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The Ambiguity in Ray Perturbation Theory

ROEL SNIEDER

Department of Theoretical Geophysics, Utrecht University, Netherlands

MALCOLM SAMBRIDGE

Institute of Theoretical Geophysies, Cambridge University, England

Ray perturbation theory is concerned with the change in ray paths and travel times due to
changes in the slowness model or the end-point conditions of rays. Several different formulations
of ray perturbation theory have been developed. Even for the same physical problem different
perturbation equations have been derived. The reason for this is that ray perturbation theory
contains a fundamental ambiguity. One can move a point along a curve without changing the
shape of the curve. This means that the mapping from a reference curve to a perturbed curve is
not uniquely defined, because one may associate & point on the reference curve with different
points on the perturbed curve. The mapping that is used is usually defined implicitly by the
choice of the coordinate system or the independent parameter. In this paper, a formalism is
developed where ane can specify explicitly the mapping from the reference curve to the perturbed
curve by choosing a stretch factor that relates increments in arc length along the reference curve
and the perturbed curve, This is incorporated in a theory that is accurate to first order in the ray
position and to second order in the travel time. The second order travel time perturbation
describes the effect of changes in the position of the ray on the travel time. For first arrivals, rays
are paths of minimum travel time. The travel time along a ray estimate is therefore neceasarily
longer than the travel time along the true ray. The resulting travel time bias ia described to
leading order by the second arder perturbation of the travel time. This quantity may be of great
importance in nonlinear travel time tomography. Several existing perturbation equations are
shown to correspond to the general equation derived in this paper for specific choices of the
stretch factor. Depending on the stretch factar, analytical solutions for the ray perturbation can
be found for different models of the reference slowness. For two-point ray tracing problems, the
arc length (measured in terms of the independent parameter) may change with the ray perturba-
tien. It is shown both numerically and analytically that for two-point ray tracing problems, one
must introduce a tuning parameter in the perturbation problem. Leaving out such a tuning
parameter, as is done in current Hamiltonian ray perturbation theory, may lead to erroneous
solutions. In the formulation of this paper, paraxial ray perturbations, slowness perturbations,
and pure ray bending are treated in a uniform fashion. This may be very useful in nonlinear

tomographic inversions which include earthquake relocation.

1. INTRODUCTION

The accurate determination of travel times and ray
paths is extremely important in seismology. Both in the
determination of ray geometric Green’s functions and in
tomographic inversions, it is crucial to have accurate
estimates of travel times and ray positions that can be
determined efficiently. In many applications, rays (or ray
estimates) are known in a slowness medel, and perturba-
tion theory is used to estimate the ray positions when the
slowness or the initial (or boundary) values of the rays
are perturbed.

The effect of perturbations of the initial conditions
(Cerveny et al., 1977, 1984; Cerveny and Psencik, 1979;
Chapman, 1985] is called paraxial ray theory. This the-
ory is used for the determination of amplitudes [e.g., Cer-
veny et al, 1977] and for the determination of the
Frechet derivatives of amplitudes with respect to slow
ness variations {Neele et al., 1993a,b). Perturbation the
ory has also been formulated to describe the effect «
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slowness perturbations on the ray position [Dahlen and
Henson, 1985; Farra and Madariaga, 1987; Moore, 1991,
Virteux, 1991; Snieder and Sambridge, 1992]. When the
reference curve is not a true ray in the reference slow-
ness field one speaks of true ray bending [Julian and
Gubbins, 1977, Pereyra et al., 1980; Moser et al., 1992;
Farra, 1992]. In all the studies cited here, an equation
was derived for the first order perturbation of the ray
position. An expression for the second order travel time
perturbation was derived in Snieder and Sambridge
11992]. See Sambridge and Snieder [1993] for the accu-
¢ M- ~antls tomography. The sec-
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leading order by the second order perturbation of the
travel time. It is shown in section 6 that in order to com-
pute the second order travel time perturbation it suffices
to compute the first order perturbation in the ray posi-
tion. For this reason, the theory is only presented for the
first order perturbation in the ray position.

Why are there so many different formulations of ray
perturbation theory? One reason is that the theories con-
cerned with paraxial rays, siowness perturbations and
pure ray bending address different problems. However,
this is not the explanation, because Snieder and Spencer
[1993) show how paraxial rays, slowness perturbations,
and pure ray bending can be combined in a single theory
that is accurate to first order in the ray position and to
second order in the travel time.

The primary reason for the many different frrmula-
tions of ray perturbation theory is that the perturbation
problem for the ray position contains a fundamental
ambiguity which arises because a point on the perturbed
ray can be moved along the perturbed ray without alter-
ing the shape of the perturbed curve. This means that it
13 possible to devise different mappings between points
on the reference and perturbed rays. The goal of this
paper is to clarify this ambiguity and to develop tools to
handie it in an explicit fashion. To this end, an equation
for the first order ray perturbation is derived in section 3
which does not involve a specific mapping between refer-
ence and perturbed curves. The tools for specifying the
mapping from the reference curve to the perturbed curve
are developed in section 4. In this new formalism, one is
able to prescribe the mapping from the reference curve to
the perturbed curve explicitly. In previous work this
mapping has been preseribed implicitly by the choice of
the coordinate system or the independent parameter.
The second order travel time perturbation is derived in
section 6.

In the second half of the paper, it is shown how the
equations of Julian and Gubbins {1977], Moore {1691),
Snieder and Sambridge [1992] and Farra [1992) can be
derived as special cases of the general ray perturbation
equation by choosing different forms of the mapping from
the reference curve to the perturbed curve. It is also
shown that the existing equations for the ray perturba-
tion derived from a Hamiltonian formalism lead to ervo-
neous results when applied te two-point tay tracing prob-
lems.

2. ROLE OF THE STRETCH FACTOR

Consider the perturbation problem where in a refer-
ence medium with slowness uy(r) one has an estimate
Tolsp) for the ray position. The arc length s, along this
unperturbed curve is used throughout this paper to
parameterize the ray position. The arc length of the
unperturbed curve is denoted by §,. This quantity
denotes the total arc length from source to receiver when
the theory is applied to a whole ray, or it denotes the arc
length of the reference curve through a cell when the the-
ory is applied in a formalism based on a parameteriza-
tion in cells [e.g., Virieux, 1991). As in Snieder and
Spencer [1993], one or a combination of the following per-
turbations can be considered:

1. The slowness may be perturbed

SKIEDER AND SAMBRIDGE. AMBIGUITY IN Ray PERTURBATION THEORY

(1}

2. The curve in the reference medium may not be a
true ray

w(ry = dg(r) + eug{ry .

(2)

The quantity R, measures the degree to which the refer-
ence curve violates the equation of kinematic ray tracing
in the reference medium. Since the starting curve need
not be a true ray in the reference medium, the term "ref-
erence curve" is used rather than "reference ray".

3. The end-points of the curve may be perturbed

r(0) = ry(0) + ca r(So) = ro(8g) + £b . (3)

The parameter ¢ is used to denote that these effects
are assumed to be small, and facilitates a systematic per-
turbation approach. The aim of ray perturbation theory
is to investigate the effect of the perturbations (1)-(3) on
the ray position and travei time. Let the ray position
under these perturbations be given by

1(5g) = Fo(so) + €1y (S0) + £73(50) + ... .. (4)

The perturbed ray is parameterized with the arc length
5y along the unperturbed ray.

