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1. Elasticity Theory and the Seismic Equation of Motion

1.1 Vector versus Indicial Notation

There are a variety of notations commonly used to represent vectors and tensors in Cartesian
coordinates. We will try to be consistent and use indicial notation, but will probably fail. In any
event, you need to be aware of the existence of the various notations and how they are related.
Table t attempts to provide such a comparison.

We will represent the unit vectors in the 1, 2, and 3 or x, y, and z directions usually with either
the triple (#,,%,.73) or (%.4, ). In indicial notation, a vector is represented as a variable with a
single subscript: e.g.. 7;. In vector notation, | represent a vector as a bold-faced variable: e.g., X.
Matrices are represented usually with capital letters with two indices, Ay, or as a capital letter
in bold face, A. There are a couple of problems with vector notation. The first is that it does
not easily discriminate between second order and higher order tensors. For example. we will be
using the Levi-Civita symbol, ¢;;,, which is a 3rd order tensor and the strain tensor, ¢,;. which is a
2nd order tensor. They denote very different things. Sometimes you might see a single line under
vectors, or a double line under matrices, a triple line under 3rd order tensors, etc; or replacing the
lines with arrows above the letter, I don’t do that since it's too hard to text edit. but do resort
to that notation sometimes in long hand. The second problem is that bold-faced Greek letters are
hard to tell from non-bold faced Greek letters. For example, the stress tensor, a 2nd order tensor,
in vector notation is denoted as ¢ and the standard deviation is a scalar. o.

Finally, recall the Einstein summation Convention (ESC): repeated indices denote summation.
Thus, the dot product between two vectors x -y is z;y; which is just 37, z;:. The sum goes over the
dimensionality of the space considered. In our case that will almost always be 3. Recall also that a
comma denotes differentiation with respect to the following index. For example, the gradient of the
scalar variable ¢, V¢. is written ¢, and the divergence of a vector variable u, V - u. as wu,,;. This
1s pretty confusing. I think. and [ will usnally write the gradient as either d¢/dz; or d;¢ and the
divergence as du;/dz; or J;iu;. In the latter case the ESC is still invoked. Please review this and

the contents of Table 1 and make sure you are comfortable with it.



Table 1. Vector vs. Indicial Notation

I

A

AT

Axor A-xor 3 AjT;
(Ax)T = xTAT

xT Ax

AB=A'B

A:B

Vu

(Vu)? = uTV7

Viu=V(V-u)—(VxVxu)

by

Ay

Ajs

Ay

A

A 175

Aij By

Ay B,;

u;j = Ojuy = Oug/07;
u;; = Ojug = Onu; [0,

a_bh
Ty Or 6_,-8,-37,- or 8—1_;5'::'

Vector Indicinl Descriplion

u Uy vector

luf? TR magnitude of a vector
u-v TPOR dot product

uv ;05 dyadic tensor

V¢ or grad ¢ ¢ or ;¢ or 0¢/0x; gradient

V- -uordivu i, or Giu, or duif0r; divergence

V2¢ =V . (V¢) or divgrad ¢ | ¢ or 34 or 8%¢/dx;0x, | laplacian

identity matrix

matrix

matrix transpose

matrix - vector product

transpose of matrix - vector product
guadratic form

matrix - matrix product

2nd order tensor - tensor contraction
related to strain tensor. see egn. (1).
transpose of tensor in eqn. (1).

laplacian of a vector

In Table 1, the row related to the strain tensor Vu can be

This is, itself, a dyad.

1.2 Tensors

Sy By By
dz; Or3 81

Vu 8z 8rq  Ox3

Buy g B

written in matrix form as:

We will be considering equations that contain mathematical objects called fensors. First, what’s a

tensor? That’s a tough question to answer succinctly. A first-order tensor is just a vector. There

are several ways to define vectors. One is to present a list of properties that define a vector field,

and state that a vector is a member of a vector field. Another is to specify how vectors transform




under coordinate transformations. The latter is the way one usnally sees tensors defined, and we
will follow it here. More rigorous treatments of tensors follow the first type of defirition, however.

One property of vectors is that they transform in a certain way under rotation. If M is an
orthogonal (i.e., rotation) matrix, then x is a vector if and only if when operated on by M another

vector x' emerges:
x' = Mx. (2)

In discussions of tensors, equation (2) is in fact the definitive property of first-order tensors, or
vectors. ‘Tensors are objects that transform under coordinate transformations in certain ways. Why
are they important in physics? Well, the way they transform means that their effect is independent
of the coordinate system used to represent them. One wouldn’t want to use mathematical objects
that give different answers in Cartesian and spherical coordinates, say, or if you choose z positive up
or positive down. But, this operational definition of tensors is precisely what makes them difficult
for most people to get their brains around. A more rigorons definition, and one which is more
rewarding in the long one, involves defining tensors as certain multi-linear operators. 1 will leave it
to you to look up this definition in advanced linear algebra texts.

