INTERNATIONAL ATOMIC ENERGY AGENCY
.

g C@} UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL OQRGANIZATION " t

INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS
LC.T.P, P.O. BOX 586, 34100 TRIESTE, ITALY, CABLE: CENTRATOM TRIESTE

H4.SMR/942-29

Third Workshop on
3D Modelling of Seismic Waves Generation
Propagation and their Inversion

4 - 15 November 1996

Perturbation Theory for Travel Times

(D R. Snieder, @ David F. Aldridge

(1) Dept. of Theoretical Geophysics
University of Utrecht
Urecht, The Netherlands

(2) Chevron Petroleum Technology Co.
La Habra, California, USA

MAIN BUILDING STRADA COSTIERA. 1 TEL. 2240111 TELEFAX 224163 TELEX 4603v2 ADRIATICO GUEST HOUSE V1A GRIGNANG, 9 TEL. 22421 TELEFAX 22453t  TELEX 460449
MICROPROCESSOR LAB. V1A BEIRUT, 31 TEL. 224471 TELEFAX 224600 TELEX 46012 GALILEQ GUEST House Via BEIRUT.7  TEL.2240311 TELEFAX 2240310 TELEX 460392



Perturbation theory for travel times

Roel Snieder

Department of Theoretical Geophysics, Utrecht University, P.O. Box 80.021, 3508 TA Utreche,

The Netherlands
David F. Aidridge

Chevron Petroleum Technology Co., 1300 Beach Boulevard, La Habra, California 90631-6374
{Received 7 September 1994; revised 10 February 1995; accepted 4 May 1995)

In many applications such as travel time tomography, one needs to investigate the effect of
perturbations of a slowness model on travel times. In order to carry this out efficiently, a
perturbation theory is developed for the travel times along rays under perturbations of the slowness
model. The derivation is based on a perturbation analysis of the eikonal equation and leads to simple
expressions for the travel time perturbation to arbitrary order. An explicit proof is given that the
second-order travel time perturbation, the travel time bias, is equivalent to the second-order travel
perturbation that was derived previously. It is also shown that a bending scheme where the slowness
model is fixed and where one iteratively updates the travel times can also be based on a perturbation
treatment of the eikonal equation. © [995 Acoustical Society of America.

PACS numbers: 43.40.Ph

INTRODUCTION

Ray perturbation theory describes how changes in the
slowness field alter ray positions and travel times.' ™" This
theory is ideally suited for nonlinear travel time tomography
since in this application one updates a slowness model itera-
tively in the course of the inversion process. Ray perturba-
tion theory can then efficiently be used to determine the ef-
fect of the slowness updates on the ray positions. Because of
Fermat’s theorem, the travel time is to first order not affected
by perturbations of the ray positions. This principle forms the
basis for linearized travel time tomography.'*!* The change
of the ray positions due to the change in the slowness models
leads to higher-order perturbations for the travel times. To
leading order, this effect is described by the expressions for
the second-order travel time perturbations derived in Refs.
8-10. These derivations for the second travel time perturba-
tions are rather complex. This is in clear contrast with the
extremely simple derivation of Fermat's principle of
Aldridge. The reason for this simpticity 1s that in this deri-
vation of Fermat’s principle, perturbation theory was applied
to the eikonal, rather than to the ray positions, and in a sec-
ond stage to the travel time integrat 8!

In this paper. higher-order perturbation theory is applied
to the eikonal. This leads to simple expressions for the travel
time perturbations that can recursively be computed to any
order. The perturbation equations for the eikonal for a per-
turbation of the slowness is derived in Sec. 1. In Sec. II, it is
shown explicitly that the resulting second-order travel time
perturbation is identical to the second-order travel time per-
turbation derived by Snieder and Sambridge.® Some details
of this proof are given in two appendices. The perturbation
theory of Sec. I can thus be regarded as a higher-order ex-
tension of the second-order perturbation theory of Snieder
and Sambridge.® In Sec. IV, it is shown that perturbation
theory for the eikonal can not only be used to study the effect
of slowness perturbations on the travel times, but that it can
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also be used to iteratively update the estimate of the eikonal
for a fixed slowness. This corresponds to a bending approach
for rays.'*=17