It is crucial to note at this point that one can move the
points along a curve without altering the shape of the
curve. This means that there exists an ambiguity in the
mapping of the points along the reference curve onto the
perturbed curve because one may associate a point on the
reference curve with different points along the perturbed
curve and obtain the same perturbed curve. As long as
one ensures that the boundary conditions (3) are satis-
fied, infinitely many mappings can be defined from the
reference curve onto the perturbed curve. In other words,
the perturbation {(4) is not defined uniquely without a
specific mapping of the reference curve to the perturbed
curve. In Snieder and Sambridge [1992) this mapping is
specified by the ray-centered coordinates they employed,
l.e., the perturbation was constrained to be perpendicular
to the reference curve (see Figure 1a). In contrast to this,
Moore [1991] defined the mapping by the requirement
that a point at arc length s, along the reference curve
was mapped onto a point with the same arc length along
the perturbed curve (see Figure 18). Snieder and Spencer
[1993] used the relative arc length to define the mapping
from unperturbed to perturbed curve as shown in Figure
le. {The relative arc length is defined as the acrlength
measured along the curve to the point under considera-
tion divided by the total arc length.) These different map-
pings necessarily lead to different perturbation equations
because the perturbation r, depends on the employed
mapping.

In general, the increments ds, and ds along the unper-
turbed and the perturbed curve are different. This is
important for the equation of kinematic ray tracing

(8)

because the acrlength ds appears in the derivatives. This
is also the case for the travel time

T:J-uds. (8)
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Snieder and Sambridge (1992)

Fig. la. Mapping used by Snieder and Sambridge [1992] where
each point on the reference curve is periurbed perpendicular to
the reference curve. The reference curve is shown by a thin solid
line, the perturbed curve with a thick solid line. The mapping is
indicated by the dashed arrows.

because of the presence of the increment ds.

A dot is used throughout this paper to denote differen-
tiation with respect to the unperturbed arc length s,.
The vector k, is of unit length because r, = dry / ds,. From
the relation (¥ & ) = ! it follows by differentiation that

(7)

(T T) =0 .

The derivative of a quantity £(r) along the reference
curve is given by &= d& / dsg = (1, VE).

It is important to note that in general the perturbed
curve has a different arc length than the unperturbed
curve. The increment in arc length ds along the per-
turbed curve is equal to the length of the vector dr, so
that (ds)*=dr - dr. Dividing this by (dsy)* leads to the
relation (ds/ds;)® = | drids, - dr/ds, . Inserting the pertur-
bation series (4) and using the fact that r, has unit
length, one finds that to second order

os
dsy

and its reciprocal expression

<. | B 1o .
=1+ e(ryF )+ rz(i(r, -z (g i }] A8

Fig. 1b. Mapping used by Moore [1991] where the mapping is
defined by the requirement that corresponding points on the ref-
erence curve and the perturbed curve have equal arc length to
the scurce. Note that in general the perturbed ray will not end
at the receiver, Line styles are as defined in Figure la.

Snieder and Spencer (1993)

Fig. lc. Mapping used by Snieder and Spencer [1993] where the
mapping is defined by the requirement that corresponding points
on the reference curve and the perturbed curve have equal rela-
tive arc length to the source. Line styles are as defined in Figure
la.

os 2

To first order, the unperturbed and the perturbed arc
length are related by

d - 1. . 30, ..
oo &hn ) - c:"(—(r, n)- 7 (B8 +(r -rz)) AD)

%:Ha(ﬁ-}o) : (10)
We cail the product (r, 1)) the stretch factor, since this
term describes how an increment ds, along the unper-
turbed curve is related to an increment ds along the per-
turbed curve. We shall see that this factor can be used to
specify the mapping from the unperturbed to the per-
turbed curve. Integrating (10) with repsect to s, one
obtains to first order

s(sp)=sp+ ¢ J- (K, -ty ) dsy’ (11)
0

Hence the stretch factor unambiguously defines the rela-
tion between the arc length of corresponding points on
the unperturbed and the perturbed curves.

3. PERTURRATION EQUATION

The starting point for the derivation of the ray pertur-
bation is the equation of kinematic ray tracing (5). Using
the ray perturbation (4), one obtains with a Taylor expan-
ston of ug(r) and u,(r) around r, that the slowness (1) is
given to second order by

#(r) = Uig(rg} - £ {wq{rg) + r; - Vug(rg) )

+ &t ( ro Y (r) + %rlr,: VVuglry) + 1y Vig(r) ) ,(12)

where : stands for a double contraction. The slowness
gradient is given to first order by

(13)

The first order expansion of both the slowness and its
gradient are needed to determine the first order ray per-
turbation from eqnation (5). The second order expansion
of the slowness is needed to derive the second order
travel time perturbation from equation (6).

Vu(r) = Vig(rg) + € ( Vay(ro) + 1, - VVig(ro) ) .
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The perturbation expansions (4), (12) and {13) can be
inserted in the equation of kinematie ray tracing (5). Tak-
ing into account that the arc lengths d¢5s and ds; can be
different, one can derive the following differential equa-
tion for the first order ray perturbation:

’
)

— (ughy )~ wgly (i -Fy) + L I {f - Vig) — 2V, J(ro-r, )
d.fo

N
+ (Favuﬂ + Ty (hy - VVug) = YV, J =R, +R, . (14)

This expression constitutes the (e} contribution to the
perturbation expansion of equation (5) of kinematic ray
tracing. The derivation of this expression is shown in
Appendix A. The quantity R, is defined by

d drg )

dsg “ dsoj i
By carrying out the differentiation on the right-hand
side, R, becomes

R, =Vu - (15)

Ri = Vi, - ry(rg-Vu,} - u) ¥y . 116)

This expression can be simplified by using the fact that to
order ¢ the curve ry(s,) satisfies the equation of kinematic
ray tracing in the reference medium, i.e.,
o dug .
Vitg ~ uply = — by = Ofe) . (17
dsg

which follows from (2). Using this expression to eliminate
Fo in (16}, one finds that

R, =Vy - il—Vuo —ty Ty Vi, - f—quu i+ e . (A8
L) “g

With the definition Vy =V - g, (r,-V) for the derivative
perpendicular to the reference curve, one obtains to lead-
ing order that

R, = uOVT(ﬂ] , (19)

4
Moreover, one can show that: £ty R,)
=1y ( Vieg — gl ~ B (fy Vig) 3 =0, by virtue of the fact
that ry is of unit length and of (7). This implies that to
leading order the vectors R, and R, are orthogonal ta the
reference curve:

Ry = (- RH=0 . (20

As shown by Snieder and Sambridge [1992], there is a
close analogy between equation (14) for the ray perturba-
tion and the equation of motion in classical mechanics for
a point mass: d(mrydr = F. If we identify s, with time,
and u, with mass, then wyr, corresponds to momentum.
The first term d(uUP1 Wdsg in {14) then correspands to the
derivative of the momentum. In this analegy the contri-
butions R, and R, on the right-hand side act as external
forces. The terms containing r, are analogous te linear
elastic restoring forces, since they correspond to forces
that are linear in the displacement r,. Similarly, the
terms containing f in the left-hand side of equation (14)
correspond in this analogy to forces that are linear in the
velocity, they can therefore be regarded as generalized
frietional forces.