Moving forward with the operational definition of tensors, higher rank tensors are built from
lower rank tensors. and like first-rank tensors are defined by their ‘transformation properties’. For
example, a representation theorem states that all second rank tensors can be represented as the

outer product of a pair of vectors, as follows:
’T,‘j = A,‘ Bj, (3)

where T} is a tensor and A; and B; are vectors. Thus, every second rank tensor can be represented as
a dyad. in this case T = AB7. The order of the dyad is important because in general ABT # BAT.
The components of T}; transform when the coordinate system is rotated in a way following from

equation (2):

T = MTM" (4)
e Ty o= Y MyMyTa. (5)
ki

Any object that transforms like equations (4) and (5) is a second-rank tensor. For example, the
Kronecker delta, d;;, is a tensor, it is defined to equal 1 when i = j and 0 otherwise in all coordinate

systems. To see this, insert I in equation (4) to get:

I'=MIM! = MMT =1 (6)



Tensors of third and higher rank are defined by an obvious extension of the definition for rank

2. A tensor of rank n can be defined as a set of n outer products of vectors:
ﬂj...l = A'BJ e Gg. (7)

This is frequently called a polyad - for third-order tensors, it is a triad. The nth-order tensor T is
a tensor if it transforms as follows:
71:1_1 = Z MMy My T p (8)
TG
For example, consider the Levi-Civita symbol, €, defined as

1 if ijk= 123,231,312 |

e =4 —1 if ijk = 321,213,132 ;. (9)

0 otherwise

For €« to be a tensor, it must satisfy (9) in all coordinate systems. Applying equation (8):

djk = zMﬂMijanmn (10)
Imn
= det{M)eijr = €iji, (11)

where we have used the fact that the determinant of an orthogonal or rotation matrix is unity.
Thus, the Levi-Civita symbol is a third-order tensor.
Tensors can operate on other tensors. In doing so, if there are repeated indices, contraction

occurs. For example, consider the following operations:

Tije = Mimy (12)

1

The second equation represents a second order - first order tensor product, ‘contracting’ the two

tensor components resnlts in a vector.

1.3 Stress

There are two types of forces we wish to consider acting on parcels of material through which seismic
waves propagate. The first are body forces which are proportional to the volume over which the

force acts. An example is gravity. The second is surface or contact forces which are proportional to



the surface over which the forces acts. These forces are best expressed as a ratio of force per unit
area and are known as stresses. Expressed as such, they are of greatest interest in seismology.

A word or two about units. The SI snit of pressures and stresses are the Pascal, 1 Pa = 1 N/m?.
More commonly you run into the following units: 1 atm = 1 bar = 10° N/m? = 0.1 MPa. 1 kbar
= 10* MPa. If density near the earth’s surface is about 3.3 x10* kg/m?, then confining pressure
at a depth z near the earth’s surface is approximately equivalent to pgz which is about 1 kbar at
3 krn. This yields a useful rule of thumb, the change in confining pressure with depth is about 1
kbar/3 km. Thus, the confining pressure at the Moho (= 30 km) is about 10 kbar =~ 1 GPa, a
useful number to remember. More accurate estimates of the confining pressure at a depth z can be

estimated by doing the following integral:
P) = [ g()p()dz" (14)
0

1.3a Stress Tensor

Consider a force AF acting on each point within a body as shown in Figure 1. If the body is sliced
open and the normal direction fi is the 1-direction, then the small force, AF. acting on each point

in the body is
AF = ﬂF].’.?Il + AFQ.’?‘Z + AF;;.’T’I;;. (15)

The force AF) acts normal to the slice and AF; and AF;y act in the plane of the slice.
The stress or traction vector is given by:

AF,, AF,. AF;,
Allxl + A|2x2+ A:Xa (16)

= onXy + 05Xz + 013X3. (17)

T|=

Slicing the body perpendicular to the 2- and 3-directions similarly yields 03;, 029, 033, 031, O32, F3a.

These nine components of the three traction vectors. T, T, and T4 for the stress tensor:

O 012 O3
=10y O O3 |- (18)

Oy OU32 O3
The diagonal components of the stress tensor constitute the normal stresses. Positive normal
stresses mean tension and negative normal stresses mean compression, generally, Off-diagonal
components represent shear stresses. The non-hydrostatic or deviatoric stress tensor is usunally

defined as the stress teiisor minus confining pressure: D;; = 0y — Pé,;.
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1.3b Equilibrium Conditions

A parcel of material is said to be in ‘equilibrium’ when two conditions are met:

e The net force on the parcel is zero. (Translational Equilibrium)

e The net torque on the parcel is zero. (Rotational Equilibrinm)

These conditions derive from the conservation of linear and angnlar momentum, respectively. If
a material is in equilibrium, the time rate of change of the linear and angular momenta are zero.
Since the time rate of change of these momenta are simply force and torque (p = F; L= 7), the
net sum of the forces and torques must be zero if the material is in equilibrium.