I. THE PERTURBATION EQUATIONS FOR THE
EIKONAL '

The starting point for perturbation theory for the travel
time is the eikonal equation

VT =u?, (1)

where u(r) is the slowness. The ray position follows from the
eikonal through the relation
dr 1 vr : @)
ds u '
Now assume that a reference slowness ug(r) is perturbed:
u(ry=ugy(r)+ eu,(r). (3)

The small parameter € is used to facilitate a systematic per-
turbation approach. It is assumed that the resuiting perturba-
tion in the eikonal can be expressed in a perturbation series

T(r):To(l')+€Tt(l')+sz2(r)+... . (4)

Note that it is tacitly assumed that the perturbation problem
is regular. This assumption breaks down when the wave field
has passed through caustics and multipathing occurs.

Inserting (3) and (4) in the eikonal equation and collect-
ing the terms with equal powers of € leads to the following
equations for the perturbation of the eikonal:

IVTo|?=u, (5a)
{VTO'VT1)=H()M1, (Sb)
(VT VTy)=Hu;—|VT,[?), (5¢)
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intini2)
(VI VT == 2 (1= 18,0
m=1
(VT VT, (n=3). (5d)

In the last expression int{n/2) denotes the largest integer
smafler or equal than n/2. For  example,
(VTy-VT=—(VT-VT3)—:(VT,-VT,).

Let the rays associated with the reference eikonal T be
denoted by r;. The unit vector tangent to the reference rays
is denoted with t,. This vector can be used to solve Egs.
{5a)-{5d). Since the reference rays are perpendicular to the
wavefronts, the vector t, is parallel to the gradient of the
reference eikonal 7. With (5a) this implies that

VTo=uoly. (6)
The left-hand side of the perturbation equations (5b)—(5d) is
of the form (VT,-VT,). With (6) these terms can be written
as .

(VT VT, =up(ty-VT,)= (7)

uy sy’
In this expression we used the directional derivative i,V as
the derivative d/ds, along the reference ray. The arciength
along the reference ray is denoted with sq in order to distin-
guish it from the arclength s along the perturbed ray. As
shown by Snieder and Sambridge'® this distinction is crucial
in ray perturbation theory for the ray displacement.

With (7). the perturbation equations (5b)-(5d) can be
written as

daT,

d_SQ:uh (83)

ar

4 7a (G IVTE). (8b)

dT -1 ntln/2}

ds;:u—o Zl (1—%5m,n—m)(VTm'Vanm)
(n=3). (8¢c)

These equations can be integrated along the reference ray
l'o(.f 0):

T1=J iy dsg, (9a;
o
1 2 2
T,= 2_(“1“|VT|‘ )dsg, (9b
ry <4y
int(ni2) ]
T,=~ % (1—‘55,,,,n_,,,)f (YT, VT, )ds,
m=1 Ty iy
(S

The first-order equation (9a) states that the first-order trav
time perturbation is the integral of the slowness perturbatic
along the reference ray.”' This expression forms the basis f
linearized travel time tomography. The second-order tras
time perturbation (9b) describes the leading-order effect

the ray bending due to the slowness perturbations on |
travel time. The higher-order perturbations of the eikonal :
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given by (9c). Once the reference rays ry are known, the
travel time perturbations can be computed recursively from
expressions (9a)-(9¢).

. THE SECOND-ORDER TRAVEL TIME
PERTURBATION ' '

The second-order perturbation T, of the eikonal is of
particular interest because it describes the leading-order ef-
fect of the ray bending due to slowness perturbations on the
travel time. Since first arrival rays are curves that yield a
minimum travel time, these ray bending effects always re-
duce the travel time of first arrivals. Ignoring this may result
in a bias in velocity models obtained from linear travel time
tomography.'®'® Expressions for the second-order travel time
perturbation were obtained from ray perturbation theory.®-10
Although the final expressions for the second-order travel
time perturbation in Refs. § 10 are quite simple, the deriva-
tion of these expressions is rather complex. Tt will be shown
in this section that the second-order perturbation (9b) of the
eikonal is equivalent to the second-order travel time pertur-
bation derived by Snieder and Sambridge.? Since the theory
of Sec. I is for the eikonal at a given location r, the compari-
son with the second-order theory of Snieder and Sambridge®
is made for a ray with fixed end points.