At this point, the mapping from the unperturbed curve
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onto the perturbed curve has not been specified. That an
ambiguity exists can be seen by rewriting the first two
terms of {14} in the form

i (“01"1 r- “-oE'u (ll'u r1) =g ( i:1 - 1-'0(‘."0 rl) )+ %rl (21)

dsy dsy
Using the classical mechanics terminology, the term
dug/dsy B, is an inertia term which accounts for the fact
that the "mass” 4, of the point mass is not conserved.
The terms ¥, - & (K r,) in the right-hand side of (21}
denote the eomponent of the acceleration r, perpendicu-
lar to the reference curve because it is the difference of
the acceleration r, with the projection of the acceleration
on the reference curve r, (1, T,). This means that oniy the
component of the acceleration perpendicular to the refer-
ence curve is determined by equation (14). Note that
because of expression (20}, the external force R, + R, has
a vanishing component along the reference curve. The
component of the acceleration along the reference curve
1s not determined by equation (14), and no external forces
are acting in the direction of the reference curve. This
means that the motion along the reference curve is not
determined by equation (14). This is a manifestation of
the ambiguity in ray perturbation theory that is due to
the fact that one can move the points along a curve with-
out changing the shape of the curve. In other words,
equation (14) does not completely specify the mapping
from the unperturbed curve to the perturbed curve
because only the motion of the perturbation r, perpendic-
ular to the reference curve is determined by equation
(14). The specification of the mapping from the unper-
turbed curve is discussed further in section 4.

It is interesting to note that the original {(nonlinear)
equation (5) also leaves the position of the points ris}
along the ray unspecified. Dotting (5) with the vector
dr/ds and using the fact that this unit vector is orthogo-
nal to d’r/ds?, one finds that the component of (5) along
the ray reduces to the identity

du _dr

ds  ds
This equation is simply the definition of the directional
derivative d/ds of a function which depends on r only. The
important peint to note 1s that this expression does nat
contain any information of the ray position, since (22)
holds for any vector r(s). This means that the location of
points along the ray is determined by the condition
ldr/dsl = 1 rather than the equation of kinematic ray trac-
ing.

(22)

4. CHOOSING THE STRETCH FACTOR

Up to this point, the perturbation equations do not pro-
vide an unambiguous description of the perturbation of
the reference curve. The reason for this is that the
stretch factor which controls the mapping from the
unperturbed to the perturbed curve has not yet been
specified. The analogy between the perturbation equa-
tron and the motion of a point mass in elassical mechan-
ics may clarify this issue.

As shown in section 3, the componernt of the accelera-
tion along the reference curve is not determined by equa-
tion (14}. In other words, since the F, terms in equation
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{14) are projected onto the plane perpendicular to the ref-
erence curve, equation {14) represents a second order dif-
ferential equation for the components of r, perpendicular
to the reference curve, but only a first order differential
equation for the components of r, along the reference
curve. This means that equation (14) needs to be supple-
mented with five boundary conditions. This is inconsis-
tent with the boundary conditions for two-point ray trac-
ing problems, which impose six constraints on the ray
perturbation r,. (The coordinates of the two end-points.)
Note also that because of (20) the component of the exter-
nal forces along the reference curve r,-(R,+R,) van-
ishes. Therefore it is necessary to prescribe the motion
along the reference curve by defining the stretch factor
{fo - ).

It is assumed here that the stretch factor depends on ry
but not on r, or r,. The stretch factor may also contain a
term independent of the ray perturbation. To maintain a
first order theory for the ray perturbation, the stretch
factor must depend linearly on r,. A general form which
satsfies these conditions is

up(fy i) =(g- 1)+ F . (23)

The vector g and the scalar F may be functions of 5,, and
the factor u, is introduced for notational convenience.
The streteh factor (23) cannot be used in this form to
remove the paralliel acceleration (f-t,) from (14). How-
ever, by differentiation of (23) and using equation (17),
which states that to leading order dlugty ) | dsg = Vg, one
obtains

(24)

Inserting (23) and (24) in (14) and using the fact that
g=ry Vg, one cobtains the following equaticn for the ray
perturbation:

uglly T = (@ 1)+ (g-Vug) h+ F .

Z—(aq,r1 J-f(g~Ve) n +(r(,Vu0 + Ty V{Vig — )
o
| . . 2
~VViug + — (6 Vugdpg— — Vg |- 1,
Ug Uy

. F
=R°+R‘+u0%[£jro+zu—v% . (25)

5o o

Note that this expression has additional forcing terms in
the right-hand side compared te the original equation
(14). These forcing terms depend on F, while the fric-
tienal and linear restoring force depend on the choice of
g. The reason for this can be seen by using the classical
mechanical interpretation, which states that the stretch
factor (23) effectively prescribes the component of the
momentum ur of the point mass along the reference
curve, To realize this prescribed momentum, additional
forces are needed.

In equation (25}, the choice of g and F is not yet speci-
fied. The perturbation equations of Julian and Gubbins
[1977], Chapman [1985], Moore [1991], Virieux [1991],
Farra [1992], and Snieder and Spencer {1993] can be
derived from (25) using special choices of g and F. The
correspondence of equation (25} with existing schemes for
ray perturbation theory and ray bending is shown explic-
itly in sections 7-10.
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Equation (25) was derived by inserting the stretch fac-
tor (23) in expression (14). For reasons of consistency it
should be checked whether the solution of {25) satisfies
the expression (23) for the stretch factor. One can show
that if the solution of (25) satisfies (23) at one point along
the curve, then (23) is satisfied everywhere along the
curve. To see this, define

K(so)= uolly 1 )= (-7 ) F . (26)

The condition K =0 implies that (23) is satisfied. By
direct differentiation of (26), one finds using (25) to elimi-
nate the term, d(ugr; ) / dsq that

dak
dsy
where (T), (20} and the fact that r, is a unit vector have

been used. Using the definition (26), this can be written
as

- . 1 du
:(uoro—Vuo]~r1+;-o-F:(g-rl+F) . @20

K =_L&K+(i(uoﬁo)-vuo]-il . (28)

dsg g dsy dsg
By virtue of (2} the last term is of order £ and can thus be
ignored. This means that to leading order
d
-&S—o(uol() =0 . (29)
When (23) is satisfled at one point along the reference
curve, e.g., K =0 at the source, then direct integration of
(29) shows that to first order X is identicai to zero at all
points aleng the curve. Therefore the solution of (25)
guarantees that if the stretch factor is given by (23) at a
single point along the curve, then the same expression
holds along the entire curve.

One caveat should be made here. Equation (29) is valid
to leading order in . In iterative applications as shown
by Snieder and Spencer {1993], the O(¢) terms that are
ignored might accumulate. In such a situation it may be
prudent to resample the points along the curve between
iterations in order to prevent this cumulative source of
error. However, in the numerical examples of Snieder
and Spencer [1993)], a resampling was not found to be
necessary.

