteria (67) and (68} depend critically on the length §, of the unperturbed
ray. The reason for this is that for a given slowness perturbation, a longer ray is deflected more than a short ray, so that the
condition that the deflection is small is more stringent for long rays than for short rays.

7 RAY PERTURBATIONS IN A LAYERED REFERENCE MEDIUM

For the important case of a layered reference medium the differential equation (50) simplifies considerably. Consider first the
case where the reference slowness is a function of the depth coordinate z only: us = ug(2). In that case the reference ray defines
a vertical plane (see Fig. 2). Let the unit vector vector §, be perpendicular to this plane, and let §, be the unit vector in the

~

Figure 2. Definition of the geometric variables for a layered reference medium. The unit vector § points out off the diagram.
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plane of the reference ray (Fig. 2). In that case. the unit vectors 4, and §, do not rotate around the reference ray, hence

=0

ray coordinates are given by

£y = Sin ik + cos 2, (70a)

&1 = ~cos ik + sin iz, (70b)

ii'z =¥. (70c)

Since the reference slowness depends only on depth, one has

vWoens, L, (71)
Ug Uy

and

V(E—‘)=ia,(5—’)+yay(ﬂ)+iaz(ﬁ). (72)
iy L Ug Ko

The relations (69-72) can readily be inserted in équation (50) for the ray deflection; this gives

d | . 1 . u . u

d?; (Uaq,) + ul sin? :,,(6" u—o)q, = —C0S igiy 3, (;;') +8in iy, 3, (u—;) (73a)

{73b)

Since the coordinate system does not rotate around the reference ray (Q = 0), and since the cross terms @4;:VV(1/uy)) in (50)
vanish (because u, does not depend on the y-coordinate), the equations for q: are g, decoupled, The trigonometric terms in
(73a,b) can be eliminated by introducing the ray parameter p of the reference ray defined by

P = tgsini,. (74)

This parameter is constant along the reference ray (Aki & Richards 1980). Using this parameter, the equations {73a.b) can be
written as

oy o) +7°(0, L), = -viT 57 a.(2)+pa (L), (752)

(3

d .
Z‘; ("n‘h) = ay“l-

The equation for the transverse ray deflection 42 can be integrated in closed form. For example, for two-point ray tracing one
finds with the boundary conditions (51) that

1
92050) = pS IFGsh(S) = F(S)h(s0)]  (1wo-point ray tracing), (76)
where

S0 ds. ~
h(so) = L et (77)
and |r

¢ Ir) 1 5 , ,
Foo= | dorrs | & e (78)

Equation (75a) with the boundary conditions for 4, reduces after discretization to a tridiagonal system of linear equations that
can be solved efficiently. Alternatively, one can use a Green’s function solution analogous to (53) for the solution of (75a).
Note that in the special case where the reference velocity varies linearly with depth {3, (1/u,) = 0], one can integrate (75a)
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analytically, and the solution for g, is of the form {76): the onty difference is that the term 3,1, in (78) should be replaced by

5 .U
—Vuy—-p° éx(ﬂ) +p c:(—l].
by 2
for the ray deflection is obtained by

For a reference model with a spherical geometry. a simple form of the differential equation A :
é. @) denote the unit vectors In

choosing a system of spherical coordinates with the North Pole (@ = 0} at the source. Let (r.
the vertical, & and @ directions respectively. As in the case of Cartesian coordinates, choose g perpendicular to the vertical
plane of the reference ray. This means that the unit vectors do not rotate around the reference ray. condition (69). When ig
denotes the angle between the reference ray and the vertical, one has

ql = —CO0s foé - Sln i(’i. (793.)
§.= ¢ (79b)
The spherical symmetry of the reference velocity implies that
1 .
wl-ia,~. (80)
Ua Uo

Furthermore, one has

V(ﬁ) =fa,(ﬂ)+ga,,(‘—‘—‘) + ¢ _ 80(5—‘). (81)
Ug uy! u,!  rsiniy Iy

For a spherically symmetric slowness model the ray parameter defined by

p = rigsin i, (82)
is constant along the reference ray (Aki & Richards 1980). Inserting the expressions (79-81) in (50) and using (82) to eliminate
iy gives the following differential equations for the ray deflection

2

fﬂ (od) +EF (B,,uln)q. = —%\/EE,TG’/_FF) af,(ﬂ) -2 a,(ﬁ). (83a)

Uy r Uy

d
— 1,) = . 83b
ds, (uod2) rsin @ Tl (83b)

For two-point ray tracing the solution of (83b) is given by (76). where one should replace the derivative 3, by (r sin 8)'3,.

8 EXAMPLE 1: THE LINEAR VELOCITY GRADIENT

As an example of the ray perturbation theory. consider a homogeneous reference medium with velocity cg. where the velocity
is perturbed with a linear gradient

z
c(z)—-c(,(l-l-z). (84)
The slowness perturbation {1/c = lfeg) is given by
z/L
- 5
=TT /L )

In this section the two-point ray tracing problem is considered. Since the relative slowness perturbation has a vanishing
gradient in the horizontal direction, one needs only to consider the ray deflection g, of Fig. 2. Now consider the situation
where the endpoints of the ray are located at z =0, and the reference ray is horizontal. In this particular case equation (73a)
reduces to

1
fil=‘zr (86)

where 1, is the slowness of the reference medium, u, = 1/¢,. Equation (86), with the boundary condition (51), has the solution
1
q,(s0) = :—ZISO(SO - So)- (87)