Consider the parcel of material shown in Figure 2, and concentrate first on two forces acting in
the 1-direction. Each face has a force-couple, either composed of forces normal or tangential to the

face, in the 1-direction. Then the sum of the forces acting in the 1-direction is:

day doy doy,
0 = g F]i = F1 = (?a-—’;—l-) A.’EQA-T:; + (6—12—) AI;A.’L‘;; + (‘“5‘;) AI]A.’]’IQ (19)
301] 302] 60'31
6.7.'1 + 6.’1’32 + 5]’.‘3 (20)
30‘_,-1
. (21)
= (V-0),. (22)

Thus, in general F; = (V - 0),, and since I F; = 0 by the first of the equilibrinm conditions:
V-o=10. (23)

Equation (23) is called the translational equilibrium condition. If it is satisfied for a parcel of
material, no net forces are acting on that parcel, thus no translational motion will occur.

Note that the divergence of the stress tensor is a force per unit volume.

1.3¢ Symmetry of the Stress Tensor

Now, let's use the second of the equilibrinm conditions, the condition for rotational equilibrium.
Consider Figure 3. Note that the shear stresses produce rotations. A moment, or a component of
torque, is stress x lever arm x area.

Remark 1: The stress tensor ¢ is symmetric.



Proof: Consider the rotation of the rectangnlar unit of material in Figure 3 subjected to the four
stresses listed in the figure. Let positive torque produce counter-clockwise rotation and negative
torque produce clockwise rotation. For equilibrium to rule. the torques resulting from the four

stresses must sum to zero:

: T , Ar
0=1{203 + aguArnl Az, AryAzy — | 209, + -@Amg —-f-l-A:rlAmg, (24)
(3.7?] 2 6332 2
which means that
o
20’12 + @—EA?’] = 2021 + k3 ATZ (25)
(9.7:; 6372
In the limit, Az, Az, — 0,
G2 = 0O2;. (26)

Replacing the indices (1,2) everywhere with (ij), generalizes the argument, so we have shown that

the stress tensor is symmetric:

ol =a. (27)

1.3d Principal Stresses and Axes

Since the stress tensor is symmetric, it eigenvalues are real and its eigenvectors are orthogonal to

one another:
o = UdUT (28)
o = UleU (29)
The matrix ¢’ is diagonal, and contains what are known as the principal stresses. The matrix U,
composed of the eigenvectors of o, is an orthogonal matrix, which means it is simply a rotation
matrix and rotates o into a coordinate system in which the stresses are all normal stresses — i.e.,

are diagonal only, there are no shear stresses. The columns of U define the principal coordinate

directions.

1.4 Equation of Motion: Preamble

The equation of motion is simply Newton’s 2nd Law, ma = mx = . but where both sides have

been divided by volume so that mass — density, force — force density. We also want to add to
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the right hand side the expression that we found in Section 1.2b to be a force density (V - o), the

divergence of the stress tensor. In this form the equation of motion is given by:
pi=f+V. g, (30)

where u now is vector displacement and f is an applied body force like an earthquake, gravity, etc.

Equation (30) is not in the form that we desire. In fact, stresses within a material result from
displacements. The stresses represent the material’s attempt to restore equilibrium. Since o resuits
from u, we would like to somehow replace ¢ in equation (30) with some function of u to create a

PDE in u alone. We will do this in two steps:

e Step 1. The sirain-displacement relation: ¢y = %(%} + a%if).

e Step 2. The stress-sirain relation: oy; = cijucn. (Generalized Hooke's Law)

Combining the results from these two steps allows us to relate stress to displacement and rewrite
equation (30) in the desired form. Along the way we will need to introduce and discuss the sirain

tensor, €y, and the elastic tensor, c;ju. These relations will be used Section 1.8 to derive the

equation of motion including gravity.

1.5 Strain, Stress-Strain, and Strain-Displacement
1.5a Internal Deformations and the Strain-Displacement Relation

Consider two nearby points in a material, P and Q, which, prior to deformation, are separated by a
vector 3. Let z; and z + y, represent the initial locations of these two points, respectively. Subject
the medinm to a deformation ; at point P and u; + (Jn;/0r;)y; at the nearby point Q. After the
deformation but before the response of the material to the deformation, points P and Q at z; + w;

and (z; + i) + (4 + Oui/07;)y; (ESC), respectively. The following summarizes this state of affairs:

Point | Before Deformalion After Deformation
P Zy Zi+ g
Q Zi t ¥ (z| + y,) + (11.,' + 31zi/8.rj)yj

The change in the distance between points P and Q caused by the deformation is prescribed

by the tensor du;/8r;. Any tensor can be represented as a sum of symmetric and anit-symmetric



tensors:

?i =  Symmetric Part + Anti-Symmetric Part (31)
T
= &5 — & (32)
1 {On; Oy 1 {ou O
- el B e A
2 ((3.171 + 3.1:_,) 2 (8.1:,— am,-) (33)

The point of rewriting du,/9x, in this way is that the symmetric part. ¢;;. represents the internal
deformation and the anti-symmetric part, £;;, represents a rigid body rotation as proven in Section
1.5b. We are interested in internal deformations. not rigid body rotations and can. therefore, ignore
&ij-

Internal deformations are represented by the symmetric part of Ou,/dx,,, which is just the strain
tensor:

Lo Lfom Oy
& =3 (amj +8xf)' (34)

This equation is a statement of the strain-displacement relation.