It is important to note that for initial value ray tracing
any value of the quantities g and F ean be used without
violating the boundary conditions. This is because equa-
tion (23) only determines the component of I, along the
reference curve and so the other five boundary conditions
(i.e. the initial perturbation, r,(0) and two take-off angles,
or equivalently, the components of r, perpendicular to the
reference curve), may be specified independently. Never-
theless one should realize that for a given choice of g and
F the perturbed ray will, in general, not hit a given
receiver. This case is illustrated in Figure 1b for the
stretch factor g = 0, F =0, which, as it will be seen in sec-
tion 7, corresponds to the mapping used by Moore [1991].

For two-point ray tracing, both end-points r,(0) and
r(So) are specified, which makes a total of six boundary
conditions. Since the constraint (23) must also hold at the
end-points, an extra boundary condition on the quantity
(Ty-F ) is introduced by (23), and an arbitrary cheice of g
and F will result in an overdetermined system. To over-
come this problem, a degree of freedom must be included
in the prescription of g and F.
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5. NUMERICAL SOLUTION OF THE PERTURBATION EQUATION

Equation {25) for the ray perturbation lends itself well
for obtaining analytical solutions for special choices of
the reference slowness u, and the terms g and F in the
stretch factor (23). However, as argued in the previous
sections, for two-point ray tracing problems one must
leave one degree of freedom in the specification of the
stretch factor. This implies that equation {25) must con-
tain one unspecified constant. For applications where an
analytical solution of (25) can be derived it is no problem
to leave an unspecified constant in the equation for the
ray perturbation. As an illustration, consider the choice

g=Vug Fo=ugC 30

where € is a constant. Inserting this in (25) and using
{17) to eliminate r, to leading order in ¢, one cbtains with
the identity VVu, + Vg Vi, = 1/(2u,) VVai that

d . 1
——(uorl)—z—VVuf,‘rl:Rb+R1+2CVun. (31
Hy

dsg
For a medium where the squared slowness has a linear
gradient
wl=A+T-1 . {32
equation {31) reduces to

i(unh 1=R, + R, + 20V, . (33
dsy

This equation can be solved 1n closed form regardless of
the value of C.

However, when solving equation (23) for the ray per-
turbation numerically, it is undesirable when the equa-
tien contains an unspecified constant. Fortunately, this
complication can be avoided. When deriving (25), both
terms (,-r,) and (I, ¥,} were eliminated from (14) by
using the stretch factor (23) and its derivative (24)
respectively. Suppose for the moment that one only elimi-
nates the term (f;-1,) from {14} using {24) and retains the
(Fo -ﬁ ) terms; this gives

d . . T
H(unr;)+(ro{Vun 1:)—2\.u,,rnjrl
dsg i )

.. \
+{ toViug + 1 ViV —g ) — VVa, ] T

:Rbﬁ'kl_[?(i‘o"“l)'ﬁ\?h)‘ (34)
5o )
The simplest way to incorporate the required degree of
freedom in the stretch factor is to use F as a tuning
parameter. Note that F cnly appears in the last term of
(34). For numerical applications it is preferable to use an
equation where this tuning parameter does not appear
explicitly. Two different forms of F can be used to
achieve this.
Optian 1. Using (23), the last term on the right-hand
side of (34) can be written as
dug . . 1 duy d
E(l’n'ﬁ Y- F = u—(;m(g'rl)—uoa(u—o\
With the choice F = 4,C, with C an unspecified constant,
the last term i1n (35} vanishes, and so {34} becomes

{35)
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d . . Y.
— (Ul }+(ro( Vuy - g ) - 2Vigr )r.
dsy .

- .. 1 dug -
+[r0Vuo+roro-V(Vuo—g}~VVun+—-—grgg)rl
uy dsg

=R, +R, F=ul . (36)

In this equation, the required degree of freedom, which is
contained in the constant C, does not appear explicitly in
the equation (36) for the ray perturbation.

Option 2: An alternative way to remove the F from
equation (34) for the ray update is to make it a constant.
Since only the derivative F appears in (24) this gives

d . . dug « . . .
Eg—o-(ugr,)+[rn(Vunfg)+dT:roro-2Vuor0J-rl

+ [FOVHQ +ETy V( Vuy — g )~ VVu, J r

{37

In this expression, F is the constant that can be tuned to
the boundary conditions.

Note that at this point one is stili completely free in
the choice of g. The price one pays for eliminating F from
the perturbation equation is that (36) and (37) contain
the product (ry ry ) explicitly. However, the presence of the
(fo -1, ) term poses no additional problems when solving
one of the equations (36) or (37) numerically.

F has been removed from both equations above, but
can be evaluated by inserting the numerical solution of
(36) or (37) in equation (23) for the stretch factor.
Because of (29) one only needs to do this for a single
point along the ray. However, it should be noted that
when using (36) or (37), there is no need to compute F
explicitly.

F = const .

:Rb+R1

6. SECOND ORDER TRAVEL TIME PERTURBATION

In this section, an expression for the the second order
perturbation of the travel time is derived. The derivation
uses the general expression (14), hence the final result
can be used for any choice of the stretch factor. Under
the three types of perturbations (1.3}, the travel time can
be expressed as a perturbation series:

T=To+ T+ T+ (38)

The second order travel time is of interest because it han-
dles the effect of ray bending on the travel time, and
hence the travel time bias [Snieder and Sambridge, 1992,
Nolet and Moser, 1993; Roth et al., 1993]. As shown in
equation (13) of Snieder and Sambridge [1992], the
travel time is given by

Jg $o

T= j Ug(rg) dsg + € I [ u (rgd + {1y - Vag) + (B -1, g Jd.rg
0

Q
3q
+ g J ( %0'(}1".-1 )= Eﬁq(l"l‘l.'o)z*‘(“l +(r Vig) Xy 1)
1]
1 ..
+{r -Vu,) + —i(rlr,:VVuo)+(rz-Vuu)-v—(ro-rz)uu sto*'

(39)
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The last two terms of the order £ and order £* contribu-
tions cancel to leading order in ¢. To see this, consider the
integral

Sy

]EJ.(g'-Vuo)+(l.'o‘§.‘)un ) dsg . (40)
4]

where £(sy) is an arbitrary vector function along the ref-
erence curve. The term Vi, can be eliminated using (2),
so that

Sa S
d . ..
1= [ (e oty + tobpug) g+ 2 [ &R, dsg (41)
) 0 0
Applying an integration by parts to the first term gives
So Sg
- . N 9
J‘ (( £ Vug) + (ro'f)“uj dsq =|: uu(ro'ff)I +¢& J (£ Ry) dsq
a 1]

(42)
where

&

|1 I = f(S0) - f(0) . (43)
Expression (42) can be used to eliminate the first two
terms in the order ¢ contribution in (39) by inserting
£ =r,. This gives a boundary term of order £ and a term
containing R, that spills over to the second order travel
time perturbation. Similarty, the r, terms vanish from
the order £? term in (39) when (42) is used with £ =r,. In
this case the boundary terms do not contribute because
the boundary perturbation are forced to be absorbed by
the first order perturbation; see (3). This implies that in
order to compute the travel time to second order one only
needs to consider the ray perturbation to first order.
Using these results the first and second order travel time
perturbations are given by

So

T, = j uy dsg + [uglhy 11"
0

(44a)

5o
. u . g - . ..
72=3[{7n(r1‘1'1)70("1'1'(01*(“1+|'|'Vuo)(l'n'f1)