The distance along the reference ray is just the Cartesian coordinate x, while the §, direction is the vertical. The ray deflection
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Constant velocity gradient
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Figure 3. True rays (solid lines) and perturbed rays (dashed lines) for a homogeneous reference model and a slowness perturbation
corresponding to a linear increase of the velocity with depth, for several values of the perturbation £5/1..

then denotes the depth of the perturbed ray; according to (87) the perturbed ray is given by
£
Zpenl¥) =7 x(Sy = x), (88)

where it is used that the depth of the perturbed ray is z,., = eq,. For this example, the true ray is the arc of a circle (eg.
Cervcny‘ 1987), whose equation is given by

(=3 (e ) - (4 (4 ®
or

Zerae =§{ ~1+ [ 1+ (l—‘f)zx(s‘, ~x )}m}. (%)
Expanding this result in ¢ gives

z,,.c.=ﬁ-x(&—x)-é§x2(&—x)z+0(65)- (91)

shown for several values of this parameter in Fig. 3. In agreement with the criterion (67) one sees that the Tay perturbation
deviates significantly from the true rays when the parameter £5,/L > 2. For the case £5y/L =1 the error in the ray deflection is
only 5 per cent, despite the fact that the angle between the reference ray (z=0) and the perturbed ray is about 30° at the
source.

The traveltime from the numerical integration along the perturbed ray is much more accurate than the traveltime
computed from second-order perturbation theory. The reason for this is that in the perturbation calculation one uses
expression (8) to relate the path lengths along the perturbed ray and the reference ray. This expression is sensitive to
discrepancies in the directions of the reference ray and the perturbed ray. It is striking that for large vatues of S,/L (say
around 3) where the ray deflection is not described well by the perturbation theory, the traveltime computed by numerical
integration along the perturbed ray is relatively accurate, This is a consequence of Fermat’s theorem; since the true ray renders
the traveltime stationary, the traveltime is relatively insensitive to perturbations in the ray position.
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Figure 4. The exact wcaveltime, the traveltime obtained from perturbation theory using (61) and the traveltime from numerical integration
along the perturbed ray for the model of Fig. 3 as a function of the perturbation eS/L.

9 EXAMPLE 2: APPLICATION TO THE EARTH'S MANTLE

In solid earth geophysics, large-scale linearized inversions of traveltimes have been used to construct 3-D models of the P
velocity in the upper mantle {€.g. Aki, Christofferson & Husebye 1977; Spakman 1990). The linearization in these inversions is
based on Fermat's theorem, and it is assumed that the observed traveltimes are caused by slowness perturbations integrated
over the rays in a laterally homogeneous reference model. For a fixed slowness perturbation the true traveltime, computed
along the true ray, is always smaller than the traveltime along the reference ray. The resulting models may thus suffer from a
bias due to the neglect of ray bending effects. In this section, the application of ray perturbation theory to rays propagating
through the earth’s mantle is shown.

The model used in this example is relatively crude. The Jeffreys—Bullen model (Jeffreys & Bullen 1940; Bullen & Bolt
1985) is used as a reference model uq(r). By applying an earth-flattening transformation (Gerver & Markushevich 1966; Buland
& Chapman 1983) the true rays and the perturbed rays can be computed in a Cartesian coordinate system. For the slowness
perturbation a 3-D quasi-random field with the statistics of a Gaussian distribution is used. The method described by Frankel &
Clayton (1986) is used for generating the slowness perturbation. The statistical properties of the slowness perturbation are
assumed to be the same at every depth in the {earth-flattened) model. Scale lengths between 100 and 500 km have been used;
the peak value of the relative slowness variation is nermalized to 3 per cent, which corresponds to rms variations of about 1 per
cent. A statistical analysis of ISC traveltimes suggests a slowness perturbation of about 1 per cent in the upper mantle, and
dominant scale length of approximately 300 km (Gudmundsson, Davies & Clayton 1990). For the lower mantle, larger scale
Jengths and weaker inhomogeneities are probably more appropiate. Because of the earth-flattening transformation onc would
have to use even larger scale lengths in the lower mantle. In this sense, the results in this section may underestimate the
applicability of ray perturbation theory to mantle tomography.

True rays are computed with the two-point ray tracing algorithm of Sambridge & Kennett {1990). In the calculations
presented here the traveltime accuracy is approximately 0.0001 s. The perturbed rays are computed by constructing a numerical
solution of (75). A simple first-order finite difference approximation for the second derivatives leads to a pair of tridiagonal
linear systems for the values of g, and g, at a serics of N points along the 1ay. The coefficients in each system require the
values of the reference slowness u at points along the ray which are in between the points where the ray deflection is obtained.
This means that the reference ray is sampled at 2N points. The degree to which the size of N controls the accuracy of the
numerical solution of (75) depends on the complexity of the slowness perturbation u, and the length of the reference ray. Since
tridiagonal linear systems can be solved efficiently using standard techniques (Press et al. 1986) one is able to set N large and
ensure numerical accuracy. Computations are performed for epicentral distances of 13.6°, 39.2° and 86.5°.

For an assessment of the usefuiness of ray perturbation theory to this problem one needs to consider the accuracy of the
ray positions. For every point along the reference ray, a vertical plane perpendicular to the source-receiver line can be

defined. The deviation berween rays is defined as the distance between the points of intersection within this plane (see Fig. 5).
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Source

P-R

Figure 5. Definition of the distances between the true ray, the perturbed ray, and the ray in the reference medium. The distances are
measured in the vertical plane.