1.5b &;; is a Rigid Body Rotation

Remark 2: The anti-symmetric tensor £ represents a rigid body rotation.
Proof: Consider a pair of elements of £, £33 and &, and the deformation ¥ that results from them

relative to point P:

= ¥ — X — EnlXs (35)

el

= ¥ — fayaxe + SayaXa, (36)

where the second equality follows by the anti-symmetry of £ (£33 = ~&3). For y and ¥ to be related
by a rotation, they should be of the same length. The change in length squared is just:

P =171 = (F+v+ud) - (yf + (2~ Enta)? + (v + {233}2)2) (37)
= 04 O%) ~0 to first order. (38)

Thus, the deformation produced by &2; and 3, does not change the distance between points P and

Q.
If the initial angle in the 2-3 plane (see Figure 4) between the 2-axis and the vector, y, linking

P and Q is #, then # = tan~!(y3/y2) = tan !(q), where ¢ = y3/y2. The tangent of the new angle.
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¢, after deformation is:

vntént, _ g+&ém
y2 — €anys 1 — gy
g = tan! (q +(1+ (12)523) 2 8 + Eaa, (40)

tanf = ~g+&a)(1+gbn)=g+(1+ 42)523-, (39)

where we retain only first order terms and the latter equality follows by Taylor expanding the tan !

since 1 >> (14 ¢*)&y;. Therefore, £y is the angle of rotation, and the proof is complete.

1.5¢c Geometrical Interpretation of the Strain Tensor

The diagonal elements of ¢ produce length changes in the coordinate directions. The relative volu-
metric change (AV/V}) is given by the eubic dilatation: © = ¢; {(ESC). The ofl-diagonal elements
produce internal rotations which characterize internal deformation. These rotations represent the

change in internal angles linking points in the medinm.

1.5d Stress-Strain Relation

Probably the greatest difference between doing seismology in greater than 1D as opposed to 1D, is
that applied forces or stresses produce displacements or strains in directions other than the direction
of the applied force. This relation between stress and strain in 3D then, has to be generalized to
allow for the response of the medium in arbitrary directions. Similarly, deformations or strains
produce stresses in directions other than the strains have been applied.

In 1D, the stress-strain relation for small displacements was simply Hooke's Law:
F = kxz, (41)
as in Figure 5. In 3D, Hooke’s Law is generalized and stresses are some function of all the strains:
aij = Fijlen, €12, ..., €3a). (42)

The assumption is that there is an analytical 1-1 relationship between o and ¢, and as € — 0, o — 0.

Expanding F;; in a Taylor Series in ¢y in equation (42) and retaining only linear terms yields:
Tij = Cijhl€kl- (43)

rijxt is a fourth order tensor, related to the derive of Fj; with respect to ¢, and analogous to
the spring constant in equation (41). It is a constant at each point in space, but may differ from

place to piace. Equation (43) is, therefore. a straightforward generalization of Hooke’s Law. The

11



tensor ¢;; is called the elastic tensor. and represents how the medium responds to deformation.
The response of the medium to deformation is the reason why seismic waves prepagate.
Recall that for Hooke's Law the displacement potential energy or work is kz?/2. Similarly, the

strain energy is simply a quadratic function of ¢;;:

l
W = o CiaktEisEnt. (44)

1.6 The Elastic Tensor, Isotropy, and the Lame Parameters

The total number of elements in ¢ is 3! = 81. Symmetries in the stress - strain equation (eq.
(43)) can be used to reduce the nmber of independent elements of ¢, Note that equation (44) is

not altered if we simply relabel 7 as j and j as 7 in ¢y
1
U = Ecjiklfijfkl- (45)

Or Ciji = Cjie- Similarly, by flipping &k and [, i = ciji. In this way, we reduce the number of
independent pairs of (z,7) from 9 to 6, and hence the number independent elements of ¢, from
9? = §1 to 6% = 36. Alternately, we could have argued for this reduction from the symmetries in
oy and then €y in equation (43).

Further consideration of the strain-energy function and the stress-strain relation reveals that:

1

W = o Ciskt€Ri€is (46)
1

2 Jis€ij (47)
1

T ek (48)

= Eckﬁjfijfkl-. (49)

OF Cijkit = Ciiij. This reduces the number of independent elements from 36 to 21. For a general
anisotropic material on 21 of the 81 individual elements are independent: there are 21 elastic moduli!
Without proof we will note that in a transversely isotropic material. the number of independent.
elements reduces to 5.