+1, -V, + %—(rlr,:VVuo) +(r, Ry) sto . {448)

The first order travel time perturbation 7, contains the
integral of the slowness perturbation along the refsrence
ray. This term forms the basis of linearized travel time
tomography. The term [up(fy r }° describes the travel
time change due to the extension of the ray at the end-
points in the direction of the reference curve. The second
order travel time perturbation T, contains second order
terms in r; and cross terms containing «; and r,. In addi-
tion to this, it also contains a term (r,-R,}, which
accounts for the fact that the reference ray need not be a
true ray. For this reason, equation (42) can be regarded
as a generalization of Fermat's theorem, where the fact
that the reference curve need not be a true ray is explic-
itly accounted for by the term ¢R,.
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It is shown in Appendix B that the integral in (446} can
be reduced to a simpler integral containing r, and R, + R,
only:

17 1
T,= 3 j r-(Ry+R,)dsg + 3 [ ug(ry Tp) + (1 - Vo) - Tp)
0

L]

— up(ry Ty )E; K ) + 2, (R "1):[: - (45)

This means that the second order travel time perturba-
tion can be computed with a single integration along the
reference curve once r, is computed. Alternatively, one
can eliminate the foreing term (R, + R,} from (45) using
(B8) of Appendix B, this gives an expression for the sec-
ond order travel time perturbation that is explicitly
quadraticinr, and r:

3g
1 s .
Ti=3 | {( )+ uolly o )?
a

—2Ar, - VX f ) — (1,1 VVug) )dsu (46)

*{“o(l.'l )+ (ry - Vag)r, - l-"cu Y= uglEy - l-'n )(l.-l. ".'0 Y+ (f‘n 'rl)Iu

When deriving the expressions (45) or (46) for the sec-
ond order travel time perturbation, only the general
equation (14) for the ray perturbation has been used.
This means that the expressions for the second order
travel time perturbation are valid for any choice of g and
F. When the ray perturbation r, is computed (either ana-
lytically or numerically) for a specific choice for g and F,
one can determine the travel time bias by inserting the
solution r, in (45) or (46).

7. RELATION WITH THE WORK OF MoOORE [1991]

In the perturbation theory of Moore [1991], the distine-
tion between the arc length along the reference curve and
the perturbed curve is not made. This prompted Snieder
and Sambridge [1992] to state that the theory of Moore
[1991] is inconsistent. However, there are no consistency
problems with her theory when one realizes that points
along the reference curve are mapped onto points along
the perturbed curve with equal are length:

47)

From (10) and (23), one finds that the mapping of Moore
{1991] corresponds to

s(8g) = 55 .

g=0 F=0. (48)

In order to see the relation of the perturbation equa-
tion of Moore [1991] and this work, one should make the
following identification between her notation and the
notation of this paper: x* - r,, X, = 1,, d/ds — d/ds,. Fur-
thermore, using her equation (11) and equation (19) of
this paper gives V™ f — uy V;(u, / 4g) = R,. This means
that equation (18) of Moore [1991] is in the notation of
this paper given by
(49}

d . d .
Zg(“oﬁ)*’ﬁ;(ruV“o'l'l)—VV“u'rl =R, .
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Carrying out the differentiation of the second term gives

d . . .
d.s_',, (ugh Y+ Vi, -1y

+(F0V“o + Ty (- VVieg) - VVu, J rn=R, . {50}
This expressicn can be obtained from (25) by inserting
R,=0, g=0 and F =0. Therefore the theory of Moore
[1991] foliows as a special case of (25) using (48) for the
stretch factor. The term R, is not present in the theory of
Maaore [1991] because she assumed that the starting
curve is a ray in the reference medium, and in that case
R, =0.

Note that in the theory of Maore {1991] the stretch fac-
tor is completely fixed. For two-point ray tracing prob-
lems the absence of a tuning parameter in the stretch
factor corresponds with the fact that the end-point of the
reference curve (the receiver) will not be mapped onto
itself (see Figure 16). Physically, this happens because in
general the unperturbed ray and the perturbed ray have
different arc lengths. This can be remedied by using (36)
or (37) with the choice g = 0, but with C or F constant.

In the theory of Dahlen and Henson [1985], which
empioys ray tracing of surface waves on an aspherical
Earth, the difference in arc length between the reference
curve and the perturbed curve is also not accounted for.
The criterion (58) of Daklen and Henson [1985] for closed
orbits should therefore not be evaluated for A = 2rx, but
for the arc length of the perturbed ray (measured in radi-
ans). However, since the arc length of the employed refer-
ence curve (a great cirele} is stationary, this effect is of
second order and can be ignored in their application to
the computation of asymptotic eigenfrequencies of an
aspherical Earth.

8. RELATION WITH THE THEORY
OF JULIAN AND GUBBINS [1977]

In the perturbation theory of Julian and Gubbins
[1977), points with equal relative arc length along the
original curve and the perturbed curve are mapped onto
each other. This implies that in their work

— =c . 5
e consl (51}
With (10) and (23) this means that
g=0 F=uyC . (52}

with € constant. Using these values for g and F in (36}
gives

d . /. A

—_ i Vuy - 2V I

o {ugh ) + k Ty ¥y Ugly J I

+(‘£0vu0+iﬂ(iﬂ VVup) - VVuy J rn=R,+R, = (53

This equation is a generalization of the perturbation
equation (50) for the stretch factor of Moore [1891], since
the relative arc length is preserved in the mapping from
the reference curve to the perturbed curve, but the scale
factor between the arc length of the two curves is a tun-
able parameter. Physically this correspends to the fact
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that we allow the reference curve and the perturbed
curves to have different arc lengths.

Equation (53) is identical to the perturbation equation
(17) of Snieder and Spencer [1993] derived for the stretch
factor (51). They show that for the pure bending case
(R, = 0), the x and y components of (53) reduce to the first
and second perturbation equations of Julian and Gub-
bins [1977], and that the third perturbation equation of
Julian and Gubbins [1977] is identical to the constraint
{23) with g and F given by (52).

9. RELATION WITH THE PERTURBATION EQUATIONS
IN RAY-CENTERED COORDINATES

The perturbation equations in ray-centered coordinates
are derived in a Hamiltonian formalism by Farra and
Madarioga {1987] and in a Lagrangian formalism by
Snieder and Sambridge 11992]. It should be noted that
in the derivation of the latter paper the component of the
acceleration along the reference curve ( —ug(k F)N, ) is
not eliminated. This can be seen in equation (32} of
Snieder and Sambridge |1992] where every term is per-
pendicular to the reference curve. The requirement that
the ray perturbation is perpendicular to the reference
curve implies, according to equation {26) of Snieder and
Sambridge [1992], that {r, 1, ) = - uy (Vig - r;). With (10)
and (23) this corresponds to the choice:

g=—Vu, F=0. (54)

Since the stretch factor (54) has no free parameters, the
associated mapping can two-point ray tracing problems
only be realized for a restricted class of perturbations.
This is reflected by the fact that the requirement that the
perturbation is perpendicular to the reference curve
implies that the end-point perturbations are also perpen-
dicular to the reference curve. This is an undesirable
restriction associated with ray-centered ecordinates.