For the medium length ray, with an epicentral distance of 39.2°, the distance between the true ray and the reference ray
(T —R), the perturbed ray and the reference ray (P ~ R) and the perturbed ray and the true ray (P-T) is shown in Fig. 6 for
various scale lengths L. Note that the slowness model is three-dimensional, so that the difference of T-R and P~ R is not
equal to T— P. Ray perturbation theory accounts for the ray deflection accurately when the error in the perturbed ray (P — T)
1s much less than the trye deflection (T — R). For scale lengths of 200 km and larger, the error in the ray deflection computed
with perturbation theory is much smaller than the total ray defiection. For a scale length of 100 km, the accuracy of the
perturbation theory is greatly reduced. The reason for this is that in this case the ray deflection, which is about 70 km, is of the
same order of magnitude as the scale length of the slowness perturbation. The condition (65) for the validity of the
perturbation theory is therefore not satisfied, and the ray deflection determined from perturbation theory has an error of
approximately 40 per cent. One can see from Table 1 that the constant C;, defined in (68) is larger than unity for L = 100 km.

For the long ray, with an epicentral distance of 86.5°, the ray deflection is less accurately described by perturbation theory.
In this case the error in the ray deflection (P ~ T) is about 30 per cent of the true deflection (T — R) for a correiation length of
400 km; this error increases with a decreasing correlation length. The reason for this is that the conditions for the validity of
perturbation theory depend critically on the ratio So/L (see equations 67-68). However, it should be noted that the employed
mode! is probably too rough for the lower mantle. This is aggravated by the use of the earth-flattening transformation because
this transformation extends the deeper structures in the horizontat direction. Rays are most sensitive slowness perturbations
near the middie of the ray. For the long ray, the turning point is deep in the lower mantle. For this reason the results for the
long ray may be overly pessimistic, For the short ray, with an epicentral distance of 13.6°, the ray deflection is described very
well by the perturbation theory (see the error P—T in Table 1). This error is between 4 and 10 per cent of the totai ray
deflection. Indeed one finds that for this ray the constant C, and C, are much smaller than unity for all employed scale lengths.

Note that the parameters C, and C, used in the criteria (67) and (68) are derived for a homogeneous reference slowness
and a slowness perturbation with a constant gradient perpendicular to the reference ray. However, a comparison of the error in
the ray deflection (P — T) with the total ray deflection (T—R) in Table 1 shows that for more complicated ray geometries the

obtained from tomographic inversions. For the long ray, accounting for ray bend g effects with perturbation theory reduces
the crror in the traveltime for the long ray by a factor of 10, so that the error in the traveitime is about 0.04 s (see the entries
‘Error 2nd’ and ‘Error int’ in Table 2).

the perturbed ray. In contrast to the situation in Fig. 4, the angle between the reference ray and the true ray in the examples in
this section is extremely small. This is reflected in the smali value of C, in Table 1; this quantity measures to what extent the
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Figure 6. The distance between the true ray, the perturbed ray and the reference ray as defined in Fig. 5 for the continuous quasi-random

model of the earth’s mantie uscd in Section 9 for a ray of epicentral distance of 39.2°. The correlation length is indicated above each figure.
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Table 1. The distance (in k) as defined in
Fig. 5 between the true ray and the re-
ference ray (T - R), the perturbed ray and
the reference rav (P-R). and the per-
turbed ray and the true ray {P-T) aver-
aged along rays for different epicentral
distances and correlation lengths L. The
constants C] and C2 are defined in (67) and

Dise. T-R P-R P-T Cl 2

86.5 4549 3305 2211 0230 3548
865 4343 3846 1601 0181 1884
B6.5 4750 3769 1590 0167 1200
86.5 5084 3607 669 0165 1018
392 3540 2042 2052 011 2074
392 1775 1637 186 007 0484
392 1283 no 23 0072 0304
392 1169 5.9% 228 007 02344
392 1L.s2 9.9 188 0072 0184
13.6 6.56 724 070 0071 0274
136 64 s 014 0041 0079
13.6 1.84 L77 008 0028 003
138 289 2.66 0231 0019 0019
13.6 347 315 032 0015 0011

sEEY¥EEeEEsLLEY-

requirement (64) is satisfied and to what extent the quantity 3s/3s, is close to unity. The reason that the traveltime computed
from second-order perturbation theory is so close to the traveltime computed by numerical integration along the perturbed ray
is thus a consequence of the fact that the angle between the reference ray and the perturbed ray is extremely small. For the
short ray and the medium ray, the error in the traveltime reduces by a factor of between § and 10 by taking ray bending effects
into account using perturbation theory for the ray deflection (see Table 2).

Equation (75) for the ray deflection and equation (61) for the second-order traveltime perturbation are implemented by
using a discretization along the reference ray. The number of discretization points that is required depends on the length of the
ray and the length-scale of the slowness fluctuations. In Table 3, the error in the traveitime is shown for the ray with an

discretization points when one uses less than 58 points. The reason for this is that the first-order traveltime perturbation is

Table 2. The total traveltime {Tref) of the reference
ray, the true perturbation in the traveltime (Truc-ref),
the error in the first-order traveltime computed with
{20a) (Error Ist), the error in the second-order travel-
ume computed with (61) (Error 2nd), and the error in
the traveltime computed by numerical integration along
the perturbed ray (Error int), for varying epicentral
distances and correlation lengths L. The time units are

scconds.