The ray perturbation theory of Snieder and Sambridge®
is based on ray-centered coordinates. In this formulation two
mutually orthogonal unit vectors g, and g, are defined that
are perpendicular to the reference ray. This means that the
system (t,d, ,0,) is used as an orthonormal basis to describe
the ray perturbation. As shown in Ref. 8, one is still free to
define the rotation of the unit vectors q,; and {, around the
reference ray. Since expression (61) in Ref. 8 for the second-
order travel time perturbation does not depend on this rate of
rotation, the rate of rotation is set equal to zero, i.e., in the
notation of Ref. 8 it is used that {1=0.

Any vector v can be decomposed into a component
along the reference ray and a perpendicular component v

v=v—1t,(tyv). (10)
Using this notation one can rewrite expression {9b) by de-
composing V7, as

. dT, n
VT =ty — + VT =ut,+V°T,, (11)

plies that
(12)

(13)

serturbation of
srder change in
mess perturba-

& second-order
perturbation of
ion (3):
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r=ryter, eyt (14)

In order to establish the relation with these perturbations
schemes, the relation between the ray perturbation and the
perturbation of the eikonal is needed. According to expres-
sion (2) one needs to evaluate the derivative dr/ds. The unit
vector along the unperturbed ray is given by dry/ds,; hence

to=dry/ds,. (15)

As pointed out by Snieder and Sambridge,'” when deriving
the perturbation in the ray position it is crucial to account for
the fact that the arclength s, along the reference ray and the
arclength s along the perturbed ray are different. This should
be accounted for when taking the derivatives d/ds and
d/dsg. The increment ds can 10 first order be found from the
relation
ds= Jdr-dr={dry-dro+2e dry-dr,)'"?
( dry dr, ] 172
= +2e E d_.S'o d

where (14) has been used to expand dr. From this relation it
follows that to first order in e,

l+€t0 ds )dSQ, (16)

dsq (I+ n d’rl)'l (] " drl)
E‘ ft(}‘ d.l'o - €t0' dSO '
To first order the derivatives with respect to these quantities
are thus related by

d aSO d

= 52— =(

ds  ds dsg

(17)

.. d
l“é(to'l'a))a- (18)

In this paper the derivative with respect to the arclength
along the unperturbed ray is denoted with a dot, e.g.,
F=dFlds,. By combining {14) and (18) one obtains

dr ]
— =ty +e(r,—

ds (19)

elotlo-1))=1o+ ety
It is shown in Appendix A that

1
=— VPTl .

4o (20)

This expression can be used to rewrite the second-order per-
turbation (13) of the eikonal as

-1 -1
T2=—f (i‘f-VPTl)ds(,:—J (i'l'vPTl)dSo,
2 Jy 2
21

where it is used in the last identity that the component of I,
paraliei to to has a vanishing projection on V7T,. Using an
integration by parts and exploiting that the end points of the
ray are assumed to be fixed (r;=0 at the end points), this
expression can be rewritten as

1
T ='2" Jro(rl d 0 V TI)dSO

No choice has been made yet for a coordinate system. In
order to establish the relation with the second-order travel
time perturbation in Ref. 8, expression (22) is projected in
ray-centered coordinates. Any vector perpendicular to the

(22)
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reference ray can be expanded in the unit vectors §, and q,:

2
:2 ‘:li(“lf"’)-

(23)

In ray-centered coordinates, the ray perturbation is by defi-
nition perpendicular to the reference ray

2
l'|=t_:21 g

the components ¢, and g, therefore describe the ray pertur-
bation. It is shown in Appendix B that in this coordinate
system

{24)

d 2 |
d vPTi _0 2 (ql vuﬂ)(qr VT )t0+u0vp( D)
(25)

When this result is inserted in (22), the first term on the
right- hand side of (25) does not contribute because of (24)
since 1, is perpendicular to §; . This leads to

! 3]
T2:'2’ J'rouorl‘vp(a)db'(). (26)
With (24) this gives
T2 2 z j uOQan ( [)dJO- (27)
Uy