In an isotropic medium, the number of independent elements is only 2. These two elements are

called the Lame parameters, usually referred to as A and g In this case:

Cijit = A0kt + {00y + dirdsi ). (50)

12



Substituting this expression for the elastic tensor in an isotropic meditm into the stress-strain

relation:
Tij =  Cijkt€t (51)
= {/\5;‘;5.&1 + p(diebs + 8ubje)] cut (52)
= Aewby; + ple; + €5) (53)
= ey + 2pue (54)
= XOd;; + 2ueis, (55)

where O is cubic dilatation. This is Hooke’s Law for an isotropic material.
First, note in passing that a Poisson solid is a material in which A = u. In this case, o;; =

,\(96.-,- + 26.‘j) .

1.7 Other Moduli for Isotropic Solids

Let’s start by considering what g is. By equation (55):

Ty

i # g, (56)

H= 26,’,‘

This modulus is seen to be related to the stress required to produce a unit shear (i # j) strain, and
is, therefore, called the shear modulus. It represents resistance to shear. For many earth materials,
at STP the shear modulns is about 200 kbars. Beyond this point, most terrestrial materials suffer
shear failure — they break.

The modulus A has no such simple interpretation and is usnally replaced by another modulus,

the compressional modulus or bultk modulus, k, which represents the resistance to compression:

K,71 = _-.l ..(?‘_/. . (57)
V\oP/,
where the subscript § means that the partial derivative is taken at constant entropy. So defined,
2
K= X+ :-3' L. (58)

Substituting equation (58) into equation (55) produces the stress-strain relation in terms of x and
i.
As we will sce in the next section, the equation of motion for an isotropic solid involves waves

propagating at two characteristic speeds, the compressional or P-wave velocity (v, or o) and the

13



shear or S-wave velocity (v, or 3). In terms of these moduli:

v;" - ! (59)
. p
) A+ 2 2
R L (60)
p p

Another modulus commonly encountered is Young’s modulus, E . which is defined as the ratio

of uniaxial stress and strain:

on {32+ 2u) .
E|=—=2" 27 61
L= o (61)

Finally, Poisson’s ration, p, is another modulus you might run into. It is defined as the ratio of
the radial and axial strains under a uniaxial stress as depicted in Figure 6. That is, if o1, £ 0 but

J22 = 033 = 0, then

y o (62)
A
= o < 5. (63)

For crustal rocks, v normally runs between about .24 and .32, although values as low a .22 and as
high as .35 have been measured for some rocks. Average crustal values are about .27 - 28. For a
Poisson solid (A = u), » = .25. You can see then, that a Poisson solid is not too bad of a Oth-order
approximation for crustal rocks. From equation (60), v, = v/3u, for a Poisson solid. If an idealized

material possesses infinite shear resistance, v = 0.

1.8 Derivation of the Equation of Motion

From Sections 1.1 - 1.7 we have compiled the following information:

pi = V-g+f General Equation of Motion, (64)
€ = % (Vu + uTVT) Strain - Displacement Relation, (65)
Oij = Cijki€xt General Hooke's Law {Stress - Strain), (66)
Cijet = Abiid + p(dudy + 646;) Elastic Tensor (Isotropic Solid), (67)
gij = ABby + 2pue, Hooke’s Law (Isotropic Solid). (68)

The vector u is displacement, overdot represents a time derivative. o is the second-order stress
tensor, € is the second order strain tensor, ¢ is the fourth-order elastic tensor, A and g are the Lame

parameters, and

Hzekk:‘—:V'u (69)



is enbical dilatation.
We want to eliminate o from equation {64). In doing this we will concentrate on isotropic solids
and use the stress-strain and strain-displacement relations given by equations (68) and (65). After

doing this we will consider the effect of gravitational body forces on the equation of motion.

1.8.1 Elastic Terms (V o)
We want to take the divergence of o. For simplicity, consider only the first component of the vector
V- o

301] 30'12 60']3
dr, Or, O13’

(V-o), =

a [Ou, Ouy Ouy a8 [du 8 (0w Ous g {ou,
= A— [ 424+ 2 — = SR (et AR e —
o1, (3371 t o1, + 6.1:3) +2"6m1 (3:5]) +u8::2 (33:2 + oz +'u6:r:_q (8:1:_—, + 5&?9)

0 (Gn O B\ (Fu P P
- To, Hoz, \Bx, " 0m; Oy dr? = or: Ok
— a9 2

= (/\+M}3I1+ﬂ(v u);.

In deriving equation (71) we have used equations (68) and (69) and for simplicity have assumed that
A and g do not vary with position so that they come outside of the derivative. We will add terms
in the gradient of the elastic moduli back into the equations of motion later. In deriving equation
(72) we have merely rearranged terms. In deriving equation (73) we have used the definition of the

Laplacian and equation (69). The same procedure can be gone through for the 2- and 3- components

and we get

V.-o={A+p)V(V-u)+uViy, (74)

where we have rewritten # using equation (69).