L Dist. Trel Troeref Emor I8 Emor2nd  Emorim
200 865 7569 .2078 0.4223 00305  0.0576
300 865 7569 -1.0359 04021 0.0398 0.0399
40 865 1569 -3.8291 0.3678 -0.0020 0.0209
500 865 7565 4. 1722 03344 0.0461 0.0191
100 392 4483 -0.4365 03462 0.1235 0.1120
200 392 483 16070 0.1332 00077  0.0026
300 392 44831 30064 0.0938 0.0143 0.0069
400 392 w83 44218 00703 00122 o0030
500 392 4483 -5.4943 0.0513 0.0094 0.0068
100 136 1882  .134)4 0.0355 -0.0033 0.0002
200 136 1882 . 1.5993 0016 0.0003 0.0003
300 136 1882 16044 0.0063 0.0015 0.0015
400 136 1882 16279 0.0061 00007  0.0001
500 136 1882 -1.713 0.0084 0,007 0.0024
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Table 3. Accuracy of the travelume computa-
sions for the medium length ray. for the
Jefireys—Bullen reference model and the con-
tinuous quasi-random  slowness perturbation
with a correlation length £ =300km. as a
function of the number of discretization points
N. The errors are defined in Table 2.

N. Tref  Truerel Ermorist  Error 2nd  Emorint
22418 4483 -3026 0.0938 0.0143 0.0044
2243 4483 -1.026 0.0938 0.0051 0.0023
226 4483 -3.026 0.0938 0.005¢ 0.0056
114 448.3 -1.026 0.0937 0.0050 0.0155
58 4483 -3.026 00937 0.0048 0.0526
22 4483 -3.026 0.0967 0.0087 0.3784

The model used here for the slowness perturbation in the earth’s mantle is rather crude. It does not take into account that
the lower mantle may be smoother than the upper mantie. The length-scale of the inhomogeneity is also not corrected for the
effects of the earth-flattening transformation. Furthermore, a quasi-random slowness perturbation is not completely satisfactory
for studying ray bending effects in mantle tomography, because the earth’s mantle contains significant organized structures such
as subduction zones. The validity of ray perturbation theory for mantle tomography is presently further investigated.

10 EXAMPLE 3: A DISCONTINUOUS SLOWNESS PERTURBATION

The theory for the ray perturbation was developed for continuous slowness perturbations, because Taylor expansions have
been used in the derivation of the perturbed traveltime {11) and the ray perturbation (23). However, discontinuities in the
slowness perturbation can be handled by representing the discontinuities by Heaviside functions and the gradient of the
slowness perturbation by Dirac delta functions. An example of this is shown for the geometry of Fig. 7. where a homogeneous
reference medium is perturbed with a constant slowness perturbation in the half-space z >0

u(z) = -uoH(z), (92)

where H(z) is the Heaviside function.
The ray is not deflected out of the plane of Fig. 7, so that only the defiection in the plane of the diagram needs to be
considered. For this reason the subscript on the coordinate g, is deleted in this section. In this case the differential equation

(73a) for the ray deflection becomes

oo (W
§=sinigd, (Un)' 93)
From (92) it follows that
o
au(32) = oo ©9
S,=0

Uu=Ug

z2=0

U= uo“'s}

Figure 7. Definition of the geometric variables for the two-layer model.
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where 0(z) is the Dirac delta function. The derivatives in equation (93) are with Tespect to the parameter s,. The delta

function in the right-hand side of (94) needs to be expressed in s5y. This can be achieved using

1 1
Olz(s,)) = _32__— Ols,—s5,) = T‘“ o(s, —s,),

a5,

=3,

where s, denotes the distance berwe
discontinuity.
Inserting (95) in (93) gives

G =-tani, (s, — ). (96)
Integrating this €quation leads with the boundary conditions (51) to the solution

$
q{s¢) = tan i(,(l —%)50 for 0<sy<y,, q(s0) = tan i,,s,(l - i-‘:) for s, <s,<S,. (97}

Note that this solution breaks down when io = /2. This is the case when the source and the receiver are on the same side of
the slowness discontinuity. This situation is not consistent with the assumption that the straight reference ray intersects the
slowness perturbation. It will be clear that the solution of (93) will not give an accurate description of rays that are refracted

along interfaces.

that the kink in the representation of the perturbed ray does not occur exactly at the slowness discontinuity, which is an artifact
of the use of ray coordinates. Since this is 2 second-order effect in the ray displacement this does not distract from the use of
first-order perturbation theory for the ray perturbation. It is shown in Appendix B that Sneil's law is satisfied to first order by
the solution (97).

The second-order traveltime perturbation computed from (61) while treating the slowness gradient as a Dirac delta
function is correct to second order, despite the fact that the perturbation theory is developed for continuous slowness

£=-02
€=-04
)
ey
N
™ e }
; ——fF=0 X 1
® —— E=0.2 \\\
——— £=04 AN
™ 4
o)
. ) 1 ‘
0.2 0.4 0.6 0.8

Figure 8. The true rays (solid lines) and the perturbed ray {dashed lines) for the two-layer model for vanious values of the relative s
contrast ¢. owness
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Figure 9. Definition of gecometric variables for the compution of the second-order traveltime perturbation for the two-layer model.

have s, = S¢/2. The second-order traveltime fotlows by combination of (61) and {94-93) and is given by

1 [ ) S 98
T2 = -'5 A oq (SO)UO tan 106 (50 - '2") dS()- ( )
Carrying out the integration over o, using the solution (97) and using that tan iy= X /D (see Fig. 9) gives

1x?
‘Tl == g _D_2 T‘tll (‘»)

where T = uoS, is the traveltime of the unperturbed ray. In this case of a straight reference ray the second-order traveltime
perturbation is always negative, regardless of the sign of the slowness perturbation. This reflects the fact that ray bending

Travel time

! T v T H N 1

1L2

> _
S~
=~
&S |
<
Exact
Numerical
g - — — - Perturbation theory -

3

. I\ H " H
.0.50 -0.25 000 025 0.50
£

Figure 10, The exact (raveltime, the traveltime obtained from perturbation theory using (61) and the traveltime from numerical integration
along the perturbed ray for the two-layer model as a function of the relative slowness contrast €.
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-order traveltime perturbation vanishes, which is due to the
The second-order
uity is treated as a

effects reduce the traveltime. Note also that for .Y = 0 the second
fact that a ray perpendicular 10 the siowness discontinuity is not affected by the siowness discontinuity.
traveltime in (99) is based on perturbation theory for continuous slowness perturbations, where a discontin
Dirac delta function in the slowness gradient. As shown in Appendix C the result (99) agrees with the second-order traveltime
perturbation computed for a discontinuous slowness model.