One can develop a three-dimensional equation for the
ray perturbation by incorporating the stretch factor asso-
ciated with ray-centered coordinates in the three-
dimensional perturbation equations of this paper. One
can in fact generalize the stretch factor (54) for ray-
centered coordinates by using g=-Vu, and specifying
F(s5). This choice can be inserted in either (25), {36), or
(37). In this way, one effectively prescribes the projection
of the perturbation r; on the reference curve. This can be

seen by inserting the choice g = — Vg in {23):
Uity 1 )= — (Vug-1,) + F(sy) . (55)

The Vi, term is to order £ equal to d{ugr, //dsy; see equa-
tion {17). Using this to eliminate the Vi, term in (55)
gives

d .
— (uglryt;) Y= F(sq)

dsg (56)
which can be integrated to give
50
Ty T )(59) = gy 1, XO) + j Fishds . (57)
a1

The left-hand side of this expression is the projection of
the ray perturbation en the reference curve. When the
ray perturbation is for a single point perpendicular to the
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reference curve ((f, -r,) = 0 for some value 55), one finds for
the mapping (54) implied for ray centered coordinates
from (56) that (K, -r,) = 0 everywhere along the curve. This
is the condition that the ray perturbation is perpendicu-
lar to the reference curve. When using ray centered coor-
dinates, the ray perturbation at the end-points is neces-
sarily perpendicular to the reference curve. Allowing a
nonzero value for F in (57) makes it possible to accommo-
date end-point perturbations in different directions,
which is crucial for the application to source relocation
problems.

10. RELATION WITH HAMILTONIAN FORMALISMS

In a number of papers, ray perturbation theory was
analized using a Hamiltonian formulation of the ray trac-
ing problem [Chapman, 1985; Farra and Madariaga,
1987; Virieux et al., 1988; Virieux, 1991; Farre, 1992). In
Farra and Madariaga {1987], ray-centered coordinates
were employed. The relation of their work with ray per-
turbation theory based on a Lagrangian formulation is
discussed in Snieder and Sambridge [1992). In the other
papers, the ray perturbation was treated using three-
dimensional Cartesian vectors. In these papers paraxial
rays, slowness perturbations, and true ray bending were
treated separately. The results of this paper imply that to
first order in the ray update and to second order in the
travel time, these effects can be treated simultaneously.
The role of the stretch factor in the Hamiltonian for-
malisms is illustrated here for the Hamiltonian theory of
Farra (1992] for pure ray bending. This means that the
slowness is fixed (u; = 0).

From expressions (5) and (10) of Farra [1992) it follows
that the perturbation in the position (Ax) and the conju-
gate momentum (Ap) satisfy the foilowing system of first
order equations:

dAx dXg
—=A -, (58)
ar P+ Po dr
dap 1 1 dp
d_T:EVVué‘Ax-v-EVué—d—:‘ (59)

The independent parameter r is defined as in Virieux et
al. [1988]

d d d

T e (60)
The reason for the restriction that the slowness 1s fixed
(uy = 0) is that slowness enters the definition of the inde-
pendent parameter (60). When the slowness is perturbed
the identification between r and the independent param-
eter 5, of this paper is non-trivial because the last iden-
tity in equation (60) is not valid when u, # 0.

In order to make the connection with the resuits of this
paper one should make the following change of notation:
Xy — ry and Ax — ¢r,. Furthermore, it follows from equa-
tion (2} of Farra [1992] and the choice of her Hamiltonian
that

dxg drg
Po= 7 D g, - (61

where (60} has been used in the last identity. Because of
(61), the inhomogeneous term in (58) vanishes. For the
inhomogeneous term in (59) one can use that
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iEezuof_[uoﬁJ‘ (62)

dr
where (60) and (61) are used for the last identity. It fol.

lows from (58) that
dAX

u, 20
Todr T T dsy
Inserting this in (59) and using (60), (62} and (2} we
obtain the appropriate ray perturbation equation
d dr1 1 dro

1 d
LRIV SRR 1 S £ LI P
et AL 5( “ T N T, )J s

(63)

(64)

This is equivalent to equation (31) for the special case
R, =0 and € =0. (The reason that there is no R, term
here is that Farra [1992] considers pure bending only,
ie, u =0 and hence R, =0.) This suggests that in the
theory of Farra [1992) the stretch factor is given by (23)
with g = Vi, and indeed it can be shown explicitly that
this is the case.

In Hamiltonian ray perturbation theory, the mapping
from the reference curve to the perturbed curve is by defi-
nition specified by the fact that the original and the per-
turbed points correspond to the same value of the inde-
pendent parameter r. With (60) this implies that the
mapping satisfies

ds _ dsy
uolFo+ €F)  wg(ry)

From this expression it follows with (10) and a Taylor
expansion of uy(ry + er;) that

d

(65)

14 &(Rh)=am =14 (1, Vug) . (66)
a5y Ug
A comparison of this expression with (23) implies that
g=Vu, F=0. (87)

It is interesting to note that this stretch factor has
exactly the opposite sign from the stretch factor used in
ray-centered coordinates; see (54).

One can show that the stretch factor (66) implies that
the perturbation of the Hamiltonian vanishes (AH = 0),
where the Hamiltonian is given by

1
H:E(pz—uz). (68)
Expressing the relation AH =0 in the perturbations Ax
and Ap one obtains
1
&H:po-Ap—EVug-Ax . {69)
With (61), (63) and the identification Ax — £r, this con-
straint can be written as

AM = £ (ui{fp1 ) — ig(Vag - 1,)) . (70
Because of (66) the right-hand side vanishes:
Alf =0 . (71)

Farra [1992] remarks that when the relation Al =0 is
satisfied at the source, it is satisfied everywhere along
the ray. This is consistent with expression (29) of this
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paper. The factor «, in (29) correspends to the fact that
(70) and the stretch factor (23) differ with a factor u,.

In the Hamiltenian theory of this section, the stretch
factor does not contain a free parameter, see (67). For ini-
tial value problems this is no problem. However, when
applying the theory to two-point ray tracing problems
the absence of a tuning parameter leads to an inconsis-
tent system of equations. As shown in sections 11 and 12,
this may lead to erroneous solutions.

11. EXAMPLE 1

As an example of the role of a tuning parameter in the
stretch factor, consider the problem of two-peint ray trac-
ing in a homogeneous reference medium {u, = const). Let
the reference curve be a true ray (a straight line). Let the
end-points perturbations be given by (3). The true
perturbed ray is a straight line joining the perturbed
end-potnts. In this exampie, g= Vi, =0 and F = uC is
used. Note the special case C = 0 corresponds to the map-
ping employed in Hamiltonian ray perturbation theory.

For this particular problem, equation {31} governing
the ray perturbation is given by

=0 (12

The solution subject to the end-point perturbations (3) is
given by
o

r{sg)=a+(b-aj)— .
S

(73}

The stretch factor for this problem follows by differentia-
tion
.. 1 .
(pn)l=—(b-a)un . {(74)
So
Inserting this relation in the stretch factor constraint
(23) with the conditions g = Vi, = 0 and F = 4,C, one finds
that

c:i(b—a)-h,. {75)

So

This selution implies that € must be nonzero whenever
the projection of the change in the ray length on the ref-
erence curve (( b—a )-T,) is nonzero. The reason that
must be nonzero for this problem is related to the fact
that the ray changes length under the perturbation of the
end-points. Using the expressions (11) and (23) for g = ¢
and F = ueC, one finds that the length § of the perturbed
ray is given by

S=sSp=({1+eCr5, . {76)

Hence the change in the ray length is accommodated by
the tuning parameter €. One can readily verify that the
relative change in the arc length is indeed given, to first
order, by (75).