This expression is identical to Eq. (61) of Snieder and
Sambridge® for the second-order travel time perturbation for
the case of fixed end points. This implies that the first- and
second-order perturbations for the eikonal derived in Sec. |
are identical to the previously derived expressions for the
first- and second-order travel time perturbations. However,
note that the theory of Sec. I can be used to compute the
travel time perturbation to arbitrary order. The results of Sec.
I are thus a higher-order generalization of the second-order
perturbation theory of Snieder and Sambridge.® One should
note that it is much simpler to use Eq. (9b) for the second-
order travel time perturbation than Eq. (26) because in Eq.
(9b) the perturbation of the ray location (r,=2q,q,} is not
needed,

lil. A BENDING EQUATION FOR THE EIKONAL

In the previous sections the slowness was perturbed, and
it was assumed that the reference eikonal satisfied the eiko-
nal equation {5a) for the reference slowness. This approach is
similar to the one used in ray perturbation theory, e.g., Refs.
1-8. Independently, ray bending was developed.'* """ In this
approach the slowness is fixed, but the initial ray estimate
does not satisfy the equation of kinematic ray tracing for the
employed slowness. Using first-order perturbation theory one
then iteratively updates the ray estimate until the ray estimate
satisfies the equation of kinematic ray tracing within a pre-
scribed tolerance. A similar algorithm is presented in this
section for the eikonal. Analogous to the bending methods
described above, the idea is to start with an estimate T(r) of
the eikonal that does not necessarily satisfy the eikonal equa-
tion. An update €7 ,(r) is derived so that the new eikonal
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Toow =Tyt €7 satisfies the eikonal equation to first order.
Although this constitutes a simple linear problem for the
update T, this does in general not lead to the true eikonal
since the new eikonal T, need not satisfy the eikonal equa-
tion to higher order. However, this procedure can be repeated
by taking the new eikonal T, as a starting point for the next
update. This can be repeated until the estimate of the eikonal
satisties the eikonal equation with a prescribed tolerance.

Assume that the slowness ¥ is fixed and that the refer-
ence eikonal T,(r) does not satisfy the eikonal equation. Let
the extent to which T,(r) violates the eikonal equation be
given by

u’(r)—|VTo(r)|?=2euir)F(r). (28)

The factor 2u(r) is inserted for further notational conve-
nience. Note that it is tacitly assumed here that the extent to
which T,(r) violates the eikonal equation is sufficiently small
50 that it can be used as a starting point for a perturbation
analysis. The term F(r) in the right-hand side plays the same
role as the term R, in Refs. 9 and 10 which measures to what
extent the reference ray violates the equation of kinematic
ray tracing in the reference medium.

Inserting (28) and the perturbation series {4) for the ei-
konal in the eikonal equation (1), one obtains for the Of(e)
contribution the following expression:

(VT VT,)=uF. (29)

It can be seen from (28) that |VTy|2=u’+ O(¢), hence to
leading order (7) can be used in (29). This gives

lef F(rU)dso. (30)
o
This implies that one can obtain an update for the eikonal
using the simple integration (30) along the reference rays.
The new eikonal estimate is given by a simple addition:
T,ew=Ty+ €T,. Taking T, as the new estimate of the ei-
konal one can use Eqs. (29) and (27) recursively to itera-
tively update the eikonal in the same fashion as the ray po-
sitions are updated in bending equations for the ray
e 1417
position.

IV. CONCLUSIONS

The results of Sec. I show that one can derive perturba-
tion equations for the eikonal, and hence for the travel time,
in a relatively simple fashion to arbitrary order. In general,
the following two questions arise for perturbation problems.
First, is the perturbation problem regular? Second, to what
order must the perturbations be computed? Concerning the
first problem, one must be aware of the fact that the pertur-
bation problem of the eikonal is not reguiar when multipath-
ing occurs. Suppose that in the unperturbed problem a single
ray arrives at a given receiver, and that when the slowness
perturbation is taken into account multiple rays armve at a
receiver; the slowness perturbation then induces muitipath-
ing. This implies that under such a perturbation a single-
valued solution of the eikonal equation is perturbed to a
multiple-valued solution. Since regular perturbation theory
always leads to a single-valued result, it follows that when
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multipathing is induced by the slowness perturbation, the
regular perturbation theory of this paper should be replaced
by a formulation based on singular perturbation theory. In
case the perturbation problem is indeed regular, the question
of how many terms of the perturbation series (4) must be
taken into account to achieve a prescribed accuracy arises. It
is difficult to make general statements about the required
order of perturbation theory. However, increasing the
strength of the slowness perturbation, decreasing the length
scale of the slowness perturbation, and increasing the path
length will all render the perturbation problem more nonlin-
ear. The reason is that all these effects lead to an increased
ray bending, and hence to stronger nonlinear travel time
perturbations,.8 The theory is therefore most suited for appli-
cations in which the travel time perturbation is only mildly
nonlinear. This is, for example, the case in geophysical travel
time tomography.”’