The true traveltime, and the traveltime from the integration along the perturbed ray are shown in Fig. 10 as a function of
£ As in Fig. 4, the traveltime along the perturbed ray is always larger than the trye traveltime. Note that the traveltime
perturbation is dominated by a linear trend, and that the second-order effects on the traveltime are rather small. Indeed, for
values of the slowness perturbation as large as ¢ = (.2 the relative error in the traveltime is less than 0.1 per cent.

This example shows that one can use the ray perturbation theory of this Paper for slowness perturbations with
discontinuities, by describing the gradient of the slowness perturbation in terms of Dirac delta functions.

11 DISCONTINUITIES IN THE REFERENCE MODEL AND THE SLOWNESS PERTURBATION

Up to this point, the reference model uy(r) and the slowness perturbation u,(r) were assumed to be continuous. This was used
in the expansions (11) and (23) where Taylor expansions of tolr) and u,(r) were used In fact, the ray tracing equation (1),
which forms the basis of the employed perturbation theory, breaks down at slowness discontinuities. In this situation the ray

slowness along the interface, an extension of the theory similar to the work of Farra er af. {(1989) is needed.
Consider a plane disconu'nuity in the slowness. Both the reference slowness u, and the slowness perturbation u, may be

denoted by
[E]Z= &) - g (100)
The reference ray is continuous across the interface, so that

[l'o}: =0.
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definition of the ray coordinates produces in this situation a discontinuity in the representation of the perturbed ray. This is an
artifact of the use of ray coordinates that needs to be corrected. This can be achieved by determining the point of intersection
of the perturbed rays (or their extensions} with the interface. By imposing an appropriate continuity condition on the ray
deflection on the two sides of the interface. one can obtain a continuous perturbed ray by replacing the broken representation
of the perturbed ray by a new representation which is continuous at the interface (see the dashed line in Fig. 11). The condition
to be imposed on the perturbed rays is therefore that the perturbed rays (or their extensions) intersect the interface in the same
pOSItION F,pn,-

Consider for the moment a coordinate system with the z-axis perpendicular to the interface, and let the interface be
located at z = z,. Let the interface be located at arc length S along the unperturbed ray. On either side of the interface the ray
can in the vicinity of the interface be parametrized as

r(s,) = a + bs,. (102)
with

8 =1,(8)+ er (5}, (103a)
b =i,{S) + &, (S5). (103b)

Let the point of intersection of the perturbed ray with the plane of the discontinuity occur for o= 5;a,; this point is defined by
the condition

Zg= (6 Tp) = (8- 8) + (b E)sinc (104)

Solving this expression for 5. inserting the result in (102) and using the definitions (103a,b) gives to first order

i =tot E(l‘] - Mi},). (105)

-

(B- )

In this expression and the ensuing matching conditions, ali quantities should be evaluated at so= 5. Since the perturbed rays
(or their extensions) must intersect the interface in the same position, the quantity derived in {105) must be continuous across
the interace. Because of the continuity of r, (see 101), this implies that

(-r). ]4

f, ~——0,| =0 106
[r -Gl (106)
The second continuity condition comes from the requirement that the perturbed rays satisfy Snell’s law, which states that (Aki
& Richards 1980)

[ﬁXu%]i(s,m)=0. (107)

Note that this continuity condition holds at the point of intersection g, of the perturbed ray with the interface, hence the
argument s, rather than s, = S. Expanding (107) around the point 5, = S gives

[ii Xu g]im + E(5i0 — 5) dsiu [ﬁ Xu %’]i(S) =0. (108)

The factor ¢ has been introduced because (8;p — S) is linear in the ray deflection. Consider the last term in (108). Since only the
first-order ray deflection is desired one can replace all quantities in the term

—d—[l'iXud—r]+
dsg dsi_

by their zeroth-order approximations. Carrying out the differentiation with respect to 5o, using that the discontinuity is plane so
that # is a constant, and using (17) for the differentiation of ug, one finds that to O(¢)

d de]”* . . e
£Eo[ii><u‘—é]_(8)= ziiX['ro(rﬂ-Vuo)+u(,ro]_. (109)
With (16) this implies that

d drl* .
fo [ﬁxuﬂgm = 8 X [Vag)? (110)

When u, does not vary along the interface, Vizg and i are parallel, and the right-hand side of (110) vanishes. (This condition
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can in fact be slightly relaxed, since only the discontinuity in the gradient of u,, along the interface needs to vamish.) Using this
in (108} implies that

[ﬁXuZ—:]j(S) —0. (111)

From this point on all quantities are evaluated for 5, = §: the vaniable § is therefore omitted. The unperturbed ray also satisfies