The procedure followed in this example is typical for
finding the tuning parameter when solving (25} analyti-
cailly. In general one can determine the unknown tuning
parameter by inserting the solution of (25) . expression
(23) for the stretch factor. Note that expression (29)
implies that one only needs to do this at a single point
along the ray, because if (23) is satisfied at a single point
along the curve it is satisfied everywhere along the curve.
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When using the expressions (36) or (37) for the ray per-
turbation, there is no need to evaluate the tuning param-
eter because this parameter has been eliminated from
the perturbation equation.

12. ExaMpLE 2

Consider a reference medium where the slowness
squared is a linear function of the space vanables:

WB=T-1+4.

i

The Hamiltonian perturbation equations permit solu-
tions in closed form for such a reference medium [e.g.,
Virieux et al., 1988; Virieux, 1991), which makes it attrac-
tive to parameterize the medium in triangular or tetra.
hedal cells with a slowness variation {(77) within each
cell.

For such a medium the mapping g = Vuy,, F = u,C leads
to solutions in closed form. With (77} it follows that

2F C
 Vuy=2Vuy=—T . (78)
“g g
Hence equation (31) is for this special case
d dr,
— — |=CT .

As a first example, consider the situation that the ref-
erence ray 1s a true ray whose end-points are perturbed
according to (3). This example is of relevance when the
medium is parameterized in triangular or tetrahedral
cells and where the intersection of the ray with the cell
boundaries change. It is useful to define a new indepen-
dent parameter w by

$n
1
wisg) = J. - dsg  and W= w(S) .
¢
0

(80}

Because of (60) this parameter is the same as the inde-
pendent parameter r used by Farra [1992]. With this
new parameter, (79) is given by

d'v,

=T . (81)
Aw®

The solution of this equation subject to the boundary con-
ditions (3) 1s given by

o
r1(W)=il+{b—:l)%—*2-Crw(W—w) (82

At this point, the tuning parameter C is not yet deter-
mined. To determine this constant, the stretch factor for
the solution (82) is needed
bolh 5 ) = G dr, )
ol ) = (T i
1
W
Inserting this stretch factor at the source position (w = 0)
in (23} gives an expression that can be solved for C:

(b—u)~|"0—‘]2—C(T“-|"0)(Wv2w). (83)

e Co1 PR
CA(W(b"a)'fo‘m(r'ﬂ))/[uo+5(r-rg)uj(84)

In general, € will be nonzero; setting the parameter C
a priont to zero leads to an erroneous solution. As an
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example, let the reference slowness depend only on
depth. Consider a reference ray starting and ending at
the surface z = 0, and let the end-points of the ray be per-
turbed in opposite directions a=- b along the surface
(see Figure 2). For this situation the depth of the turning
point of the true ray increases when the source receiver
separation is increased. The ray perturbation predicted
by current Hamiltonian formalisms are given by (82),
with the constant C equal to zero:

r{":a+(b~a)%. (85)
This solution is shown by the dashed line in Figure 2.
Since the vector rf’ in (85) has a vanishing compenent in
the z direction, the turning point of the ray is not moved
to greater depths when the source-receiver separation is
increased.

In the full solution (82), the last term gives a nonzero
vertical component to the ray perturbation. This solution
is shown as the dashed line in Figure 3. The perturbed
ray (82) approximates the true ray quite weil. Note that
the vertical component of the ray perturbation is given by
- 172C T w(W - w), it is only nonzero when C is nonzero.
One must incorporate this tuning factor in order to get a
physically realistic ray perturbation with an increased
turning point depth.

One can show that when the stretch factor is fixed a
priori, the solution that is ebtained is not oniy physically
erronecus, but it is also inconsistent with the employed
stretch factor. This is due to the fact that in this situation
the problem is overdetermined; see section 4. Consider
the salution r{ of equation (85) obtained for the fixed val-
ues g =Vuy, F=uyC=0. 1t follows by direct differentia-
tion that this solution satisfies

.. 1 .
uu(r0~rf)=w{h—a)-r0 . (86)
This solution also satisfies at the source (w = Q}:
@ T+ F=(Vug a) . (87

Since the right-hand sides of (B6) and (87) are in general
different, the solution r¥ does not satisfy (23) which
defines the mapping This implies that the employed
equations are inconsistent, which is a consequence of the
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Fig. 2. Perturbation problem where the source and receiver are
moved away from each other aleng the surlace. The original ray
is shown by a thin solid line; the true ray with perturbed end-
points by the thick sofid line. The (erronecus} ray perturbation
(85) is shown by a dashed line. The mapping is defined by the
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Fig. 3. Perturbation probiem where the source and receiver are
moved away from each other along the surface. The original ray
is shown by a thin solid line; the true ray with perturbed end-
points by the thick solid line. The ray perturbation (82) is shown
by a dashed line. The mapping is defined by the arrows.

fact that the two-point ray tracing problem is overdeter-
mined when the stretch factor is fixed a priori, In the
analysis leading to equation (84) for the tuning parame-
ter this problem did not occur because € was determined
a posteriori by the condition (23) for the stretch factor.

As a second example for the reference slowness (77),
consider the perturbation problem where the end-points
are fixed (r,(0) = r, (W) = 0), but where a forcing term R is
present. Equation (31) for the ray perturbation is for this
example;

d*r

F; =CT+ 4R ,
where R can be either R, or R, or a combination of the
two. The solution of (88) is given by

(88)

w
r(w)= J' Gw, whig(rg{w MR(W)dw’ « %CFw(W - wX89)
0

with the Green's function G(w, w’) given by

_ (W —w )w,

Giw,
(w W

w') =

w, = max (w, w") w, = min (w, w’) {90)

Inserting this solution at the source (w=0) in the con-
straint (23) gives

. Iwlr‘r’—w' ) , 1 .
g oFo(w')) RO dw’ / (it + 5 (o TIW )
4]

(91}

This means that also for this example the tuning param-
eter  is in general nonzero. Since the theory for € =0
reduces to existing Hamiltonian ray perturbation theory
this means that the application of Hamiltonian ray per-
turbation theory to two-point boundary value problems
lso leads to erroneous results when the slowness is per-
turbed or when a ray estimate is refined (ray bending).

13. DiscuUsSION

The theory of this paper provides a natural explanation
for the abundance of different perturbation theories for
the ray position. The specification of the stretch factor in
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(23} by the choice of g and F makes it possible to tailor
the employed mapping to one's needs. For analytical
derivations, equation (25) for the ray perturbation is
most useful. In numerical applications to two-point ray
tracing problems the necessicity of a tuning constant in F
makes it preferable to use equations {36} or {37} for the
ray perturbation.

For initiz! value ray tracing, one can use any choice for
g and F. For twa-point ray tracing problems one must
incorporate a tuning constant in F in order to ensure con-
sistency between ‘he end-point congditions and the
employed mapping. This tuning parameter prevents the
systemn of equations from being overdetermined. The sec-
ond order travel time perturbation can be computed at
little additional cost by a single integration along the ref-
erence ray; see equation (45). For some analytical pur-
poses, the equivalent equation (46) may be useful.