The simplicity of the derivation of Sec. I for the travel
time perturbation is in sharp contrast with earlier expressions
for the second-order travel time ]:»erturbaticm.g‘10 There is a
simple reason why the approach of this paper leads to the
travel time perturbations in a much simpler way than in pre-
vious derivations. The reason is that in Refs. 8—10 a pertur-
bation theory was first developed for the ray position. From
this, the perturbation of the travel time integral was com-
puted by integrating the slowness along the perturbed ray.
This implies that in Refs. 8—10 the perturbation of the ray
position is needed for computing the second-order travel
time perturbation. Our derivation avoids this tortuous route
by using the eikonal equation directly. Since the eikonal is
the travel time, this implies that the perturbation of the travel
time is derived without using the ray position at any point in
the derivation, This approach has the additional advantage
that ambiguities in the mapping from the unperturbed ray to
the perturbed ray are avoided.!? In addition, the theory of
Sec. I extends the second-order perturbation theory for the
travel times of Refs. 8—10 to any arbitrary higher order.
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APPENDIX A: DERIVATION OF EQ. (20)

In order to establish the relation between the perturba-
tion of the eikonal and the perturbation of the ray position,
Eq. (2) is needed. This expression is evaluated at a fixed
location r. From {3} one finds, using a Taylor expansion, that
to first order

1 1 [1 € ()l Al
= - wlryt.
ul(ry ug(r) ug(r) 1 (A1)
Similarly, it follows from (4) that
VT(r)=VTy{r)+eVT(r). (A2)
R. Snieder and D. Aldridge: Perturbation theory for travel times 1568



Using Egs. 16) and (11) this expression can be written as

VTir)=ugly+ eluty + VT (A3)

Inserting (A1), (A3), and (19} in {2) gives, after cancellation
of terms,

. . ” €
tﬂ+erf:t0+u—v”7‘.< (Ad)
0

The order € contribution of this expression is given by (20),

APPENDIX B: DERIVATION OF EQ. (25)

In order to determine the derivative of V*T, along the
reference ray one needs to expand this quantity in ray-
centered coordinates. Following (23) this gives

viT, =Z] q(q,-VT)). (B1)
When the derivative of this expression along the reference
ray is taken one needs to account for the fact that the unit
vectors q; are not constant along the reference ray. Equation
{43} of Snieder and Sambridge® for the special case Q=0
gives the change of the unit vectors q, along the reference
ray:

x -1 ~

Q;=— (@ Vug)ty. (B2)

Ho
Using this result and (8a) to eliminate 47 /ds, one obtains

d -1 :
Pr o~ 6.V a.-V7T 1
dsq v'r, g 24[ {q;-Vuoq:- VT )t

|« . . A
== 2 (@ Vug) (b VT
0 i=1

2

'*'21 q(q;-Vu,). (B3)

In the second term on the right-hand side one can use with
(8a) that (t,- VT ,)=dT /dsy=u,. This leads to

d —1 g

—_— P _— A‘- A.- t

zos VITi= 0 2 (@ Vuo)@ VT
2

-~ ~ u -~ i
*; q; (Qi'vui)*u—;(qg"vuo) . (B4)

Using (23) the last terms can be rewritten as
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> 4l 4 PP .* P i ge
“ q,(_(qi-Vul)‘u—ﬂ(qt..Vuﬂ))vV ul_u_ov ug
o

zuovP (BS)
L Uy

Inserting this result in (B4) one arrives at the desired expres-
sion (25}.
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