Snell’s law at the point 5, =5, so that
[ X uoiy]* = 0. (112)
Insert (2) and (22) in (111), with (112) this implies that to first order
Huy = uolE, - £o) b X iy + g X )5 = 0. (113)
The condition (106) imposes a relation on fr,])*, while Snell's law (113) constrains the kink in the ray perturbation [£,].
The matching conditions (106) and (113) are expressed in terms of the ray perturbation r,. However, as in Section 4t is
advantageous to re-express these conditions in ray coordinates. This results in matching conditions for g,, ¢, and their
derivatives. It is convenient to define two unit vectors &, and &, in the plane of the interface (see Fig. 12). The unit vector &
lies along the intersection of the plane of the interface, with the plane spanned by the incoming and the outgoing rays. The unit
vector €, is the unit vector in the interface perpendicuiar to &,. The orthogonality of &, and &, implies that

& (BX i) =0. (114)

The conditions (106) and (113) can be recast as conditions for ¢, and g, by using (35) and (46) and dotting the results with both
€ and & . This gives using (114):

(016130 + 028y a0 - S5 10,6- 40 + a8 2| =0, (115a)
(A -K,) _
[‘h(é; §)+ g, - §y) - (e: ..IU) [q.(B-§,)+qo(h- ﬁz)]] =0, (115b)
(8 - £p) -
ol (41 = QgD - (B X )+ (2 + @408y - (AX @) =0, (115¢)
(28, (BX 1) + uo{(g, — Qg2)8, - (AX §,) + (g + Qq,)8, - (BX§)}]L =0 (115d)

All unit vectors in these expressions are known, so they provide explicit matching conditions for q,, ¢,, §, and g,.

Note that the unit vectors §; may be chosen completely differently on either side of the interface. In fact, if the reference
ray has a kink at ieast one of the §; must be discontinucus across the interface. As long as one uses the §; appropriate for the
two sides of the interfaces in (115) this poses no problems. Similarly, the rate of rotation Q of the unit vectors can be chosen
independentiy on the two sides of the interface.

At the interface of the slowness discontinuity, the matching conditions (115) are to be used rather than the differential
equation (50). In the regions between the slowness discontinuities one should of course use (50) for the computation of the ray
perturbation. When one discretizes the ray perturbation, one can express the matching conditions as linear equations with a
tridiagonal structure. The resulting linear equations thus have the same algebraic structure as the linear equations that result
from the discretization of expression (50) for the regions between the slowness discontinuities. This means that incorporating
discontinuities in the reference slowness does not alter the structure of the algorithm for the computation of the first-order ray
deflection.

As an example of the matching conditions, consider a layered reference medium with horizontal interfaces z = constant.

Figure 12. Definition of the unit vectors &, and &, in the plane of the discontinuity.



For this situation it is convenient o assume that the § vectors do not rotate around the reference ray. condition (6Y), and to
use the expressions (70) for the q.. Referring to Fig. 2 we have in this case

s (116a)

e” = x.

¢ -4, (116b)
(116¢)

=1.

-]

Using these relations in (115} and using (74} to eliminate the sin i, and cos i, terms in favour of the ray parameter p one obtains
the following matching conditions:

[V?:i_p”‘]fo' (1172)

[4.]2 =0, (117b)

o - vid=7,]_=o (117e)
75 -

[40g2}l = 0. (117d)

As an example, for the slowness perturbation (92) of the two-layer model of Section 10. one finds from (1 17) and the definition
(74) that [¢,]T = —tan,. This result is equivalent to expression (96) obtained by replacing the gradient of (u,/uy) by a delta
function when this quantity is discontinuous.

For the computation of the second-order traveltime perturbation one can either integrate numerically over the perturbed
ray using the dashed interval L, in Fig. 11, or one can use the expressions of Section 3 for Ty. To see that these EXpressions can
be used when slowness discontinuities are present one should realize that the derivations in the Sections 2 and 5 hold for any
subsection of the ray between the discontinuities. There is no reason why the interval 0 < s, < § in the Sections 2 and 5 should
denote the whole ray, it may also denote a subsection of the ray between the interfaces. The generalized condition {15} for the
validity of Fermat's theorem allows for this flexibility. Because of the use of ray coordinates, the boundary condition (15) is
automatically satisfied at all points along the reference ray. hence also at the points where the reference ray intersects the
interface. This implies that when one uses for example (61) for the computation of T,, that one should take the boundary term
1uoq.4,; in (61) into account at the interface because this quantity is not necessarily continuous across the interface. One can
verify easily that the contribution of this boundary term in (61) from subsections of the ray at the opposite sides of the interface
leads to a contribution [3ugg.4;]” to the second-order traveltime perturbation. Ignoring this contribution in the example of
Section 12 for a mantle model with realistic discontinuities leads to a tenfold increase in the error in the second-order
traveltime. For the special case of a layered reference medium with horizontal interfaces, as in expression (117), one can
eliminate the g, contribution to the interface term: [Luog:4.)" = (3u0g:1d:1%-

12 EXAMPLE 4: DISCONTINUOUS SLOWNESS MODELS FOR THE EARTH’S MANTLE

As an illustration of the effect of discontinuities, it is shown in this section what the effect of discontinuities of the reference
model and the slowness perturbation are for waves propagating through the earth’s mantle. The PREM model (Dziewonski &
Anderson 1981) is used as a reference model. This model has a pronounced discontinuity in the slowness at a depth of about
670 km. For the slowness perturbation, the guasi-random mode! used in Section 9 is used. The only difference is that the
siowness perturbations are independent in the upper and lower mantle, so that the slowness perturbation is also discontinuous
at a depth of 670 km.

The ray deviations for an epicentral distance of 39.2° are shown in Fig. 13 for various values of the correlation length L.
The ray deviations, as defined in Fig. 5, exhibit a kink at the jocation where the ray intersects the 670 km discontinuity. This is
due to the fact that the ray dewviations are measured in a vertical plane perpendicular to the source—receiver line. When the
rays have a kink this implies that the ray deviation has a discontinuity.