In previous ray perturbation theories, the stretch fac-
tor was defined (usually implicitly) from the onset. The
freedom one has with the theory of this paper to choose
the streteh factor explicitly is very useful because the
equation for the ray perturbation has different analytical
solutions for different stretch factors. For example, for
the stretch factor of Julian and Gubbing [1977] given by
equation (52) of this paper, equation {25) has analytical
solutions for the ray perturbation when Vi, 1s constant.
The equations of Snieder and Sambridge [1992] permit
analytical solutions when V(l/uy) is constant. For the
stretch factor (67), which is used in several formulations
of Hamiitonian ray perturbation theory, analytical solu-
tions exist when Vi is constant (see section 12). The
stretch factor (54) permits analytical solutions when
(1/ug)Vug is constant. These different analytical solutions
may be very useful when one parameterizes the medium
in terms of cells with a given behavior of the slowness
variation. Analytical solutions for the ray perturbation
can then be used for a variety of different slowness varia-
tions within each celi.

The examples of section 12 show that the application of
existing Hamiltonian ray perturbation theory to two-
point ray tracing problems leads in general to erroneous
results. This does not mean that Hamiltonian ray per-
turbation theory is not correct. The deficiency of this the-
ory for this particular example is caused by the fact that
the Hamiltonian ray perturbation theory is farmulated
for intitial value problems. When being applied to to two-
point boundary value problems, it must be extended to
include nonzero values of the tuning parameter C. For
applications of Hamiltonian ray perturbation theory
where the slowness is parameterized in triangular or
tetrahedral cells, one can express the ray perturbation
within a cell analytically given the intersection points of
the ray with the cell boundary. This leads to a two-point
ray tracing problem within every cell. In those applica.
tions one should use the solution (82) rather than (85),

APPENDIX A

When deriving an expression for the first arder ray per-
turbation from the equation of kinematic ray tracing (5},
it 1s necessary to convert the derivatives along the per-
turbed curve to the derivatives along the unperturbed
curve using
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d ds, d .o d

—_—— e =] - . —

ds s dsg ( £ )) dsg
where equation (9} is used for the last identity. Inserting
this result and the perturbation expansions (4), (12}, and
{13) for r, u(r), and Vu(r) in equation (5), one obtains up
to order ¢

(A1)

(1-ellpn))x
g .. d
xE;-o (u0+£(u1+r,Vuo))(l—c{ro-r,)Ja(roJrer,)}

=Vug +e( Vi, +1, - VVug) . (A2)

When multiplying the different terms in the left-hand
side, contributions of order £* and higher can be ignored
for the derivation of the lowest order ray perturbation.
Using this, one obtains ta Qe

f

] - d .
£ 1 L o )Z‘(”nro)
So

d . T .
| Uy + 1y Vg )Ty — (T 1 )y + gy,
dsy

d .
=e(Vu, +r VVWuy )+ ( Vg - e {oTy) ) . (A3)
o

According to equation (2), the iast term in this expression
15 equal to £R,. Using this result, ali terms in (A3) are
proportional to ¢, so that the compiete expression can be
divided by ¢. Carrying out the differentiations with
respect to 5; and using the identity dVu, / dsy = (5 - VVig),
equation (A3) can after some algebra be written as

d H) T ed 4 v v duol._ .
— (uphy ) — T+ — kgl — ~=m— T
sy (ugn, ol (Tp Ty 1 iy oo a5 o To

.
(1) d_un Ty ~ 2uyly Lr (ron - VWVt + (ry, - Vugir,
So -

~ir - VWugy = Vi - 'L‘i‘(“l'.'o)’rku : (Ad)
dsy

Because of equation (2) the terms between curly brackets

are equal to ¢R,. They therefore give a contribution to

higher order in ¢ and can be ignored. The terms between

square brackets can with equation (2) be written as

2ugly + % To = 2eRy — (T Vit + 2Wuy , (A5)

1]
where it is assumed that dug / dsg = (,-Vug). The first term
on the right-hand side in (A5) is of order ¢ and can to
leading order be neglected. Inserting the remaining
terms of (A5} in equation (A4} and rewriting the term
(F1 T Vol a5 T {f -VVig) - £, leads to equation (14).

APPENDIX B

In order to simplify the integral (44b) ‘or the second
order travel time perturbation, the u, terms in this inte-
gral are eliminated. Using the definition (15) and an inte-
gration by parts, one obtains
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So 3o
_[ tr,-R,) dsy = I ((ry - Va) + (0 Ty by ) dsg — [y (B -1, )°
a 0

(BD)
so that the second order travel time perturbation can be
written as

Sg
1= { 52 ) = 2 G Gy Ny Vi)
0

+ %(rlrl -VVug)+r, - (Ry+R)) } dsg + [uy{ry -r,)]‘;" (B2)

This expression can be simplified further by dotting (14)
on the left with r; and integrating the result over the ref-
erence curve

5o

d . e dug o
_[ Ty - —— {ugly )~ uglly R r)+ —— (1 G Mg 1y )
d dsg dsg

- 2Ar, - V“o)(;'{)'i'l y o+ ;o)(v“o Sr) + ATy EG )("'0 r: VVug)

So
= (rr;: Vi) }dso= J- o {R,+R,)ds .
o

{(B3)

Using an integration by parts the first term is given by
So So

d . .. .
[ re = oh ) dsg = - [ uolfs ) dso + fuoty £013" (BY)
Q fo 0

The second term in (B3) can be integrated by parts to
remove the r, term; this gives

3g

e N dug [ . E
- j sgil) - Iy )¥p 1)) dsp = J’ I () T I 1y} + sg(hy Ty )™
3 A

+ uglTy - Fo)Fy Ty ) + kol To )T 1) ]d‘o

—{ Uolry T )R, ) 1 . (B5)

The fifth term in (B3} can also be integrated by parts in
order to remove the r, term:

So

Sg
[ Fovuo my dso=- | { (Vg i)
Q [+]

+ (N YV Xr, Ty) + (r) - Vag)(R ) } dsg

+[ (v, - Viag)(r, - io)f' . (BS)

Inserting (B4)-{B6} in (B3) gives

S 5
.[ TRy + Ry)dsy = _[ { _“o(i'l "n )+ uo(i'l -l"o ¥

0 ]

22,033
— 2, Vugey ) = (B Vugd(r, - &) — (11, VVig)

+[(ﬁ oL+ (1 bR ]-[uo?o+ ;“:_:;‘,-vuo )}ds,
ol 1)+ (1 - Vi + ) = sl ) By I" B7

According to {17), the term ugtq + (dug { dsg) fy — Viuy is of
order £; hence

So $o
J Ry +Ry)dsp= j {‘ oty 1 ) + (R B
¢ 0

- 2r, - Vig)Ty 1y ) = (T - Vug)(r, - 1) = (ryry: VVug) } ds,

. e 4 s S
+{ uo(r'l 'ri) + (r] - V“o)(rl i ) ) - ﬂo(rl “Tg )(rl ‘g ) Ln . (Ba)

This relation can be used in (B2) to eliminate the terms
quadratic in r, and r,; this leads to (45).
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