It is useful to modify equation (74) by using the vector identity
Viu=V(V-u)—(V xV xu). ' (75)
With this identity, equation (74) can be rewritten as
Voea=0M+2u)V(V-u) - u(VxV xu), (76)
so that the equation of motion becomes
pi=Ff4+(A+2u)V(V-u) - p(VxVxu) Homogeneous Media, (77)
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Without specifying body forces, this is the final form of the equation of motion for a hornogeneous
body, i.e. if the elastic moduli are constant. If the elastic moduli vary spatially then, if the right-
hand-side of equation (77) is represented as H(u, A, i), the appropriate equation would be:

pu=f+H(u X p)+ VAV -u)+Vyu- (Vu + uTVT) Inhomogeneous Media, (78)

where we have simply added gradient terms in the elastic moduli.

1.8.2 Gravitational Body Forces (f)

When seismic disturbances propagate through a region, they compress and displace material. These
disturbances {1) perturb the local density field which modifies the acceleration of gravity at the
surface and (2} perturb convective equilibrium by bringing material to new non-equilibrinm radial
levels which induces a buoyancy restoring force. Both of these effects introduce gravitational body
forces into the equation of motion. Density perturbations resulting from seismic compressions lead
to self-gravitational terms in the equation of motion. Radial seismic displacements lead to buoyancy
terms. We will derive the forms of both kinds of terms in the equation of motion here.

Gravity

Consider the force of gravity. f(r), at a radius r in the Earth:

f(r) = plr)g(r) = —p(r)Ve(r). (79)
glr) = —Ve(r). (80)
where ¢ is the graviatational potential:
_ p(r)
#(r) = —G[ . (81)

and G = 6.6732 x 10™"" Nm?/kg? is the universal gravitational constant.
Spherical Symmetry
Assume for the moment that the density distribution in the Earth is spherically symmetric; i.e..

p(r) = p(r) = py(r) and ¢(r) = ¢o(r). Then at rest, the equation of motion (64) becomes
PV =V -aq. (82)
Break spherically symmetric stress into hydrostatic., 7. and deviatoric, T, components:

oy = —Fl+T. (83)
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Over geological time, the Earth responds to deviatoric stresses by flowing and thereby reduces
equilibrium deviatoric stresses. They are, therefore, very small (| D;;] << Py), so that equation (83)

can be rewritten:
poVgy+ VF =0. (84)

This is the equilibrium condition with gravity. When we added gravity, the divergence of the stress
tensor was perturbed to no longer equal zero. This equation can be simplified further by noting
that if p(r) is spherically symmetric, then so will P(r) and ¢(r). Indeed, po, Po, and ¢y will be

constant on the same spherical surfaces. Then

VP = &8 Pf, (85)
g — "gnf‘ = —0,.¢of, (86)

although g4 = 8,¢p. Finally, then
pago + 0, Py =0, (87)

which is the final form of the equilibrium condition that we seek.
Poisson’s Equation

In relating density, gravity and pressure, we need, in addition to the equilibrium condition,

Poisson’s equation:

Vi¢ = 4rGp, (88)
1
0. (r"0,:60) = 4nGps, (89)
1 2
;_—53, (r2go) = (3, + ;) go = 4nGpy. (90)

Solving the final equation for gy yields:

iy (91)

Thus, given py we can use equation {91) to calculate g and then use the equilibrium conditions in

equation (87) to calculate Fy:
Po(r) = [ ool ygn(r)dr". (92)

Perturbations Caused by Seismic Motions
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Seismic motions perturb density and the gravitational potential. Let’s write these perturbations

as first-order perturbation expansions:

p(r.f.¢) = polr) + pi(r.0, ). {93)
¢(r.0.0) = do(r)+ d(r.0,0). (94)

where g, and ¢, are perturbations in density and the gravitational potential caused by seismic
disturbances. Note that the seismic disturbances will lift the spherical symmetry in density, gravity,

and pressure. Then
g = —Vo=-V(gg+ ). (95)

Substituting this perturbed expression for ¢ into equation equation (64) and using equations (79)
and (83) we get

(o+p)i = V-7 —V(B+ P).(pn+ )V (o + 61). (96)

Now, subtract the equilibrinm condition given by equation (84). drop piii since it’s second order in

small gnantities, and use equation (86) to get
P = V-7~ VP — gV, + poof. (97)

What we want to do to equation (97) is to eliminate the unknown perturbed guantities p, and
Fy and to replace them with the known quantities p, and go and the single unknown u.
Eliminating p,

Consider a volume V. Pass a seismic wave through the volume, and the mass in V changes:
Massin V = /v pdV = Equilibrinm Mass - Change in Mass due to Seismic Motion (98)
= f pdV — [ f [u - nds]. (99)
v v

- /vp(,dv—[vv-(pou)dv. (100)

where u - fids is the perturbed volume element and the final equation results from the Divergence

Theorem. From this follows:

P2 = po— V- (pyuy) (101)
= po—(u-Vpy+pV-u) (102)
= p+p. {103)
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Thus,
pr=u Vo +pV - {104)

Half way there.
Eliminating P,

Expand P in a Taylor Series in u:

P = Pb+VP-u+0(u-u) (105)
~ P,+VPh-u (106)
= Py—(paVén) - u (107)
= Py+ pogoli - u) (108)
= P+ P, (109)

where the middle two equations follow from equations (84) and (86), respectively. Thus,

1.8.3 Final Form of the Equation of Motion (V- & +f)

Finally, combining results from equations (77), (78), (97). (104), and {110}, the equation of motion

can be written in terms of known quantities and one unknown quantity, u

poit = £+ H(u, A, p)+I(u, A p)+ S(u, oo, 1) + B{u, pg, 90), (111)
H(u \p) = (A+2u)V(V-u)—p(VxVxu) Homogeneous Elastic, (112)
Hu A pu) = VAV u)+Vu- (Vu + uTVT) Inhomogeneons Elastic, (113)
S(u, po,#1) = —pmVé +(u Vpy+pV-u)gf  Self-Gravitation, (114)
B(u,pn,90) = —V(pogel - u) Buoyancy. (115)

where f now represents all body forces other than self-gravitation and buoyancy, and ¢, is given in

terms of known quantities by Poisson’s equation:
Vig, = —4nGp, = —-47G(u-Vpy+ peV - u). (116)

The coupled pair of equations (111) and (116) represent the result we want. Written as they
have been here the equations are not totally consistent in that the elastic moduli are allowed

unconstrained variations, but density has been constrained to vary only radially. Typically this is
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overcome by assuming that A and g are themselves spherically symmetric in the early stages of
the solution of these equations. The gradients of the elastic moduli then reduce to derives in r.
Such a model is spherically symmetric, nonrotating, elastic. and isotropic (SNREI). So modified,
and given py(r), Ag(r). and uq(r), equations (111) and (116) can then be solved simultaneously for
u(r, t) subject to the boundary conditions we will discuss in the next section. Asphericities in p, A,
and p are are then usually represented as expansions in the eigenfunctions of the SNREI model
and are then added as structural perturbations. This is exactly the same way as we dealt with
variations in wave speed in the perturbation theoretic treatment of the inhomogeneous string.
The reason why the expression S(u, oy, ¢1) is called self-gravitation is easy to see, it represents
forces that result from perturbations in density and the gravitational potential caused by volume
changes associated with seismic disturbances. The expression B(u, py. gq) is called buoyancy since

1t is a pressure gradient force (V P,) resulting from radial displacements of material (F - u).

1.9 Boundary Conditions

Elastic constants can change abruptly across an interface, therefore displacements and stresses
might as well. The equations of motion govern wave propagation on either side of an interface
and boundary conditions must match the sohitions at the boundary. Boundary conditions both on
displacement (kinematic conditions) and stress {dynamic conditions) must be introduced.
Kinematic Conditions

The condition on displacement is the following: media initially in contact must remain in contact
and not separate or interpenetrate. If a boundary is welded or locked, then in addition no slip can
occur along that boundary. Let u” and u® represent displacement on either side of an interface

d, then if &, is the normal to the interface:

B.C. 1: (All boundaries) The normal component of displacement is continnous across the boundary;

i.e. ll“) . fld = U(z) - Iy

B.C. 1": (Solid-Solid or other welded boundaries) Displacement is continuons across the boundary;

e, ul) = 4@,

Typically, in the Earth’s interior welded interfaces are assumed and B3.C. 1" is employed. At
the ocean-solid Earth interface and the the core-mantle boundary, B.C. 1 is normally used. It is
sometimes assumed that waves propagate in a layer over a rigid half-space, at this displacement

would then go to zero trapping all waves in the layer: u = 0.
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Dynamic Condifions
The internal force acting across an interface d is the surface integral of the difference in stresses

acting at the boundary:
f= /,: (v = +®) - figds. (117)

This internal body f{orce cannot lead to a net force on the whole body, so it must be equal to zero.

Hence, the integrand is zero and
. n, =70 . hy, (118)

the normal component of stress is continuous across the interface. The normal component of stress
is called traction and is commonly written as T(f,) = 7 - 0n,. At the free surface, it is normally
assumed that no stresses are imposed on the boundary from ontsiic {i.c, T("(h,;) = 0). The

dynamical boundary condition can, therefore, be written as follows:

B.C. 2: (All boundaries) Traction is continuous across the boundary; i.e., T (fy) = T® ().

B.C. 2’: (Free surface) Traction vanishes at the free surface; i.e., T{fi;) = 0.

1.10 The Wave Equation in 3D Homogeneous Media: P- and S-Waves

The equations of motion and bonndary conditions derived for a SNREI model form the foundation
for seismic wave propagation theory. Much of this class will be concerned with discussing solutions
to these equations. In this, the closing, section of these lecture notes, we will consider a particular
class of solutions known as body waves.