A pronounced difference with the ray deviations of Fig. 6 for the continuous slowness model is that the ray deviation in
Fig. 13 are largest at the slowness discontinuity. At these locations the ray has 2 kink; apparently this increases the sensitivity
of the ray deflection to perturbations in the slowness. As in Fig. 6, the perturbed ray is not accurate for the shortest correlation
length (L = 100 km). For the continuous slowness model used for Fig. 6 the error in the perturbed ray steadily decreases when
the correlation length L is increased and the model becomes smoother. In that case the error in the perturbed ray is negligible
when L = 500km. This is not the case in Fig. 13 for the discontinuous slowness model. The reason for this is that for the
discontinuous slowness model the ray deflection is caused both by the slowness variations with correlation length L in the
upper and lower mantle, and by the discontinuity in the slowness perturbation [4,/ue]lt at a depth of 670 km. When L
increases, the effect of the quasi-random slowness perturbation on the ray deflection decreases, but the effect of the slowness
discontinuity remains constant. One can conclude that the error in the ray deflection in Fig. 13 for L >300km is due to the
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Figure 13. The distance between the true ray. the perturbed ray and the reference ray as defined in Fig. 5 for the quasi-random model of the
carth’s mantle with discontinuities used in Section 12 for a ray of epicentral distance of 39.2°. The correlation length is indicated above cach

figure.



My frrrtianomess=r =

Table 4. Errors in the traveltime for a ray with an
epicentral distance of 39.2° where PREM 15 the
reference model and where the slowness perturba-
tion is independent in the upper and lower mantle.
The errors are defined as in Table 2.

L Dist.  Tref  Trueref  Error lst Emor2nd  Errorint
00 392 47 1.0616 0.1666 0.0514 0.0197
00 392 M7 1.3109 0.1028 0.0165 0.0061
00 392 4T 1.16%0 0.0881 0.0070 0.0031
400 W2 oadd 0.6871 0.0765 0.0051 0.0042
so0 392 4447 0.1433 0.0635 0.0007 0.0014

slowness discontinuity at a depth of 670 km rather than the continuous slowness perturbation. For these correlation lengths the
error in the ray defiection is about 20 per cent of the maximum ray defiection.

The etrors in the traveltime for the discontinuous slowness model are shown in Table 4 for a ray with an epicentral
distance of 39.2° for various values of the correlation length. The numerical integration of the slowness along the perturbed ray
was performed along the dashed interval L, in Fig. 11. The second-order traveltime perturbation was computed with {61),
inctuding the contribution of the boundary term at the discontinuities. A comparison with Table 2 reveals that the error in the
first- and second-order traveltimes are roughly the same for the continuous and the discontinuous slowness models. The entries
‘Error-int’ in the Tables 2 and 4 show that the traveltime computed by numerical integration along the perturbed ray has the
same accuracy for the continuous and the discontinuous slowness models. (The error is about 20 times smaller than the error in
the first-order traveltime.) This example shows that plane discontinuities in the slowness model can be incorporated in the ray
perturbation theory.

13 DISCUSSION

The ray perturbation method presented here provides an efficient method for computing the change in ray positions and
traveltimes when the slowness model is perturbed. The theory can be applied when the slowness perturbation is sufficiently
smooth. The conditions {(67) and (68) provide simple criteria for the applicability of the theory. The equation for the ray
perturbation can be applied both to initial value ray tracing and for two-point ray tracing. Initial value ray tracing is used in the
computation of paraxial rays {e.g. Cervery, Klimés & Pientik 1984). The paraxial rays obtained can be used for the
computation of amplitudes (e.g. Farra & Madariaga 1987). The main application of two-point ray tracing is non-linear
traveltime tomography, where the theory can be used to update the rays with the slowness model during an inversion.

The ray perturbation equation (50) was derived from Lagrangian perturbation theory formulated in ray coordinates. One
can show that for non-rotating unit vectors (Q = 0) expression (50) is equivalent to the perturbation equations derived by Farra
& Madariaga (1987) using 2 Hamiltonian formalism. This can most easily be seen by using the explicit form of their
Hamiltonian perturbation equations given by Nowack & Lutter (1988). [The derivation of this result involves a non-trivial
differentiation of the geometric term h,, in the Hamiltonian of Farra & Madariaga (1987).] One can incorporate unit vectors &
that rotate around the reference ray in the theory of Farra & Madariaga (1987) by adding a term Q¢&,p,q; 10 their Hamiltonian
(4) (Farra, personal communication). Alternatively, one can derive equation (50) by projecting the Hamiltonian perturbation
equations for a Cartesian coordinate system (Chapman 1985; Virieux 1991) on the ray coordinate system (§,. @) using the
transformation equations shown in Section 4. Equation (50) is not equivalent to the perturbation equation (18) derived by
Moore (1991). This discrepancy is due to the fact that Moore (1991) did not properly handie the change in the ray length due
to the slowness perturbation. Note finally that the differentia! equation (50) closely resembles equation (C22) of Moser et al.
(1992) for linearized ray bending where the slowness is fixed and where one secks the perturbation that one needs to make to a
reference curve to deform it towards the true ray. ‘

In contrast to the perturbation schemes for ray perturbation presented by Farra et al. (1989), Vineux {1991) and Moore
(1951), the theory presented here employs ray coordinates. Uging ray coordinates reduces the number of unknowns at the
expense of some additional bookkeeping. However, a major advantage of using ray coordinates is that when the ray
perturbation is perpendicular to the unperturbed ray one can obtain in a natural fashion an expression for the travel that is
correct 1o second order in the slowness perturbation from the first-order ray dLﬂection (see 20b). This property is lost when
one uses Cartesian coordinates for the ray perturbation and one has a component in the ray perturbation parallel to the
reference ray because this invalidates the condition (15). The fact that for the second-order traveltime perturbation one only
needs the first-order ray deflection relies on an extension of Fermat's theorem, which states that the traveltime is stationary in
the ray perturbation, provided the endpoints of the ray are perturbed along the wavefront of the reference ray (condition 15).
This condition is tnivially satisfied when applied to two-point ray tracing. For paraxial rays it can be satisfied provided one
ensures that the ray perturbation is perpendicular to the reference ray. With the ray coordinates used here this condition is
trivially satisfied. The rotation rate Q of the employed ray coordinates gives an additional degree of freedom in the formulation
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of ray perturbation problem. This may be convenient for the generalization of the theory to weakly anisotropic media where it
is crucial to incorporate the polarization of the waves in the theory.

The shooting aigorithm used in Sections 9 and 12 was designed 10 be efficient and was optimized. The computations for the
ray perturbation were obtained from (75) by using a simple and straightforward discretization of this equation. Without making
any attempts to optimize the algorithm, the computations for the ray perturbation require two to three orders less CPU time
than the employed shooting method of Sambridge & Kennett (1990). One can also compute the ray deflection and the
traveltime perturbation from a Green's function (see 53 and 62). By computing this Green's function once and storing the
result in tabulated form one may speed up the computations with several orders of magnitude. This may make it possible to
apply the theory to mantle tomography where over a million rays are being used (e.g. Spakman 1990).
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APPENDIX A
The relation between the expressions (40a,b) and the Frenet equations



Kﬂ‘}' peridrizdiitsat pRastny - B

In this expression f is the unit vector perpendicular to the reference ray in the osculating plane of the ray. The unit vector b is
perpendicular to both f and f,. Since the two bases (q;. &) and (. b) are both perpendicular t0 the reference ray, they are

related through a re::uon:
{AZa)

§j, = cos ¢B +sin ¢
(AZ2b)

= —sin ¢t + cos cpﬁ,

where the angle of rotation may depend on the position along the reference ray [@ = ¢(s0)]. Differentiation of (A2) with

respect to 5, gives with (A1)

q,=(T+ &), — cos PxT, (A3a)
b= —(T + $), + sin pxio. (A3b)
A comparison with (43) shows that

(A4)

Q=T+ &o;
the rate of rotation of the §-vectors (RQ) is the rate of rotation of the vectors in the Frenet equation (7) plus the relative rate of
rotation between the two coordinate systems (¢). The Frenet equations constitute a special choice for the coordinate system
{@,, §;) Where these unit vectors are aligned with the osculating plane of the reference ray.

The curvature ¥ follows by comparing (A3a,b) with (40a,b), this gives

1
cos ¢x = — (& - Vuo). (ASa)
Uo
. -1 .
sin ¢k = - (@ - Vo) (A5b)
0

Using (A2a,b) it follows from this expression that

1 - o om 1
x =—[(cos ¢q, — 510 i) - Vuo) = — (- Vug). (AS)

Ug Ug
APPENDIX B
A proof that the perturbed ray (97) satisfies Snell’s law to first order
Referring to Fig. 7, the angie between the perturbed ray and the reference ray in the upper half-space satisfies
dq 5 )

tan =e(-—) =£(l—*-1)tan¢ , B1

el 5, o (B1)
hence
i|=i0—9|=io—afcl8n [E(l"‘i) taﬂio]. (BZ)
This means that
Ug sin j‘ = uosin io b euo(l - ';f)) sin io + O(Ez). (B3)
Likewise, one has for the lower half-space

dq Si.

tan 0 =-—s(—-—) = g—tan iy, B4

’ dsg/ se>s, S0 0 (B4)
and
iy =g+ B2 = io + arctan (Efsitan iu), (BS)
so that
ug(1 — E) siniz = uo(1 - e)(sin ig+ s—ssisin ;'(,) = g Sinig— £uo(1 - ;—;) sin ig + O(€%). (B6)
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Comparing this with (B3} proves that Snell's law is satisfied to first order:

UoSIN iy = ug(l — £} sin i, + O(e?). (B7)

APPENDIX C
Derivation of the second-order traveltime perturbation for the two-layer medium

Let T(x) denote the traveltime of a ray which intersects the slowness discontinuity in the point (x, 0) (see Fig. 9). This quantity
is given by

DZ 12 DZ 172
T(x)=u0(x2+~4-) +u0(1-—£)((X—x)2+T) . (C1)
For the ray the traveitime is stationary; the condition 8T /dx = 0 gives

2
(=2e + €%)(x ~ XPx? + [(1 - €)(x -X)? —ﬂ%:o., (C2)

The point of intersection of the ray with the slowness discontinuity can be expanded in a perturbation series
X=xo4 e, +elx, 400, (C3)

Inserting this in (C2), and equating the contribution of O(¢°) and O(e') gives

DZ
(2xo - X)X 7 =0 (Cda)
D2
(x.,-X)zx§+[(xo—X)2+x,X}T=0. (Cab)
These equations have the solution
x5=X/2, (C5a)
Xs:
X = -ID_?‘ with $§2=X2%+p? (CSb)

the equations (C4) and (C5). The resulting perturbation expansion of the traveltime is given by

€ 2 X2
T=76-5To—§5375+0(£3), (C6)
with 7, = u,.5,.

A comparison with equation (99) reveals that the second-order traveltime perturbation computed from the ray
perturbation theory applied to discontinuous slowness perturbations leads to the correct second-order traveltime perturbation.