Wave equations can be obtained easily from the equation of motion for a homogeneous medinm
ignoring gravity by using Helmholtz's Theorem and introducing potential functions. Helmhboltz’s
Theorem states that any finite, continuous vector field u that vanishes at infinity can be represented
as the sum of the gradient of a scalar potential and the curl of a divergence-free vector potential.
Let's expand both u and f this way by introducing the scalar potentials ¢ and ¢ and the vector
potentials ¢ and ¥

u = Vé+Vxh (119)
f = VO+VxT. (120)

Substituting these potentials into equation (111) and dropping terms related to gravity and inho-
mogeneity yields:

0=V ((A+2)V2 + & — pp) + V x (V2 + ¥ — i), (121)
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where we have used the fact that curl grad and div curl are both Zero; e.g..

V x (V¢) = 0, (122)
V. (Vxy) = 0 (123)

The only way these functions can generally equal zero is if the terms in parentheses are themselves

separately zero:

a2v2¢+% = @, (124)
62v2¢+—‘f- = ¥, (125)
where
1/2 4. 3\ 1/2
0 = (A+2l—£) :(Pf*f‘a#) : (126)
p p
1/2
B = (%) . (127)

Note that for a Poisson solid, ) = i, S0 o = /3. Therefore, the vectors V¢ and V x 1 are
called the P-wave (for Primus meaning first) and S-wave (for secundus) components of displacement
u. Thus, equations (124) and (125) are the equations for P- and S- waves that travel, respectively,
with speeds given by equations (126) and (127).

The proof of Helmholtz’s theorem is not completely trivial. However, Arken (1985) does it. In
fact, it was used for more than 100 years before it was proved rigorously. To begin to understand
its validity, let’s consider a vector field u(r) that’s finite, continuous and goes to zero as r — oo.
The proof of Helmholtz’s theorem can be reduced to showing that for any such vector field, there
exists another vector field W such that

VIW = —u, (128)

which may not be as hard to swallow as Helmholtz’s theorem itself. But if we take this as a fact
we can get Helmholtz’s theorem simply enough. Using the vector identity (3-12) we can rewrite

equation (128) as:

u = VW =-V(V.-W)+Vx(VxW) (129)
= V¢4V x (130)

Furthermore, since V - (V » W) =0, we can require that V -9 = 0.
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P-wave Propagating the the z-Direction

Consider a P-wave propagating in the x-direction. #(z,t) = ¢(x — at). which is a solution of the

1-D wave equation
0?8, = ¢ (131)

Because u = V¢, u = u,# = d,6%, displacement occurs only in the direction of motion. P-waves
are ‘longitudinal’ waves. The dilatation f=V-u=V- Vo=V # 0, so P-waves introduce
volume changes in the elastic medium as they propagate. They are, therefore, frequently called
‘compressional’ or ‘dilatational’ waves. Also, since V x V¢ = 0, P-wave motion is ‘irrotational’.

S-wane Propagating the the z- Direction

Consideration of an S-wave propagating in the x-direction is somewhat more complicated since

the S-wave potential is a vector and we have to investigate each of its components: u = V X ¢,

where in general:

W = vy (r — B1)F + (7 — BT + ¥ — BO)Z. (132)
Consider the curl of :
(U x ), = €50y, (133)
(Vx ), = ejxdie =¥ — 8ty =0, (134)
(Vx9), = et =0 — 0= — 0,1, (135)
(Vx$), = ejedide = 0xty — Bythz = Os¥y, (136)
(137)

where ¢, is the permutation tensor or the Levi-Civita tensor which is defined to be 1 if € is any

even permutation of €3, -1 if its an odd permutation, and 0 if any of the subscripts are repeated.
Thus,
u=Vxy = 09,0+ 0yZ, (138)

from which we see that displacement is in the (y. z}-plane and, therefore, is perpendicular to the
direction of motion. Also, V-u = 0, so the motion is dilatationless; i.e., there are no volume changes

during propagation of an S-wave. If we consider an element of the strain tensor:
1
Gy = 3 (Bytez + Onnry) (140)

= "‘;‘ar (amlbz)a (141)
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where the latter equality follows from equation (138). Thus, shear strains occur without volume
changes for S-waves, and for this reason they are called ‘shear’ waves.
To get a scalar wave equnation for S-waves propagating in the x-direction analogous to equation

(131) for P-waves. we need to consider the Laplacian of the vector potential v:

Vi = =-V xVx, (142)
(VxVx), = ed; (Vx ), = e0u, (143)
(VxVxe), = 0,04, + 08,0y, =0, (144)
(VxVxy), = 8,(0)~ Quthy = —Oruthy, (145)
(VxVxy), = —0.¢. — 0,0} = -89, (146)

where equation (138) has been used to evaluate the cross products. Thus,
VY = Oy g+ Orgt 5. (147)

We need to substitute this into the equation of motion for S-waves, equation {125). Ignoring the

forcing terms:

B [Oratfy§ + Ouatln 2] = 9,9 + 9, 2, (148)

which yields two separate uncoupled scalar equations for S-wave displacements in the y- and z-

directions;

u.;y = 626121!)11-, (149)
¥, = B0, (150)

which are the S-wave analogues of equation (131).
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